
Dear Dr/Prof. JohnRea Stewart,
Here are the proofs of your article.

• You can submit your corrections online or by fax.
• For online submission please insert your corrections in the online correction form. Always

indicate the line number to which the correction refers.
• For fax submission, please ensure that your corrections are clearly legible. Use a fine black

pen and write the correction in the margin, not too close to the edge of the page.
• Please return your proof together with the permission to publish confirmation.
• Remember to note the journal title, article number, and your name when sending your response

via e-mail, fax or regular mail.
• Check the metadata sheet to make sure that the header information, especially author names

and the corresponding affiliations are correctly shown.
• Check the questions that may have arisen during copy editing and insert your answers/

corrections.
• Check that the text is complete and that all figures, tables and their legends are included. Also

check the accuracy of special characters, equations, and electronic supplementary material if
applicable. If necessary refer to the Edited manuscript.

• The publication of inaccurate data such as dosages and units can have serious consequences.
Please take particular care that all such details are correct.

• Please do not make changes that involve only matters of style. We have generally introduced
forms that follow the journal’s style.
Substantial changes in content, e.g., new results, corrected values, title and authorship are not
allowed without the approval of the responsible editor. In such a case, please contact the
Editorial Office and return his/her consent together with the proof.

• If we do not receive your corrections within 48 hours, we will send you a reminder.

Please note
Your article will be published Online First approximately one week after receipt of your corrected
proofs. This is the official first publication citable with the DOI. Further changes are, therefore,
not possible.
After online publication, subscribers (personal/institutional) to this journal will have access to the
complete article via the DOI using the URL: http://dx.doi.org/[DOI].
If you would like to know when your article has been published online, take advantage of our free
alert service. For registration and further information go to: www.springerlink.com.
Due to the electronic nature of the procedure, the manuscript and the original figures will only be
returned to you on special request. When you return your corrections, please inform us, if you would
like to have these documents returned.
The printed version will follow in a forthcoming issue.

http://dx.doi.org/[DOI]
http://www.springerlink.com


Fax to: +1 347 649 2158 (US) or +44 207 806 8278 (UK)
or +91 44 4208 9499 (INDIA)
To: Springer Correction Team

6&7, 5th Street, Radhakrishnan Salai, Chennai, Tamil Nadu, India – 600004
Re: Journal of Intelligent Manufacturing DOI:10.1007/s10845-007-0068-y

Comparison of a centralised and distributed approach for a generic scheduling system
Authors: Kieran Greer · JohnRea Stewart · Barry McCollum

Permission to publish
I have checked the proofs of my article and
q I have no corrections. The article is ready to be published without changes.

q I have a few corrections. I am enclosing the following pages:
q I have made many corrections. Enclosed is the complete article.

Date / signature ______________________________________________________________________________



Metadata of the article that will be visualized in OnlineFirst

ArticleTitle Comparison of a centralised and distributed approach for a generic scheduling system
Article Sub-Title

Article CopyRight - Year Springer Science+Business Media, LLC 2007
(This will be the copyright line in the final PDF)

Journal Name Journal of Intelligent Manufacturing

Corresponding Author Family Name Stewart
Particle

Given Name John Rea
Suffix

Division The School of Computer Science

Organization Queen’s University Belfast

Address BT7 1NN, Belfast, Northern Ireland

Division School of Electronics, Electrical Engineering and Computer Science

Organization Queen’s University Belfast

Address BT7 1NN, Belfast, Northern Ireland

Email j.r.stewart@qub.ac.uk

Author Family Name Greer
Particle

Given Name Kieran
Suffix

Division The QUESTOR Centre

Organization Queen’s University Belfast

Address BT7 1NN, Belfast, Northern Ireland

Division School of Computing and Mathematics

Organization University of Ulster

Address Newtownabbey, Northern Ireland

Email krc.greer@ulster.ac.uk

Author Family Name McCollum
Particle

Given Name Barry
Suffix

Division The School of Computer Science

Organization Queen’s University Belfast

Address BT7 1NN, Belfast, Northern Ireland

Email b.mccollum@qub.ac.uk

Schedule

Received 9 December 2007

Revised

Accepted 11 December 2007

Abstract PEGS (Production and Environmental Generic Scheduler) is a generic production scheduler that produces
good schedules over a wide range of problems. It is centralised, using search strategies with the Shifting
Bottleneck algorithm. We have also developed an alternative distributed approach using software agents. In
some cases this reduces run times by a factor of 10 or more. In most cases, the agent-based program also



produces good solutions for published benchmark data, and the short run times make our program useful for
a large range of problems. Test results show that the agents can produce schedules comparable to the best
found so far for some benchmark datasets and actually better schedules than PEGS on our own random
datasets. The flexibility that agents can provide for today’s dynamic scheduling is also appealing. We suggest
that in this sort of generic or commercial system, the agent-based approach is a good alternative.

Keywords (separated by '-') Scheduling - Software agents - Distributed scheduling - Production scheduling - Environmental constraints

Footnote Information



u
n
co

rr
ec

te
d
 p

ro
o
f

J Intell Manuf

DOI 10.1007/s10845-007-0068-y

Comparison of a centralised and distributed approach for a generic

scheduling system

Kieran Greer · John Rea Stewart · Barry McCollum

Received: 9 December 2007 / Accepted: 11 December 2007

© Springer Science+Business Media, LLC 2007

Abstract PEGS (Production and Environmental Generic1

Scheduler) is a generic production scheduler that produces2

good schedules over a wide range of problems. It is cen-3

tralised, using search strategies with the Shifting Bottleneck4

algorithm. We have also developed an alternative distributed5

approach using software agents. In some cases this reduces6

run times by a factor of 10 or more. In most cases, the agent-7

based program also produces good solutions for published8

benchmark data, and the short run times make our program9

useful for a large range of problems. Test results show that the10

agents can produce schedules comparable to the best found11

so far for some benchmark datasets and actually better sche-12

dules than PEGS on our own random datasets. The flexibility13

that agents can provide for today’s dynamic scheduling is also14

appealing. We suggest that in this sort of generic or commer-15

cial system, the agent-based approach is a good alternative.16

K. Greer

The QUESTOR Centre, Queen’s University Belfast,

Belfast BT7 1NN, Northern Ireland

e-mail: krc.greer@ulster.ac.uk

Present Address:

K. Greer

School of Computing and Mathematics, University of Ulster,

Newtownabbey, Northern Ireland

J. R. Stewart · B. McCollum

The School of Computer Science,

Queen’s University Belfast, Belfast BT7 1NN, Northern Ireland

e-mail: b.mccollum@qub.ac.uk

J. R. Stewart (B)

School of Electronics, Electrical Engineering and Computer

Science, Queen’s University Belfast, Belfast BT7 1NN,

Northern Ireland

e-mail: j.r.stewart@qub.ac.uk

Keywords Scheduling · Software agents · Distributed 17

scheduling · Production scheduling · Environmental 18

constraints 19

Introduction 20

PEGS (Production and Environmental Generic Scheduler) 21

is a generic production scheduling system developed at the 22

Queen’s University of Belfast. In addition to conventional 23

time-based optimisation, PEGS calculations may be based 24

on economic values and this allows consideration of any 25

environmental effects to which a cost can be assigned. For 26

example, waste generated at product change-overs or the 27

varying costs of electricity at different times may be inclu- 28

ded. PEGS allows the use of multiple objectives, setup times 29

and a wide range of constraints. These features mean that 30

the program may be used to generate schedules for many 31

different manufacturing models including single machine, 32

parallel machines, flow shops and job shops. A full descrip- 33

tion of the program and comparisons of its performance on 34

a variety of benchmark tests are given in Greer et al. (2006). 35

In this paper, we describe some recent work to develop 36

a distributed algorithm, using software agents, and compare 37

the new version of the program with the original centrali- 38

sed algorithm using some randomised datasets and published 39

benchmarks. For convenience here we will refer to the origi- 40

nal version as PEGS and the new version as PEGSAgent. 41

In PEGS we use search heuristics together with the Shif- 42

ting Bottleneck algorithm (Adams et al. 1988). In this 43

approach all machines are considered together and a sche- 44

dule is calculated from a single centralised algorithm. This 45

approach can produce good quality solutions, but today’s 46

systems also need to be very flexible. A flexible system may 47

cope with situations where machines are distributed across 48

123

Journal: JIMS MS: 68 CMS: GIVE CMS TYPESET DISK LE CP Disp.:2007/12/22 Pages: 11 Layout: Large

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d
 p

ro
o
f

J Intell Manuf

different sites, with machine breakdowns, or with agile manu-49

facturing methods (He and Babayan 2002). A distributed50

approach may be preferred because of its greater flexibility. It51

appears, from the lack of published comparisons, that it may52

be difficult to achieve the same quality of solution (schedule)53

using distributed methods. For PEGSAgent we have imple-54

mented and tested a distributed approach using agent-based55

technology. In the remainder of this paper we present some56

comparisons between the two different approaches. We have57

not found published details of similar comparisons elsew-58

here, either considering a generic or a specialised system.59

Software agents have now been widely used in scheduling,60

see Shen (2002) for a summary. An agent-based approach is61

a distributed approach, where complex problems are broken62

down into a number of simpler problems which are distribu-63

ted among several agents. The agents then attempt to solve64

the simpler problems and their combined efforts will produce65

a solution to the global problem. Jennings (2000) outlines66

the advantages of using an agent-based approach to software67

engineering. There are various features that an agent should68

possess. One of these is that an agent should be autonomous69

or semi-autonomous. This means that it has its own internal70

control system and is able to make independent decisions on71

behalf of the user. An autonomous agent is also pro-active and72

may initiate other processes. Agents communicate with each73

other using an agent communication language. The Founda-74

tion for Intelligent Physical Agents, FIPA, is the organisation75

responsible for creating standards for agent-based techno-76

logy and its Agent Communication Language is called ACL.77

Agents use ACL to pass messages to other agents telling78

them what to do. The message passing protocols are also79

standardised. Our agents are semi-autonomous in that they80

generate a schedule independently once they have been asked81

to do so. They communicate using the standard communi-82

cation protocols Contract Net and Query Ref (FIPA 2002),83

plus an even simpler protocol that just asks an agent to do84

something.85

The Contract Net protocol is a standard bidding protocol.86

It is used to allow agents to bid with each other to provide87

a service for some other agent. In our case we allow the88

machine agents to compete with each other to provide a time89

slot in which to complete an operation belonging to some90

job. Query Ref is much simpler and is used to send a query91

from one agent to another and then receive a reply from that92

agent. We have written our own agent platform, agents and93

protocols, etc. so that they could be customised to our own94

specific problem. However, we expect that the protocols used95

here could equally have been implemented using an open-96

source generic agent platform.97

In the remainder of this paper we describe some related98

work on centralised and distributed systems (Section “Rela-99

ted work”), the main features of our system (Sec-100

tion “Main features”), the architecture of our centralised101

(Section “Centralised architecture”) and distributed systems 102

(Section “Distributed architecture”), a comparison with other 103

systems (Section “Comparison with other systems”), a com- 104

parison of the two program versions on a series of tests (Sec- 105

tion “Testing the two approaches”), and some conclusions 106

(Section “Conclusion”). 107

Related work 108

Search algorithms 109

PEGS provides a choice from three different search algo- 110

rithms to find a solution: tabu search (Hertz et al. 1992; 111

Morton and Pentico 1993; Pinedo 2002; Nowicki and Smut- 112

nicki 1996), simulated annealing (Pinedo 2002) and beam 113

search (Pinedo 2002; Valente and Alves 2004). 114

Tabu search and simulated annealing are both nearest 115

neighbour search strategies. They begin with some initial 116

ordering (a schedule) and then make a change to it in the 117

close neighbourhood of that ordering. If the changed orde- 118

ring is better it is retained as the current best solution and a 119

new modification is made from that one. If the change is not 120

an improvement, then a different modification is made from 121

the original ordering. The program continues making modi- 122

fications and evaluating the results until a specified number 123

of iterations have elapsed or time has run out. If the only 124

next moves are those which give a worse solution then it is 125

possible to be trapped in a local optimum (a region of the 126

search space where no immediate near neighbour move will 127

provide a better solution, even though there may be better 128

solutions in some other area of the search space). In this case 129

it may be necessary to allow a move to a worse solution in 130

order to move out of a local optimum, so that an even better 131

global optimum may be found. Tabu search and simulated 132

annealing have mechanisms in place to allow this. 133

In tabu search a record is kept of the last m moves made in a 134

tabu list. Making a reverse of these moves while they are in the 135

list is not allowed. This will prevent repeated cycling between 136

two moves, but may mean it is occasionally necessary to 137

make a worse move (that is not in the list) before it becomes 138

possible to again find better moves. The actual moves made 139

are generated randomly, typically by choosing two operations 140

at random and swapping their positions to produce a new 141

candidate solution. For the first half of the search we swap 142

any two operations, while for the second half we swap just 143

neighbouring operations. 144

Simulated annealing provides a probability function, 145

where a worse move may be made at certain iterations with a 146

pre-determined probability. This also means that if the solu- 147

tion is trapped in a local optimum there is an opportunity of 148

moving out of it again. Simulated annealing has a ‘cooling 149

factor’ which is used to determine how often the probability 150

123

Journal: JIMS MS: 68 CMS: GIVE CMS TYPESET DISK LE CP Disp.:2007/12/22 Pages: 11 Layout: Large

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d
 p

ro
o
f

J Intell Manuf

function will allow a worse move. Initially the cooling factor151

is set quite high and worse moves are permitted more often.152

As the number of iterations completed increases, the cooling153

factor is decreased, making it less likely that a move to a154

worse solution will be allowed. This has the effect of allo-155

wing the search strategy to roam widely at the start and then156

settle on a particular area of the search space as the number157

of iterations increases. The basic algorithms for these search158

strategies are described in Pinedo (2002). The tabu search159

algorithm has been modified to include an aspiration crite-160

rion (see Chambers and Barnes 1996). If a move is made that161

results in a better solution than any found so far, even if it is162

tabu, the move is still allowed.163

Beam search is a breadth-first search that prunes nodes at164

each level of a search tree. From each solution at one level, all165

possible next solutions are generated by swapping elements166

(operations) with one of the elements in the original solution.167

This produces a new number of solutions at a new level of168

the search tree. These new solutions can then be expanded169

in the same way, until all swaps have been considered. The170

basic algorithm is again taken from Pinedo (2002). Starting171

from an initial ordering, changes are made by swapping all172

elements with the first one. This will produce a number of173

new solutions. Each new solution is evaluated and a certain174

number, as specified by the beam width, are retained. If, for175

example, the beam width is 10, only the 10 best new solu-176

tions are kept. These new solutions are then expanded again177

by swapping all elements (except for the first one) with the178

second element. These new solutions are evaluated again and179

a beam width number kept, and so on until all of the elements180

in the solution have been swapped. The algorithm will gene-181

rate all of the possible solutions, except for those pruned (or182

rejected) by the beam width. It is also possible to include a183

filter width, where an initial evaluation of new solutions is184

made, based on a relatively simple evaluation function, and185

a filter width number of these are retained. This filter width186

number is subsequently evaluated using a more sophisticated187

function and a beam width number of these are retained.188

There is also an exhaustive branch and bound algorithm189

for simple testing that considers all possible solutions. This190

is, of course, far too slow to use on problems of a realistic191

size.192

The Shifting Bottleneck algorithm193

The Shifting Bottleneck algorithm is used for job shop or flow194

shop configurations. This is a well tried and trusted algorithm195

that was originally suggested in Adams et al. (1988) and is196

also in Balas and Vazacopoulos (1998). It is known to be rea-197

sonably fast and to produce good quality solutions. Various198

authors have produced optimal solutions for benchmark data-199

sets using specialised algorithms coupled with the Shifting200

Bottleneck algorithm. Our system is generic using the search201

strategies described in Section “Search algorithms” with the 202

Shifting Bottleneck algorithm and thereby producing reaso- 203

nable results for a wide range of problems. 204

The Shifting Bottleneck algorithm works by finding the 205

bottlenecks in the system. These are the machines or work- 206

centres responsible for the greatest delay to the schedule. Pre- 207

ference is given to these areas by generating their schedules 208

first. This approach tends to generate schedules most favou- 209

rable to the bottleneck operations/machines. In the Shifting 210

Bottleneck algorithm, during each iteration, it is necessary to 211

find the worst bottleneck. This is the workcentre that is pro- 212

ducing the worst evaluation. A workcentre is a group of one 213

or more machines, all running in parallel, that can process 214

the same operations. A schedule is generated for each work- 215

centre using initial available times. The workcentre with the 216

worst objective is taken as the worst bottleneck. This bot- 217

tleneck is then optimised first in the next iteration, which 218

means that its allocation of operations to time slots are given 219

preference over all other bottleneck allocations. When the 220

operations have been allocated, the other bottlenecks’ allo- 221

cations are adjusted based on these and optimised in turn. 222

Next the second worst bottleneck is identified as the worst 223

of the remaining bottlenecks. The first and second worst bot- 224

tlenecks are then balanced together. This means optimising 225

the first worst bottleneck, then the second worst bottleneck 226

(updating allocation times in the process), and repeating until 227

there are no changes in their evaluations or a specified num- 228

ber of iterations have passed. When these bottlenecks have 229

been balanced, the allocation times in the remaining bottle- 230

necks are updated and evaluated in turn to determine the third 231

worst bottleneck. The three worst bottlenecks are then balan- 232

ced and the process is repeated until all bottlenecks have been 233

balanced. 234

Together, the search and shifting bottleneck algorithms 235

represent a centralised approach to the scheduling problem. 236

In the next sections we describe an alternative approach using 237

agent technology. 238

Agent-based systems 239

There has been a move towards a distributed solution to the 240

production scheduling problem because it is more flexible 241

and adaptable to changes that may occur in day-to-day 242

scheduling. There is now a substantial body of literature on 243

agent-based systems used as distributed production schedu- 244

ling systems. Babiceanu and Chen (2006) survey the current 245

status of distributed manufacturing systems, including agent- 246

based technology in production scheduling. One advantage 247

of this approach is its ability to cope with dynamic changes 248

such as machine breakdowns, new orders or changes in exis- 249

ting orders; a flexibility sometimes described as agile manu- 250

facturing (He and Babayan 2002; Boccalatte et al. 2004). If, 251

for example, each machine is represented by a separate agent, 252

123

Journal: JIMS MS: 68 CMS: GIVE CMS TYPESET DISK LE CP Disp.:2007/12/22 Pages: 11 Layout: Large

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d
 p

ro
o
f

J Intell Manuf

it is easier to simply remove a machine if it breaks down, or253

keep parts of the schedule the same while allowing other254

parts to be changed by fixing certain agents and allowing255

others to be re-scheduled. If it is only necessary to re-schedule256

part of the system, it can be done much more quickly with257

an agent-based approach. Shen and Norrie (1998) describe258

their MetaMorph II system which attempts to address these259

issues. Yoo and Muller (2002) also address the dynamic job260

shop scheduling problem. Shen (2002) provides a tutorial261

which describes the problems that agents address and also262

lists some systems. Walker et al. (2005) describe an agent-263

based system that uses evolutionary algorithms to evolve a264

scheduler rather than the schedule itself. Globally dispersed265

manufacturing enterprises need to address issues of acces-266

sibility, integration and re-configurability (Yen 1998). Plan-267

ning is usually integrated with the scheduling and changing268

product specifications or shop floor configurations need to269

be quickly integrated into the system. To tackle this problem,270

the planners and schedulers may be involved in some sort of271

communication. An agent-based approach can prove a good272

match to this kind of problem as it already relies on multiple273

inter-agent communications. PEGSAgent is only concerned274

with the scheduling phase, but an agent-based approach may275

be more easily extended to cope with planning problems as276

well.277

Another feature of agent-based systems is the potential278

to introduce a bidding mechanism. This means that it is279

possible to change the evaluation from a time-based one280

to an economic-based one, or possibly include time-based281

and economic-based factors in a single evaluation (however,282

our centralised system also has some experimental econo-283

mic objectives that can be used). Dang and Frankovic (2002)284

introduce a system that is cost-based and copes with a flexible285

manufacturing environment. Wellman et al. (2003) explore286

a number of different bidding strategies. Other systems that287

involve bidding include Lim and Zhang (2002), Boccalatte288

et al. (2004) and Vancza and Markus (2000). Parunak et al.289

(1998) describe a comparison between agent-based model-290

ling and equation-based modelling for supply networks and291

note advantages for each approach.292

Main features293

This section briefly describes the main features that PEGS294

provides. These features are available in both the centralised295

and distributed versions. A demo version of the program is296

available for downloading from our Environmental Model-297

ling Group website (Stewart 2006).298

The program allows for static or dynamic ready times and299

can attempt to minimise the amount of idleness in the sche-300

dule. The program allows setup times to be entered for each301

operation or for families of operations.302

There are a variety of constraints. Operation constraints 303

allow the user to constrain one operation to be beside or 304

before another operation. If one operation is constrained to 305

be beside another, then they are scheduled together on the 306

same machine. Section “Centralised architecture” describes 307

the centralised architecture, where for each workcentre, there 308

is a single machine schedule generated before the operations 309

are assigned to the parallel machines. This single machine 310

schedule determines the order in which the operations are 311

assigned to the parallel machines. We also have a weak form 312

of the beside constraint, where the operations are constrained 313

to be beside each other in the single machine schedule but 314

can then be separated when assigned to the parallel machines. 315

This has the effect of scheduling them at times close to each 316

other but not necessarily on the same machine. Time-based 317

constraints include shift times or any other time period when 318

a machine is not available. If using shift times, it is possible to 319

specify a preference that operations be completed on the same 320

shift in which they started. There are also resource constraints 321

where a maximum available quantity can be specified and 322

the sum of the amounts consumed by the machines in use 323

cannot exceed this. Typical resources include energy used 324

by the machines or the number of operators required to run 325

the machines. 326

It is also possible to use environmental constraints. The 327

value of waste produced by an operation change-over may 328

be entered for each operation or for families of operations. 329

Energy tariffs, varying with time of day and calendar, may be 330

entered and included. As waste and energy are measured in 331

monetary units, an objective based on economic values rather 332

than time-based values is then used. It is also possible to use 333

cost-based objectives by entering cost estimates for factors 334

such as the cost to process an operation on a machine per unit 335

time. Then the time-based objectives can be converted into 336

cost-based ones using a number of simple but experimental 337

conversion equations we have developed. 338

We permit operations for the same product to overlap 339

rather than to take place in strict sequence. The default is 340

strictly sequential, assuming that each operation requires as 341

input the output from the previous one. However, it will some- 342

times be the case that operations are independent of each 343

other and can overlap in time on the same group of paral- 344

lel machines or different groups of machines. Overlapping 345

can be switched on or off for different operations required 346

for a particular job. We also allow the user to fix the opera- 347

tion time or the machine an operation should be run on. We 348

have provided for buffers between each operation which may 349

accumulate stock as it is produced. Users may specify any 350

batch amount by which the items may then be removed from 351

a buffer. We have also implemented a special ‘accumulation’ 352

operation. Users may group a number of operations from dif- 353

ferent jobs into a single operation on a notional machine and 354

process them as a single operation. This feature would be 355

123

Journal: JIMS MS: 68 CMS: GIVE CMS TYPESET DISK LE CP Disp.:2007/12/22 Pages: 11 Layout: Large

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d
 p

ro
o
f

J Intell Manuf

useful in a pottery or bakery where different items would be356

processed together in a single oven. It was actually imple-357

mented for a furniture manufacturer which makes various358

components at one site and then transports them to another359

for subsequent assembly. The transport step is treated as an360

accumulation operation.361

The generated schedules are displayed on an interactive362

Gantt chart. This is colour-coded with respect to job or ope-363

ration type. The user can use a key to highlight individual364

operations in selected jobs and enlarge/shrink the chart. The365

user can manually move operations to new machines/relative366

positions and re-schedule, or can fix operation positions and367

re-schedule round them. The user can also remove opera-368

tions scheduled before a certain time and re-schedule the369

rest. This feature is also available from the main window,370

where the user can enter new job specifications and combine371

them with an existing schedule, removing operations already372

completed from the existing schedule. The schedule is also373

displayed in a textual format. This can be as a report that374

describes the schedule in relatively simple terms, or you can375

also have a full description of the scheduling details, that can376

actually be used to re-construct the schedule.377

We have also developed a version of the centralised archi-378

tecture that can be physically distributed. Each workcentre379

scheduling process of the shifting bottleneck algorithm can380

be run on a different machine in parallel, thus speeding up381

processing time. Results showed that the schedule quality382

was almost the same, while the scheduling times were much383

faster. For example, using three computers could speed sche-384

duling up by a factor of nearly three.385

Centralised architecture386

The PEGS scheduling system uses a relatively straightfor-387

ward architecture, as illustrated in Fig. 1 (previously given388

in Greer et al. 2006). The three main algorithms used in the389

process are labelled as A1.1, A1.2 and A1.3. Machines are390

grouped into workcentres, where a machine can belong to391

only one workcentre. Each workcentre can process a number392

of operations, where an operation can also belong to only393

one workcentre. Thus the machines in a workcentre can be394

considered as a group of parallel machines that process the395

same operations. PEGS uses search heuristics to find a solu-396

tion. When presented with a scheduling task a number of397

dispatch heuristics are selected depending on the objective398

type and features of the problem. Each is then run and the399

best ordering retained. A search strategy is then used to refine400

the schedule and can be one of tabu search, simulated annea-401

ling or beam search. The system can be used to schedule for402

single machines, parallel machines, job shops or flow shops.403

For flow shop and job shop problems, the Shifting Bot-404

tleneck algorithm is used to generate a solution in the man-405

Bottleneck 1 (Workcentre 1) Bottleneck 2 (Workcentre 2) 

Operations Operations 

Single Schedule (A1.1) Single Schedule (A1.1) 

Assign to Parallel Machines (A1.2) Assign to Parallel Machines (A1.2) 

Machine 1 Machine 2 Machine 3 Machine 4 Machine 5

(A1.3)

Fig. 1 Basic architecture used in PEGS. Each workcentre can be a bot-

tleneck and each bottleneck is balanced in turn. Knowing the operations

to be performed on each bottleneck, we first generate a schedule as if

there were only a single machine in the workcentre. The operations are

then assigned to the parallel machines in this order. The ordering on

one bottleneck may influence the ready times on another

ner described in Section “The shifting bottleneck algorithm”. 406

(A1.3 in Fig. 1). The solution at each bottleneck is obtained 407

from a slightly modified version of the scheme suggested in 408

Morton and Pentico (1993). A schedule is firstly generated for 409

all operations on the bottleneck as if it was a single machine 410

(A1.1 in Fig. 1). When calculating completion times (used to 411

calculate the objective) for this step we then take into account 412

the number of parallel machines in the workcentre. The ope- 413

rations are assigned to each parallel machine in sequence to 414

give a very general idea of possible completion times. This 415

is not the final assignment and does not consider different 416

machine speeds, but gives improved completion times for the 417

single schedule ordering. For example, if the first two opera- 418

tions in the single machine schedule are assigned to different 419

machines, they may be given the same completion times. The 420

completion times if just considering one machine would of 421

course be different as one would be scheduled after the other. 422

These estimated completion times are then used to calculate 423

the objective for the single machine ordering and the best 424

ordering retained. We expect this technique to be particu- 425

larly effective when measuring the earliness/tardiness objec- 426

tive (operations should be neither too early nor too late). The 427

operations are then actually assigned to the parallel machines 428

in the order of the single machine schedule, in the most eco- 429

nomic manner (A1.2 in Fig. 1). We have two algorithms to do 430

this. The first simply assigns the operation to the machine that 431

can process it first. The second algorithm tries to place simi- 432

lar operations together on individual machines. This second 433

algorithm is good for minimising waste if environmental fac- 434

tors are considered. This architecture is clearly centralised. 435

A single algorithm considers all machines in a workcentre 436

together. The bottlenecks must also all be processed toge- 437

ther. This leads to more complex algorithms to process the 438

information, but the information is all present in one place 439

and there is little need for communication between different 440

123

Journal: JIMS MS: 68 CMS: GIVE CMS TYPESET DISK LE CP Disp.:2007/12/22 Pages: 11 Layout: Large

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d
 p

ro
o
f

J Intell Manuf

parts of the system. In the distributed system described in the441

next section there is substantial need for communication bet-442

ween the agents. So while the distributed solution provides443

simpler individual problems, there is increased complexity444

through the communications.445

Distributed architecture446

In PEGSAgent there are agents to represent machines and447

jobs. A machine agent represents a single machine. It is res-448

ponsible for finding the best schedule for that machine. There449

is also a machine mediator agent that controls some global450

operations required on all machines. The machine mediator451

will create the machine agents and also hold global machine452

information, such as which machine processes which opera-453

tions. A job agent is responsible for finding the best schedule454

for the operations in its job. There is also a job mediator agent455

that controls global operations required on all job agents.456

The job mediator creates the job agents and also determines457

which job agent will try to schedule the next operation. The458

actual scheduling process is conducted between the machine459

and job agents. The negotiation protocol used here is the460

Contract Net protocol (FIPA 2002). Figure 2 shows the main461

architecture used.462

There is one main process which is used to generate a463

schedule and there are then two variations on this. In both464

variations, the job mediator generates and initialises the job465

agents and the machine mediator generates and initialises466

the machine agents. In the first step of the process to gene-467

rate a new schedule, the job mediator determines the order468

in which the operations should be scheduled. It does this by469

generating an ordering for each workcentre using one of the470

search heuristics for the single machine phase of the Shif-471

ting Bottleneck algorithm described above (A2.1 in Fig. 2).472

The operation placed first in this ordering is then given an473

order value of 1 and so on. These order values are sent to474

each job agent for each operation (A2.2 in Fig. 2). The job475

mediator then asks each job agent in turn to return the order476

value for the next operation that it needs to schedule. The477

operation with the lowest order value is given permission to478

be scheduled next (A2.3 in Fig. 2). Note that, within an indi- 479

vidual job, the operations are required to be processed in a 480

certain sequence to produce that product, and this cannot be 481

over-ridden by preferences due to order values. 482

When a job agent is given permission to schedule its next 483

operation, it retrieves the addresses of the machines that can 484

process it and asks each in turn for a schedule time and eva- 485

luation. This negotiation is carried out using the Contract Net 486

protocol. In this protocol, a job agent will ask the machine 487

agents for times at which they can schedule its operation. 488

When the machine agents reply, the job agent evaluates all 489

of the replies and chooses the best one. It accepts the best 490

proposal and rejects the rest. The accepted machine agent is 491

then asked to actually schedule the operation at the time that it 492

specified (A2.4 in Fig. 2). The machine agents determine the 493

best time that they can schedule the operation taking account 494

of their existing schedules. A number of factors are used to 495

evaluate a time slot. These include the actual time and date, 496

the evaluation of the objective for the machine if that slot 497

is selected and also some budgetary factors are considered. 498

Budgets are only considered if time and objective evalua- 499

tions do not indicate a winner. We intend to look further at 500

the budget and bidding processes at a later stage. 501

In this way, all of the operations are eventually assigned to 502

a machine. When all operations have been assigned, the job 503

mediator asks the machine mediator to combine the partial 504

schedules from each machine agent and return this as the 505

final schedule (A2.5 in Fig. 2). So a search heuristic is used 506

to generate the initial ordering, to determine the order in 507

which the operations are allowed to be scheduled. When a 508

machine is then asked to schedule an operation it uses a local 509

sort to determine the best position. It tries out each possible 510

slot from the earliest legal date to the end of its schedule. 511

It places the new operation in each slot and re-evaluates its 512

objective. The slot that produces the best objective is returned 513

as the proposal from that machine. 514

The sorting process is part of A2.4 in Fig. 2. One inter- 515

esting feature to notice about this sorting process is that it is 516

constructive. Beginning from no operations on a machine, the 517

count is incremented one at a time as the schedule is crea- 518

ted. If, eventually, there are five operations on a machine, 519

Fig. 2 Diagram illustrating the

agent interactions to generate a

schedule

Select next 

operation

(A2.3)

Machine

Mediator 
Return

schedule

(A2.5)Determine 

schedule

(A2.4)

Job Mediator

Workcentre 1 

Workcentre 2 

Generate initial

ordering (A2.1)

Job

agent

Job

agent

Job

agent

Machine

agent

Machine

agent

Send initial

ordering

(A2.2)

Combine schedules

and return

123

Journal: JIMS MS: 68 CMS: GIVE CMS TYPESET DISK LE CP Disp.:2007/12/22 Pages: 11 Layout: Large

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d
 p

ro
o
f

J Intell Manuf

the number of sort iterations required may be something like520

1 + 2 + 3 + 4 + 5 for the different scheduling requests on the521

machine. This is a lot less than using a search strategy which522

would have to deal with the whole schedule during each ite-523

ration and for a possibly large number of iterations. The Shif-524

ting Bottleneck approach uses the search strategies and is an525

iterative process, so searches are performed several times.526

The agent-based approach is much quicker as there is only527

one search process at the start. This will be shown to dra-528

matically reduce search times for a job shop environment.529

The advantage is not so good for other environments such as530

a flow shop. In this case the centralised approach performs531

only one search for each bottleneck and so the agent-based532

approach performs an extra sort on the machines in addition533

to this. However, for a generic system like PEGSAgent, since534

scheduling job shops takes a lot longer than scheduling flow535

shops, the advantage for job shops would out-weigh the time536

lost on flow shop problems.537

Having described the basic scheduling process, we now538

examine the two variations mentioned above. When a new539

operation is inserted into a slot in an existing schedule, it540

may change the times of operations that have already been541

scheduled. Two approaches have been tried to cope with542

this. The first approach is to remove all operations whose543

times are affected and then try to re-schedule them again on544

some machine. This is similar to the idea of Boccalatte et al.545

(2004), who give the operation to be re-scheduled a favou-546

rable order value to ensure it is re-scheduled relatively soon547

after being moved. However, we found some problems with548

this approach. There was a tendency for the scheduling pro-549

cess to cycle, when an operation would be inserted early in an550

existing schedule. There would then be a ‘knock-on’ effect to551

move later operations, which would be re-scheduled on some552

other (or the same) machine. This might then move other553

operations which follow the new position, which would be554

re-scheduled on some other (or the same) machine, etc. This555

would particularly be the case if the operations being sche-556

duled were very similar to each other. To prevent this cycling557

a maximum iteration count was enforced. If any operations558

were re-scheduled a maximum count number of times, they559

would then be added in a place that did not affect any existing560

schedule. However, this modification resulted in operations561

being added at the end of the existing schedule. The test sec-562

tion will show that while some reasonable schedules were563

obtained, another approach proved slightly better.564

In a second approach, when an operation was inserted at565

some intermediate position in a machine schedule, the times566

of the operations that came after it on that machine were567

pushed forwards to accommodate the new operation. The568

times of any dependent operations (due to product sequence569

requirements) on different machines were also pushed for-570

wards. However, in the case of workcentres with parallel571

machines, any of the affected operations were also permitted572

to be re-scheduled on a similar machine so long as it did not 573

affect the existing schedule on that machine. If an operation 574

that was pushed forward could be moved to a more favou- 575

rable position on a different machine without affecting its 576

existing schedule, then this would be allowed. 577

Comparison with other systems 578

The original aims for developing this system included pro- 579

vision to account for environmental factors in the schedu- 580

ling process. This included optimising with regard to waste 581

and energy, as well as cost. Another aim was to produce a 582

generic system which would be adaptable to a wide range 583

of scheduling tasks. The main manufacturing base in Nor- 584

thern Ireland is SMEs and so a flexible system that could be 585

used in different scenarios, but would not necessarily have 586

to process very large schedules, was the target application. 587

For these reasons, search heuristics were considered accep- 588

table. However, after looking at other systems and through 589

practical experience with manufacturer’s and their particu- 590

lar requirements, many other useful features were added to 591

the system. We also reviewed a range of currently available 592

commercial and academic programs. In comparison to the 593

commercial systems in common use at local companies, our 594

system appears to have several novel features. The constraint 595

options in PEGS are similar to those in many systems, but 596

whereas it is common to use dispatch heuristics for the whole 597

scheduling process, we prefer to use search heuristics for 598

the main process. We have also now implemented the agent- 599

based version. The inclusion of environmental and economic 600

features is also new. We found other systems that offer the 601

overlap or ‘accumulation’ processing options, but none see- 602

med to provide our ‘weak’ beside constraint. In summary, 603

while we found many of the features of PEGS in other sys- 604

tems, we did not find any other system that offered all of the 605

features that we have included. 606

Having a typical modern graphics-based user interface, 607

we imagine that our system should be relatively easy to use, 608

although help will be required to use the various additional 609

features that are available. This comes in the form of a user 610

manual and online help. The most significant task is in setting 611

up the initial environment. For this a user needs to specify 612

their shop floor layout and the operations that each machine 613

can process. Thus, details of each machine must be entered 614

and then the types, costs and times for processing each opera- 615

tion in each workcentre needs to be specified. Product details 616

can then be entered as a sequence of operations that can be 617

constrained in any allowed way, including the overlap of the 618

processing of individual operations. Processing details are in 619

time units to process a single item. The product details then 620

specify the number of items per operation. Once the initial 621

details are entered however, they can be saved to an XML 622

123

Journal: JIMS MS: 68 CMS: GIVE CMS TYPESET DISK LE CP Disp.:2007/12/22 Pages: 11 Layout: Large

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d
 p

ro
o
f

J Intell Manuf

file and re-loaded each time the system is used. If they are623

relatively permanent then this process only needs to be done624

once. The system also tries to be helpful, by providing all625

stored information in the form of combo-box options when626

required, and even indicating the order in which to enter infor-627

mation by only enabling the options that are legal for the next628

stage. To make daily use of the system, the user then only629

needs to enter the details of the new jobs to schedule. It is also630

possible to save schedules and re-load them at the next sche-631

duling stage. Old schedules can be updated and re-scheduled632

with new jobs, where completed jobs will be removed and the633

new jobs integrated. This allows for some level of continuous634

scheduling, even though the system is not a dynamic online635

one. We provide an interactive Gantt chart, giving a clear636

schedule layout and allowing for interactive re-scheduling.637

Testing the two approaches638

In this section we describe some tests performed to illustrate639

the advantages of the two different agent approaches. The640

tests considered both solution quality and execution times.641

Benchmark datasets642

The first set of tests compares the quality of the two agent-643

based approaches and the conventional program using644

well-known benchmark datasets. The values given for the645

‘Optimal objective’ in Table 1 are the best published results646

which have been achieved to date. Our generic system does647

not produce such high quality schedules but it has not been648

‘tuned’ to any particular problem type or dataset. As a conse-649

quence, the individual evaluations from PEGS are not so650

interesting, but the results demonstrate that PEGS works well651

for a range of different problems. Table 1 lists some datasets652

which have been used to test the scheduling quality and the653

best objective values from PEGS averaged over a small num-654

ber of runs.655

Generally, the objective values obtained from PEGS were656

not as good as the best published values, though there were657

three cases in the Purdue data where the PEGS objective658

was better. The Flexible Manufacturing System example is659

also interesting. This system allows any of the machines to660

process any of the operations but not all machines process661

all operations. This was implemented in PEGS as a Parallel662

Machine configuration (single group of parallel machines)663

where not all machines processed all operations. On ave-664

rage, the PEGS Shifting Bottleneck algorithm performed665

just slightly better than PEGSAgent2, while PEGSAgent1666

performed worst. This suggests that the second agent-based667

approach produces good quality solutions compared to our668

implementation of the centralised approach. All schedules669

were solved in relatively short amounts of time (just a few670

seconds), so execution time was not a problem. These results 671

show that while PEGS and PEGSAgent may not produce 672

optimal solutions, they will tend to produce good solutions 673

in most cases. 674

Random datasets 675

The three approaches were also tested on randomly gene- 676

rated datasets for flow shop and job shop configurations. 677

The objective measured was weighted makespan (because 678

a search strategy is used for this objective). In all cases the 679

search strategy used was tabu search and each measurement 680

was averaged over three test runs. 681

Flow shop tests 682

This set of tests was for three different flow shop configura- 683

tions. The objective evaluation and the execution times are 684

given in Table 2 for different factory configurations. Flow 685

Shop 1 (FS1) has three workcentres (WC), 20 jobs (J) and 60 686

operations (Op). Flow Shop 2 has a five workcentres, 30 jobs 687

and 150 operations. Flow Shop 3 has seven workcentres, 688

25 jobs and 175 operations. Each workcentre contained a 689

number of parallel machines. Flow Shop 1 had 11 machines, 690

Flow Shop 2 had 18 machines and Flow Shop 3 also had 18 691

machines. Each test run was for 100,000 iterations at each 692

search step. 693

The results show that execution time is not greatly affected 694

by the extra sort of the agents. Clearly this is a much quicker 695

process than the search process. To extend the analysis to 696

reflect more practical situations, some tests were conducted 697

with heavily constrained data. This data included setup times, 698

waste costs and shift and time constraints. In these cases 699

the agent sort took longer, but, for the size of datasets we 700

are measuring here, it was still measured in seconds. When 701

scaling up to larger datasets, the sort with heavily constrained 702

data would require a more significant amount of extra time. 703

In two of the three tests PEGSAgent2 produced the best 704

objectives, while in the other test it was PEGSAgent1. This 705

outcome supports a decision to use an agent-based approach. 706

It is possible that the PEGSAgent1 is better in the first set 707

of tests because there are fewer operations. In this case more 708

operations will be ‘properly’ scheduled before the maximum 709

iteration count is reached and the remaining are placed at the 710

end. 711

Job shop tests 712

This set of tests was for three different job shop configura- 713

tions. The objective evaluation and execution times are given 714

in Table 3 for the different schedule configurations. Job Shop 715

1 (JS1) has three workcentres (WC), 20 jobs (J) and 80 ope- 716

rations (Op). Job Shop 2 has five workcentres, 30 jobs and 717

123

Journal: JIMS MS: 68 CMS: GIVE CMS TYPESET DISK LE CP Disp.:2007/12/22 Pages: 11 Layout: Large

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d
 p

ro
o
f

J Intell Manuf

Table 1 List of benchmark datasets used to test the quality of the different approaches

Benchmark dataseta Objective type Shop type Optimal objective PEGS objective PEGSA1 objectiveb PEGSA2 objectiveb

abz5 Makespan Job shop 1234 1296 1352 1307

abz6 Makespan Job shop 943 1018 981 984

abz7 Makespan Job shop 655 772 809 774

la19 Makespan Job shop 842 998 951 951

la20 Makespan Job shop 902 964 999 975

flcmax_20_15_3 Makespan Flow shop 4437 4393 4713 4486

flcmax_20_15_4 Makespan Flow shop 3779 3865 4095 4056

flcmax_20_15_6 Makespan Flow shop 4144 4128 4227 4163

fl_20_15_1_1_2 Lateness Flow shop 2833 3025 3033 3033

fl_20_15_1_1_3 Lateness Flow shop 2322 2608 2789 2489

fl_20_15_2_1_5 Lateness Flow shop 3651 3692 3728 3633

fl_20_15_2_1_6 Lateness Flow shop 3360 3507 3516 3419

Day1 Makespan Flexible flow shop 760 791 826 831

Day2 Makespan Flexible flow shop 770 826 837 842

Day3 Makespan Flexible flow shop 770 827 818 833

Day4 Makespan Flexible flow shop 785 820 857 827

Day5 Makespan Flexible flow shop 961 986 1031 1031

Day6 Makespan Flexible flow shop 667 701 706 706

Dataset1 Makespan Flexible manuf. 420 391 411 441

The optimal objectives and the objective values we found by each approach are given
a abz is Adams et al. (1988), la is Lawrence (1984), flcmax are the makespan datasets from Purdue (in Dimirkol et al. 1998), fl are the lateness

datasets from Purdue (in Dimirkol et al. 1998), Day is Wittrock (1988) and Dataset1 is Kumar et al. (2003)
b PEGSA1 and PEGSA2 refer to the PEGSAgent program operating with the first and second variations described in the text

Table 2 Comparison of objective values and execution times (s) from PEGS variants (100,000 iterations on each search and varying factory

configurations)

Dataset Program version

PEGS PEGSA1 PEGSA2

Objective Time Objective Time Objective Time

FS1 WC: 3 16,124 11 15,987 11 16,115 12

J: 20

Op: 60

FS2 WC: 5 63,109 25 66,366 25 58,938 25

J: 30

Op: 150

FS3 WC: 7 59,121 31 58,728 30 55,100 32

J: 25

Op: 175

FS is flow shop, WC is number of workcentres, J is number of jobs and Op is number of operations

150 operations. Job Shop 3 has seven workcentres, 25 jobs718

and 125 operations. Each workcentre consisted of a number719

of parallel machines. For Job Shop 1 there was a total of 11720

machines, for Job Shop 2 a total of 15 machines and for Job721

Shop 3 a total of 18 machines. Each test run was for 100,000722

iterations for each search step.723

These results show a clear superiority of PEGSAgent1 and724

2 over the centralised approach in PEGS. The agent-based725

approaches produced better objectives, with the second ver-726

sion being better in all three tests. Considering the execution727

times, the agent-based approaches are 6–15 times faster than728

the centralised approach with the greatest advantage associa-729

ted with the larger problems. These tests also show that for 730

the centralised system (PEGS) the number of workcentres is 731

a more important influence on execution time than the num- 732

ber of operations. The third test had fewer operations than the 733

second but more workcentres. Each workcentre requires its 734

own search and, coupled with balancing of more bottlenecks, 735

the total number of searches is greater. As the agent-based 736

approach only performs one search at the start there are no 737

problems with extra iterations and so it can produce sche- 738

dules for JS2 and JS3 in much the same time. 739

From the flow shop and job shop results, it would appear 740

that the second agent-based approach, PEGSAgent2, is the 741

123

Journal: JIMS MS: 68 CMS: GIVE CMS TYPESET DISK LE CP Disp.:2007/12/22 Pages: 11 Layout: Large

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d
 p

ro
o
f

J Intell Manuf

Table 3 Comparison of objective values and execution times (s) from PEGS variants (100,000 iterations on each search and varying factory

configurations)

Dataset Program version

PEGS PEGSA1 PEGSA2

Objective Time Objective Time Objective Time

JS1 WC: 3 27,917 89 24,053 15 23,373 15

J: 20

Op: 80

JS2 WC: 5 131,710 266 124,658 27 108,075 27

J: 30

Op: 150

JS3 WC: 7 78,802 404 59,636 26 57,788 26

J: 25

Op: 125

JS is job shop, WC is number of workcentres, J is number of jobs and Op is number of operations

most consistent in terms of quality and execution speed and742

would therefore be the preferred option.743

Conclusions744

PEGS is a generic production scheduling system. The initial745

implementation used a centralised solution based on search746

strategies and the Shifting Bottleneck algorithm, and has pro-747

ved to reliably provide good schedules for a wide range of748

flow shop or job shop problems. However, this technique is749

necessarily slow. One possible alternative is an agent-based750

approach and we have suggested a basic framework for using751

the agents. This includes an initial search and then a much752

shorter sort on the agents. This method is a similar idea to753

Boccalatte et al. (2004) but there are several differences. We754

use a different method for calculating the initial order. They755

use the job slack time to determine the ideal job start time and756

also use a probability function to determine if the job agent757

then issues a call for proposals in the Contract Net protocol758

to initiate a schedule. The machine agents then order the job759

proposals based on the bid values. They also re-schedule jobs760

in a different way, by assigning a higher priority to the jobs761

being re-scheduled and then re-calculating their bid values.762

The Contract Net protocol seems to cover their whole sche-763

duling process. Their system is for just-in-time manufactu-764

ring where jobs arrive dynamically and are scheduled as they765

arrive. Our system is currently more suited to a situation766

where there are a number of jobs that need to be scheduled767

and they are all scheduled at one time, say at the start of a768

week.769

We have suggested two variations on using the agent-770

based approach. These both treat the agents as individual771

entities with no communication between them to try to obtain772

a better global schedule. The machine agents try to minimise773

the schedule for their machine only and do not consider the 774

schedule on other machines. This could reasonably be expec- 775

ted to produce good results, for if each machine agent tries 776

to minimise its schedule this will mean the global objective 777

will also be minimised. Shen (2002) writes that there are also 778

some agent systems where the agents communicate with each 779

other in an attempt to minimise some global objective. We 780

have also considered this approach and are testing a third 781

variation that takes this into account. In the third variation, 782

when a schedule is calculated for one machine, the schedules 783

on all machines are updated. All machines then calculate their 784

objectives and these are returned as well as the local machine 785

objective. It is then possible to consider the objectives of all 786

machines. If the worst of these is better than the current best 787

(in terms of its impact on the overall objective), then even if 788

the local objective is worse, this schedule may be preferred. 789

The test results show that agent methods, compared to 790

our centralised system, can produce schedules that are only 791

slightly worse on benchmark datasets and actually better on 792

our own random datasets. The agents can also save a large 793

amount of processing time, in some cases by a factor of 10 794

or more for job shops. This would mean that the agent-based 795

system would be able to handle larger numbers of jobs. It 796

seems that agents may not be able to produce optimal solu- 797

tions but can produce good solutions, though Vancza and 798

Markus (2000) show that near optimal solutions may be 799

achievable in some cases, and we also found this. The lack of 800

information that each agent possesses may make it difficult 801

to produce optimal solutions. 802

We would suggest that in a generic or commercial sys- 803

tem of this type, an agent-based approach would be a good 804

option. This is because these types of systems may be more 805

interested in providing a range of features than in producing 806

optimal solutions. If optimality is not the over-riding issue, 807

the flexibility and speed of the agent-based approach may 808

be preferred for today’s dynamic scheduling environment. 809

123

Journal: JIMS MS: 68 CMS: GIVE CMS TYPESET DISK LE CP Disp.:2007/12/22 Pages: 11 Layout: Large

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d
 p

ro
o
f

J Intell Manuf

A demo version of the program is available for downloading810

from our Environmental Modelling Group website (Stewart811

2006). This includes PEGS and PEGSAgent2. An additional812

distributed program will allow operation of the distributed813

PEGS version.814

Acknowledgements The project is funded by Invest Northern Ire-815

land’s Centres of Excellence programme, through the University’s816

QUESTOR Environmental Research Centre. QUESTOR Environmen-817

tal Tools is an interdisciplinary project designed to carry out leading818

edge research which will deliver a new generation of cost-effective and819

practical tools for analysis and monitoring of the environment. The820

development of PEGS is part of the QUESTOR Tools programme.821

References822

Adams, J., Balas, E., & Zawack, D. (1988). The shifting bottleneck pro-823

cedure for job shop scheduling. Management Science, 34(3), 391–824

401.825

Babiceanu, R. F., & Chen, F. F. (2006). Development and applications826

of holonic manufacturing systems: A survey. Journal of Intelligent827

Manufacturing, 17, 111–131.828

Balas, E., & Vazacopoulos, A. (1998). Guided local search with shif-829

ting bottleneck for job shop scheduling. Management Science, 44(2),830

262–275.831

Boccalatte, A., Gozzi, A., Paolucci, M., Queirolo, V., & Tamoglia, M.832

(2004). A multi-agent system for dynamic just-in-time manufactu-833

ring production scheduling. IEEE International Conference on Sys-834

tems, Man and Cybernetics, 6, 5548–5553.835

Chambers, J. B., & Barnes, J. W. (1996). New tabu search results836

for the job Shop scheduling problem. http://citeseer.ist.psu.edu/837

chambers96new.html (Last accessed: 15/5/06).838

Dang, T.-T., & Frankovic, B. (2002). Agent-based scheduling in produc-839

tion systems. International Journal of Production Research, 40(15),840

3669–3679.841

Dimirkol, E., Mehta, S., & Uzsoy, R. (1998). Benchmarks for shop842

scheduling problems. European Journal of Operational Research,843

109, 137–141.844

(FIPA) Foundation for Intelligent Physical Agents. (2002). FIPA845

contract net protocol interaction specification, http://www.fipa.org/846

specs/fipa00029/SC00029H.pdf (Last accessed: 15/5/06).847

Greer, K., Stewart, J., & McCollum, B. (2006). The PEGS scheduling848

system: A case study with environmental optimisation. The 36th849

International Conference on Computers and Industrial Engineering850

(ICCIE’06), Taiwan, June 20–23, pp. 1185–1196.851

He, D., & Babayan, A. (2002). Scheduling manufacturing systems for852

delayed product differentiation in agile manufacturing. International853

Journal of Production Research, 40(11), 2461–2481.854

Hertz, A., Taillard, E., & de Werra, D. (1992). A tuto-855

rial on tabu search. http://www.cs.colostate.edu/~whitley/CS640/856

hertz92tutorial.pdf (Last accessed: 15/5/06).857

Jennings, N. R. (2000). On agent-based software engineering. Artificial 858

Intelligence, 117(2), 277–296. 859

Kumar, R., Tiwari, M. K., & Shankar, R. (2003). Scheduling of flexible 860

manufacturing systems: An ant colony optimisation approach. In: 861

Proceedings of the Institution of Mechanical Engineers, 217(Part 862

B), 1443–1453. 863

Lawrence, S. (1984). Resource constrained project scheduling: An 864

experimental investigation of heuristic scheduling techniques (Sup- 865

plement). Pittsburgh, Pennsylvania: Graduate School of Industrial 866

Administration, Carnegie-Mellon University. 867

Lim, M. K., & Zhang, Z. (2002). Iterative multi-agent bidding and co- 868

ordination based on genetic algorithm. In Proceeding of 3 Complex 869

Systems, and E-businesses, Erfurt, 7–10 October, pp. 682–689. 870

Morton, T. E., & Pentico, D. W. (1993). Heuristic scheduling systems. 871

New York: Wiley Series in Engineering and Technology Manage- 872

ment. 873

Nowicki, E., & Smutnicki, C. (1996). A fast taboo search algorithm for 874

the job shop problem. Management Science, 42(6), 797–813. 875

Parunak, H. V. D., Savitt, R., & Riolo, R. L. (1998). Agent-based mode- 876

ling vs. equation-based modeling: A case study and users’ guide. 877

Proceedings of Multi-agent systems and Agent-based Simulation 878

(MABS’98), pp. 10–25. 879

Pinedo, M. (2002). Scheduling: Theory, algorithms and systems. New 880

Jersey: Prentice Hall. 881

Shen, W. (2002). Distributed manufacturing scheduling using intelligent 882

agents. IEEE Intelligent Systems, pp. 88–94. 883

Shen, W., & Norrie, D. H. (1998). An agent-based approach for dynamic 884

manufacturing scheduling. In Proceedings of the 3rd International 885

Conference on the Practical Applications of Agents and Multi-Agent 886

Systems ((PAAM)-98), pp. 533–548. 887

Stewart, J. R. (2006). QUESTOR environmental modelling research 888

group, Queen’s University, Belfast. http://questor.qub.ac.uk/ 889

webpages/whatwedo/researchgroups/environmentalmodelling/ 890

qcindex.html (Last Accessed 15/10/07). 891

Valente, J. M. S., & Alves, R. A. F. S. (2004). Beam search algorithms 892

for the early/tardy scheduling problem with release dates. Faculty of 893

Economics, University of Porto; Working paper. 894

Vancza, J., & Markus, A. (2000). An agent model for incentive-based 895

production scheduling. Computers in Industry, 43, 173–187. 896

Walker, S. S., Brennan, R. W., & Norrie, D. H. (2005). Holonic job 897

shop scheduling using a multiagent system. IEEE Intelligent Sys- 898

tems, 20(1), 50–57. 899

Wellman, M. P., Mackie-Mason, J. K., Reeves, D. M., & Swaminathan, 900

S. (2003) Exploring bidding strategies for market-based scheduling, 901

EC’03, pp. 115–124. 902

Wittrock, R. J. (1988). An adaptable scheduling algorithm for flexible 903

flow lines. Operations Research, 36(3), 445–453. 904

Yen, B. P.-C. (1998). Agent-based distributed planning and Scheduling 905

in Global Manufacturing. Proceedings of the 3rd Annual Interna- 906

tional Conference on Industrial Engineering Theories, Applications 907

and Practice. 908

Yoo, M.-Y., & Muller, J.-P. (2002). Using multi-agent system for dyna- 909

mic job-shop scheduling. ICEIS 2002, Fourth International Confe- 910

rence on Enterprise Information Systems. 911

123

Journal: JIMS MS: 68 CMS: GIVE CMS TYPESET DISK LE CP Disp.:2007/12/22 Pages: 11 Layout: Large

A
u

th
o

r
 P

r
o

o
f

http://citeseer.ist.psu.edu/chambers96new.html
http://citeseer.ist.psu.edu/chambers96new.html
http://www.fipa.org/specs/fipa00029/SC00029H.pdf
http://www.fipa.org/specs/fipa00029/SC00029H.pdf
http://www.cs.colostate.edu/~whitley/CS640/hertz92tutorial.pdf
http://www.cs.colostate.edu/~whitley/CS640/hertz92tutorial.pdf
http://questor.qub.ac.uk/webpages/whatwedo/researchgroups/environmentalmodelling/qcindex.html
http://questor.qub.ac.uk/webpages/whatwedo/researchgroups/environmentalmodelling/qcindex.html
http://questor.qub.ac.uk/webpages/whatwedo/researchgroups/environmentalmodelling/qcindex.html

