
A Simulated Annealing Hyper-heuristic Methodology for

Flexible Decision Support

Ruibin Bai
1
, Jacek Blazewicz

2
, Edmund K Burke

3
, Graham Kendall

3
, Barry McCollum

4

1
 Division of Computer Science, University of Nottingham, Nottingham, NG8 1BB, UK;

e-mail: ruibin.bai@nottingham.edu.cn.

2
 Institute of Computing Science, Poznan University of Technology, ul. Piotrowo 2, 60-965

Poznan, Poland; email: jblazewicz@cs.put.poznan.pl.

3
 School of Computer Science, University of Nottingham, Nottingham, NG8 1BB, UK; e-mail:

{ekb|gxk}@cs.nott.ac.uk.

4
 Department of Electronics, Electrical Engineering and Computer Science, Queen’s

University Belfast,Belfast, BT7 1NN, UK; e-mail: b.mccollum@qub.ac.uk.

Received: November 11, 2010 / Revised version: September 20, 2011

Abstract Most of the current search techniques represent approaches that are largely adapted for specific

search problems. There are many real-world scenarios where the development of such bespoke systems is

entirely appropriate. However, there are other situations where it would be beneficial to have methodologies

which are generally applicable to more problems. One of our motivating goals for investigating hyper-heuristic

methodologies is to provide a more general search framework that can be easily and automatically employed on

a broader range of problems than is currently possible. In this paper, we investigate a simulated annealing hyper-

heuristic methodology which operates on a search space of heuristics and which employs a stochastic heuristic

selection strategy and a short-term memory. The generality and performance of the proposed algorithm is

demonstrated over a large number of benchmark datasets drawn from two very different and difficult problems,

namely; course timetabling and bin packing. The contribution of this paper is to present a method which can be

readily (and automatically) applied to different problems whilst still being able to produce results on benchmark

problems which are competitive with bespoke human designed tailor made algorithms for those problems.

Keywords: hyper-heuristics; simulated annealing; bin packing; course timetabling;

1 Introduction

Many real-world search problems represent particularly demanding research challenges. A wide range of

methods and techniques (Glover and Kochenberger 2003, Burke and Kendall 2005) have been intensively

investigated and studied to tackle such problems. However, many of these algorithms are either tailored for

problem models by making use of problem-specific structures and properties, or they involve considerable

parameter tuning. The performance of these algorithms often decreases (sometimes drastically) when some of

the problem properties alter (even if only slightly). To improve the algorithmic performance for new problem

instances, it is often necessary to invest considerable time and effort in tuning the parameters once again or even

to completely redesign the algorithm. Moreover, these methodologies are selected and adapted by humans. We

are concerned here with establishing scientific principles that are required to automate this process.

It should be recognised that problem modelling is a continual process. A model is only an approximation of

reality. New observations or situations may lead to a refinement, modification, or replacement of a model

2

because real-world problems often have to reflect an environment that is rapidly changing. Such observations

motivate the development of flexible search techniques which can easily be adapted to respond to such changes.

Hyper-heuristics have recently received considerable research attention [see (Ross 2005), (Burke et al. 2009)

for recent overviews of on hyper-heuristics] in order to address some of these issues. In (Venkatraman and Yen

2005), a generic two-stage evolutionary algorithm framework was proposed for constrained optimisation

problems. The algorithm avoids incorporating problem-specific characteristics but adaptively guides the

exploration and exploitation using a non-deterministic ranking strategy. In this paper, we investigate and develop

a simulated annealing hyper-heuristic framework which adopts a stochastic heuristic selection strategy

(Runarsson and Yao 2000) and a short-term memory. We demonstrate the performance and generality of the

algorithm over two very different and challenging optimisation problems: university course timetabling and bin

packing.

2 Hyper-heuristics: an overview

One of the aims of hyper-heuristic research is to underpin the development of decision support systems which

are applicable to a range of different problems and different problem instances. Hyper-heuristics can be defined

as “an automated methodology for selecting or generating heuristics to solve hard computational search

problems” (Burke et al. 2009). This differs from most implementations of meta-heuristic methods which operate

directly on a solution space. A hyper-heuristic methodology will explore a search space of heuristics. It is

possible to make use of a repository of simple low-level heuristics or neighbourhood functions and to

strategically change their preferences during the search in order to adapt to different situations and problem

instances (Ross 2005, Burke et al. 2009). Note that hyper-heuristic research has been undertaken for a number of

years although the term “hyper-heuristics” is relatively new. The roots of such work can be traced back to the

1960s (Fisher and Thompson 1963, Crowston et al. 1963) and throughout the 1980s and 1990s (Mockus 1989,

Kitano 1990, Hart, Ross and Nelson 1998). This section gives a short overview of relevant hyper-heuristic

methods. The interested reader can refer to (Soubeiga 2003, Ross 2005, Burke et al. 2009) for more detailed

overviews.

It is possible to broadly categorise hyper-heuristics into those which represent local search methods and those

which generate new heuristics. Constructive hyper-heuristics construct solutions from “scratch” by intelligently

calling different heuristics at different stages in the construction process. Examples of constructive hyper-

heuristic research can be seen in (Fisher and Thompson 1963, Kitano 1990, Hart, Ross and Nelson 1998, Ross et

al. 2003, Burke et al. 2006, Qu and Burke 2009). Local search hyper-heuristics start from a complete initial

solution and repeatedly select appropriate heuristics to lead the search in promising new directions. This is the

type of hyper-heuristic method with which this paper is concerned.

In local search hyper-heuristics, low-level heuristics usually correspond to several neighbourhood functions or

neighbourhood exploration rules that could be used to alter the state of the current solution. Several types of

local search hyper-heuristic have been investigated in the literature. Some hyper-heuristics draw upon ideas from

reinforcement learning (Sutton and Barto 1998) to guide the choice of the heuristics during the search. Nareyek

(2003) biased the heuristic selection probabilistically based on non-stationary reinforcement learning. Several

weight adaptation strategies were tested and compared on two combinatorial optimisation problems.

Several evolutionary hyper-heuristics have also been investigated and studied. Kitano (1990) employed a

genetic algorithm based hyper-heuristic to optimise neural network design. Instead of encoding the network

configuration directly, his GA chromosome consisted of a set of rules that can be used to generate networks.

This approach was shown to be superior to a conventional GA. Hart et al. (1998) solved a real-world scheduling

problem using a GA based hyper-heuristic. The problem involved scheduling the collection and delivery of

chickens from farms to processing factories. The GA was used to evolve a strategy to build a good solution

instead of finding the solution directly. The experimental results showed this approach to be fast, robust and easy

to implement. Other recent research work related to evolutionary hyper-heuristics includes (Han and Kendall

2003, Ross et al. 2003, Terashima-Marin, Ross and Valenzuela-Rendon 1999). Recently, Burke et al. (2010)

used genetic programming as a hyper-heuristic approach to evolve new heuristics for the 2-dimensional strip

packing problem. Computational tests show that the best heuristic evolved by the hyper-heuristic is competitive

when compared against the best human-designed heuristics.

A tabu search based hyper-heuristic has also been developed which was effective on both a nurse rostering

problem and a university course timetabling problem which demonstrated the level of generality of the method

(Burke et al. 2003b). In this approach, the hyper-heuristic dynamically ranks a set of heuristics according to their

performance in the search history. At each iteration, the hyper-heuristic applies the highest "non-tabu" heuristic

to the current solution until the stopping criterion is met. Competitive results were obtained on both problems

when compared with other state-of-the-art techniques. In (Dowsland et al. 2006), their hyper-heuristic was

3

enhanced within a simulated annealing framework and was used to solve a shipper sizes optimisation problem.

The authors also discussed some heuristic performance measurement issues within this new hyper-heuristic

framework.

Another type of hyper-heuristic has been proposed which uses a Bayesian heuristic approach to randomise

and optimise the probability distribution of each heuristic call (Mockus 1989). This approach is based on the

analysis of the average-case performance of the heuristics. It attempts to determine a set of parameters, or a

probability distribution, so that the deviation from the global optimum is minimised. The method has been

applied to a variety of discrete optimisation problems. See (Mockus 1994, 1997, 2000) for further details.

Other search methods which have been employed as hyper-heuristics include graph based methods (Burke et

al. 2007), choice functions (Cowling et al. 2001, Rattadilok et al., 2005) and case-based reasoning (Burke et al.

2006).

The simulated annealing hyper-heuristic we propose in this paper builds upon the methodologies presented in

(Bai and Kendall 2005) and (Burke et al. 2003b).

3 A flexible simulated annealing hyper-heuristic (SAHH)

3.1 Framework of the proposed hyper-heuristic

In a similar way to other hyper-heuristic frameworks (e.g. Soubeiga 2003), our proposed simulated annealing

hyper-heuristic has a domain barrier sitting between the hyper-heuristic and the problem domain. In order to

facilitate a satisfactory level of generality, we restrict domain-dependent information from being transferred to

the hyper-heuristic algorithm. However, non-domain information is allowed to pass through the barrier so that

the hyper-heuristic can exploit this information. For example, the hyper-heuristic can be aware of the number of

low-level heuristics available, changes in the evaluation function, whether a new solution has been generated or

not and the distance between two solutions (i.e. how much two solutions differ), as this data is available no

matter what problem domain we are operating on. Recall that the goal of this research is to be as “domain

independent” as possible.

#Insert figure 1 somewhere here #

Our proposed hyper-heuristic is shown in Fig. 1, which is adapted from (Soubeiga 2003). It has the following

features.

Firstly, it adopts a simulated annealing acceptance criterion (Lundy and Mees 1986) to alleviate the

shortcomings of two simple acceptance criteria (improvement-only and accept all moves) that have been used in

other hyper-heuristic approaches (Cowling et al. 2001, Nareyek 2003, Burke et al. 2003b). The simulated

annealing acceptance criterion defines a probability, p=exp(-δ/t), with which a given candidate solution is

accepted.

Secondly, stochastic heuristic selection mechanisms are used instead of the widely used deterministic

heuristic selection strategies. In (Runarsson and Yao 2000), it was shown that stochastic ranking is superior to

other popular selection strategies in the context of an evolutionary algorithm for constrained optimisation. The

heuristic selection mechanism dynamically tunes the priorities of different heuristics during the search. Initially,

of course, the heuristic selection mechanism does not know whether any heuristic will perform any better than

any other. Therefore, all low-level heuristics are treated equally and the heuristic selection decisions are made

randomly. While the search is proceeding, the heuristic selection mechanism starts to apply preferences among

different low-level heuristics by learning from, and adapting to, their historical performance. Therefore, the

heuristics that have been performing well are more likely to be chosen. To successfully apply a selected

heuristic, the simulated annealing acceptance criterion also has to be satisfied. That is, once a decision is made

by the heuristic selection mechanism, the chosen heuristic is then applied to the current solution. The simulated

annealing acceptance criterion is employed to decide whether to accept this heuristic move or not. Information

about the acceptance decisions by the acceptance criterion is then fed back to the heuristic selection mechanism

in order to make better decisions in the future.

Thirdly, short-term memories are utilised, as opposed to long-term memories (as in some recent hyper-

heuristic methods). The length of these memories (which we call a learning period) is much shorter compared

with the whole search period. The underlying assumption is that each low-level heuristic may exhibit different

levels of performance in different regions of the search space, or at different periods of the simulated annealing

process. A heuristic that is effective in some regions of the search space might perform badly in other regions. If

a heuristic frequently improves the current solution in the initial stages of the search, this does not necessarily

4

mean that it will be effective in the middle or final phases of the annealing process. Therefore, we prefer to limit

the memory of the hyper-heuristic.

In addition, the algorithm should distinguish between situations where a heuristic failed to generate a new

solution and those where a heuristic returned a new solution but was unable to improve the objective function.

Our hyper-heuristic encourages calls of the latter type of heuristic whilst reducing the first type, especially when

the algorithm gets stuck at a local optimum.

In Fig. 3 we present the pseudo-code of our proposed algorithm which uses the learning procedure shown in

Fig. 2. It assumes a minimisation problem but, of course, it is trivial to convert it to a maximisation problem. It

can be seen that the main structure of the proposed algorithm in Fig. 3 is similar to a general simulated annealing

algorithm. Note that in figure 3, a heuristic Hi can be considered as a mapping function from a current solution to

a candidate solution. This candidate solution could be generated by a random sampling of a neighbourhood

defined by Hi. Alternatively it could also be a better solution obtained by evaluating partial or entire

neighbourhoods. Therefore, the set of heuristics H can be a mixture of both types of heuristics, providing a

balance between exploration and diversification. As might be expected, we found that, for our proposed SAHH,

having more heuristics of the first type in the heuristic repository gives better performance in general for the

problems we have tested (i.e. course timetabling and the bin packing). Coupled with simulated annealing criteria,

the second type of low level heuristics may lead to occasional premature convergences during the search. In

summary, our proposed algorithm has the following new features (see Fig. 2 and Fig. 3).

#Insert figure 2 somewhere here #

#Insert figure 3 somewhere here #

For each low-level heuristic, we associate a weight wi (min 1iw w ) to represent its preference in

comparison to the other heuristics. Initially, this weight is set to the minimal weight wmin (a very small positive

value). The weights are then updated periodically.

 The starting temperature, ts, and the stopping temperature, te, are estimated so that the initial and the final

non-improving acceptance ratios (i.e. the ratio of the accepted non-improving moves to the total non-

improving moves) approximately equal the predefined values rs and re respectively. The temperature

reduces according to Lundy and Mees’ (1986) nonlinear function t= t/(1 + βt) where β= (ts -

te) · nrep/K · ts · te and nrep is the number of iterations at each temperature and K is the number of total

iterations allowed.

 Since the performance of a heuristic may change at a different temperature or when in different region of

the search space, we measure a heuristic’s performance based on the information gathered during a

relatively short learning period, as opposed to the whole search history. Let LP (LP<K) be the length of a

single learning period. Counters are used which track; ci
total

 the total number of calls of heuristic i by the

hyper-heuristic during the current learning period; ci
new

 the total number of new solutions generated by the

heuristic i and ci
accept

 counts how many of them have passed the simulated annealing acceptance criterion.

 A “reheating” strategy is also used and is triggered when the acceptance ratio is below the stopping

acceptance ratio re. To do this, another counter (Ca) is used to record the total number of accepted heuristic

calls during the current learning period. If the acceptance ratio is too low (i.e. Ca /LP < re), the system is

switched to a “reheating” phase (flagged by variable fr): the temperature is increased to the last

“improvement temperature” timp (the temperature at which the last better solution was found) and the search

starts from the best solution found so far. The temperature continues to increase according to the function

t= t/(1-βt) until an improved solution is found. The system is then switched to the “annealing” phase and

the temperature begins to decrease again. Therefore, in this algorithm, the temperature decreases gradually

and frequently. However, once the system gets stuck at a local optimum, the temperature increases very

quickly to escape from the local optimum.

 The weights of the low-level heuristics are updated after every learning period and normalised by their

acceptance ratios (ci
accept

/ ci
total

) during the “annealing” phase and by ratios ci
new

/ ci
total

 during the “reheating”

phase. At each iteration, a low-level heuristic is selected with probability
1

/
n

i i ii
p w w


  , which is similar

to the stochastic ranking method used in the evolutionary algorithm in (Runarsson and Yao 2000).

3.2 Compared with other relevant meta-heuristics

The proposed simulated annealing hyper-heuristic (SAHH) is closely related to some existing metaheuristics,

in particular, iterative local search (ILS) (Lourenco et al. 2003) and adaptive large neighbourhood search

(ALNS) (Ropke and Pisinger 2006). We now briefly compare our proposed SAHH against ILS and ALNS.

5

3.2.1 SAHH vs ILS

Like SAHH, the basic iterated local search is simple and easy to implement. An ILS method contains two

iteratively executed phases: a solution perturbation phase and a local search phase. The main idea is to

repeatedly find the local optima at different regions of the solution space. The choices of the perturbation

strategy and the local search method are the key components to the success of ILS. ILS is very similar to variable

neighbourhood search (VNS) (Hansen et al. 2008) except that ILS is more general in the sense that the

perturbation in ILS is more flexible. Both ILS and VNS make use of multiple neighbourhoods which are

explored in a pre-defined sequence. Furthermore, at each iteration, often the entire neighbourhood is explored

and the best solution is returned and accepted. However, in our proposed SAHH approach, only a part of a

neighbourhood is sampled and the selection of neighbourhoods/heuristics at each iteration is dynamically

determined based on a reinforcement learning mechanism. In addition, a simulated annealing acceptance

criterion is used in SAHH, instead of simple acceptance criteria used in ILS and VNS. Finally, the outcome of

the SA acceptance criterion in SAHH is fed into the heuristic selection phase to continuously improve heuristic

selection in the future.

3.2.2 SAHH vs ALNS

In some ways, ALNS is very similar to SAHH. For example, both methods make use of multiple heuristics to

improve the current solution. The learning mechanisms in both methods are based on the ideas of reinforcement

learning. The main difference between SAHH and ALNS is two-fold. Firstly, SAHH emphasizes the importance

and significance of the SA acceptance criterion as opposed to other simple acceptance criteria (e.g.

improvement-only acceptance and all-moves acceptance). Secondly, the heuristics (or neighbourhood functions)

used in SAHH and ALNS are very different. ALNS primarily uses ruin-and-recreate heuristics to allow for the

search oscillating between feasible and infeasible regions of the search space as these regions are often where

high quality solutions can be found. While in SAHH, the feasibility of the incumbent solution is always

maintained and the search is only carried out in the feasible solution space. It is difficult to compare the

performance between them as it depends on the structure of the problem and how these heuristics are designed

for each problem. In general, ruin-and-recreate heuristics may be more suitable for handling problems with

challenging constraints (e.g. constraints that lead to most neighbourhood moves being infeasible) while

heuristics used in SAHH may be more applicable for problems with large, but relatively less constrained, search

spaces. Furthermore, SAHH aims to relieve users and practitioners from tedious, complex programming and

advocates using simple, intuitive heuristics. Designing and implementing effective ruin-and-recreate heuristics

requires profound understanding of the structures of the problem and constraints. When the problem changes,

which is often the case as we mentioned earlier, much more work is required to adapt ALNS to the new

environment than SAHH does.

3.3 Parameter settings

In the next section we will demonstrate the high level of generality of the proposed methodology by

experimenting on two very different optimisation problems: course timetabling, and bin packing. The search

spaces of the course timetabling and bin packing problem are very different. Course timetabling generally has a

very large search space with difficult constraints (Chiarandini and Stutzle 2003) while bin packing tends to have

an “unfriendly” plateau-like search space with relatively easy constraints (Falkenauer 1996). The key

contribution to the literature is that we have developed a methodology which can operate on very different

problems without the high level of human development and “tailoring” that is usually required for meta-heuristic

approaches to these problems. We also demonstrate that the methodology obtains results that are competitive

with special purpose algorithms that have been tailored for just one problem.

A few parameters are required to be set. To obtain generality, we want to minimise the number of parameters

that are required to be tuned by a user; if we have to include some user parameters, they should be less sensitive

to the changes of problem instances or domains. Let us assume that there are n low-level heuristics. The

parameter settings for the simulated annealing hyper-heuristic are defined as follows and will be the same across

both applications: rs=0.1, re=0.005, nrep=n, wmin =min{100n/K, 0.1}, LP=max{K/500, n}. The initial and

stopping acceptance ratio (rs and rs) are set so that there are about 10% non-improving moves being accepted at

the initial stage and only 0.5% at the final stage. nrep=n means that each heuristic is called approximately once

at each temperature. The values of wmin and LP are based on some preliminary experiments on a subset of

6

representative course timetabling instances (small 1, medium 1, large, and competition data instances 1, 6, 11

and 16) but will be set by the same method across both applications. Therefore, we do not need to re-tune the

parameters of the proposed simulated annealing hyper-heuristic to different problems and applications, which is

one of the key aims of hyper-heuristic approaches. Parameter K provides an alternative way for users to adjust

the computational time by the algorithm to appropriate values that are permitted in various problem solving

scenarios. For example, time-critical problem-solving should adopt a relative small K while non-time-critical

problems (e.g. timetabling) could use a relatively large K to obtain high quality solutions. Therefore, in this

paper K will be set to different values for different problems. All the experiments were run on a PC Pentium IV

1.8GHZ with 256MB RAM running Microsoft Windows XP Professional.

4 Computational Experiments

4.1 An application to university course timetabling

4.1.1 Problem description

The university course timetabling problem involves assigning a given number of events (including lectures,

seminars, labs, tutorials, etc) into a limited number of time-slots and rooms subject to a given set of constraints.

For the purpose of comparison, we shall use the same model presented in (Rossi-Doria et al. 2002) and (Socha et

al. 2002). This model provides a representation of a typical course timetabling problem and has been widely used

in recent publications (McMullan 2007). The model formulates the problem as follows:

Given a set of events ei (i = 0,…,E) and a number of rooms rj (j = 0,…,R), with each room having F types of

features. Each event is attended by a given number of students and requires some of the room features. The total

number of students is S. The aim of the problem is to assign every event ei to a timeslot tk (k = 1,…,45) and a

room rj so that the following hard constraints are satisfied:

 No student should be assigned to more than one event in a timeslot;

 The room assigned to an event should have sufficient capacity and all the features required by the given

event;

 No more than two events can be scheduled in one room in a timeslot.

The objective of the problem is to minimise the number of students involved in the following soft constraint

violations:

 An event is scheduled in the last timeslot of the day;

 A student has only one event in a day;

 A student has more than two consecutive events.

We adopt the same solution representation that was used in both (Socha et al. 2002) and (Burke et al. 2003b).

In this representation, a solution was encoded as an E dimensional vector where a position in the vector denotes

an event index and the value corresponds to the timeslots assigned to the given events. Again, similar to (Socha

et al. 2002) and (Burke et al. 2003b), room assignments are dealt with separately by using a matching algorithm.

A fast pattern-based objective evaluation method was also used (see (Burke et al. 2003a) for more details).

4.1.2 Low-level heuristics

The three simple low-level heuristics that we use are as follows:

H1. Shift: Move a random event from its current timeslot to another random timeslot.

H2. Swap event: Swap the timeslots of two random events.

H3. Swap timeslot: Swap all events of two randomly selected timeslots.

Note that the above low-level heuristics only operate on feasible solutions. The current solution is returned if

an infeasible solution is generated. All three heuristics are relatively easy to implement and are much simpler

than those neighbourhood structures that were used in other approaches, for example, (Abdullah et al. 2007).

4.1.3 Computational results

The proposed simulated annealing hyper-heuristic algorithm was tested on two course timetabling benchmark

data sets. The first data set was originally used in (Socha et al. 2002). It consists of five small instances (E=100,

S=80, R=5 F=5), five medium instances (E=400, S=200, R=10 F=5) and one large instance (E=400, S=400,

7

R=10 F=10). The second data set is drawn from the International Timetabling Competition organised by the

Metaheuristic Network (2003). This data set contains twenty problem instances. The parameters of these

instances are as follows: E [350,440], S [200,350], R [10,11], F [5,10]. The proposed simulated annealing

hyper-heuristic starts from a feasible initial solution which was constructed by a simple and quick hybrid

heuristic procedure similar to the approach proposed in (Asmuni et al. 2005). However, to quickly obtain a

feasible initial solution, which can be used by our simulated annealing hyper-heuristic, the hybrid heuristic

procedure used in this paper stops as soon as a feasible solution is found. The number of iterations for SAHH is

set as follows: for the first data set, the initial experiment is set to a relatively small number of iterations

K=500,000, which corresponds to less than one minute of computational time for small instances and one and

half minutes for medium and large instances (see table 1 for details). Furthermore, since computational time is

generally considered to be non-critical for the course timetabling problem, a larger number of iterations

(K=2*10
7
) were also investigated for this data set. For the second data set (the competition data set), we set

K=2*10
7
 which corresponds to between 45 and 55 minutes of computational time on the same machine. All the

other parameters remain unchanged. In a similar way to the research undertaken by Burke et al. (2003), five

independent runs were carried out for each problem instance using different random seeds and both best and

average results are reported. Note that although the total number of iterations for SAHH is larger than the tabu

search hyper-heuristic (TSHH) in (Burke et al. 2003b), all three low-level heuristics used in this paper are much

faster than some of the low-level heuristics used in TSHH. For example, one of the low-level heuristics used in

TSHH is defined as “1st improving soft constraints without worsening hard constraints”. A single run of this

heuristic usually involves evaluating several neighbouring solutions, or even the whole neighbourhood before

finding an improved solution. Therefore it can be much more computationally expensive than the low-level

heuristics used in SAHH.

#insert table 1 somewhere here#

#insert table 2 somewhere here#

Table 1 presents a comparison between SAHH and other meta-heuristic and hyper-heuristic approaches

reported in the literature for the first data set instances, including a tabu search hyper-heuristic (TSHH) (Burke et

al. 2003b), a variant of variable neighbourhood search (VNS
+
) (Abdullah et al. 2007) and a graph-based hyper-

heuristic (GHH) (Qu and Burke 2009). The computational times by VNS+ (Abdullah et al. 2007) are 50 seconds

for small instances, and around 8 hours for medium and large instances on a PC with Pentium 1.2GHz with

256MB RAM. The experimental environment for GHH (Qu and Burke 2009) was a PC with Pentium IV 3.0GHz

and 1GB RAM. The computational time for small instances (respectively the medium instances and the large

instance) is around 50 seconds (4.6 hours, and 5.6 hours respectively). Our SAHH was run on a PC Pentium IV

1.8GHz CPU and 256MB RAM with the computational time (when K=500,000) ranging from 0.7 to 1.5

minutes. Therefore, we generally uses less computational time (particularly for the medium instances and the

large instance) even taking into account the performance scales of these different machines. Both the best and

average results among the 5 runs are reported in table 1. The best results among all the four algorithms are

presented in bold. The results of VNS+ for the large instance are missing here due to unavailability.

In order to find out whether the performance of the four algorithms (SAHH with K=500,000, VNS+, TSHH,

and GHH) are different in terms of solution quality, and whether our SAHH performs better, several Friedman

tests (Conover 1999) were carried out. The mean values by VNS+, TSHH, and GHH were used in the tests. Our

first test included all four algorithms. The null hypothesis, therefore, is that there is no significant difference

between VNS+, TSHH, GHH, and SAHH. The second column of table 2 gives the corresponding statistic values

(p values). It can be seen that this null hypothesis is rejected for every problem instance at confidence levels

ranging between 0.002 and 0.046. This means that at least 2 algorithms performed significantly differently for

each of these problem instances.

In the next step, we then carried out paired Friedman tests between our SAHH (K=500,000) and each of the

other three algorithms. The null hypotheses respectively are that there is no significant performance difference

between SAHH and VNS+ (respectively TSHH, GHH). The corresponding p values are shown in table 2

(columns 3-5) and large p values (i.e. >0.05) are highlighted in bold. Based on the data from both table 1 and

table 2, it can be concluded that, at the confidence level p=0.05, VNS+ performed significantly better than

SAHH for 2 small instances (small 3, and 4), but SAHH was significantly better for 4 medium instances

(medium 1, 2, 3, and 4). For the other 4 instances, there is no significant performance difference between them.

The comparison between SAHH and TSHH is more straightforward. SAHH outperformed TSHH significantly

for 7 instances. For the remaining 4 small instances, there is no significant difference between them. Comparing

between SAHH and GHH, we can see that the performances by SAHH and GHH are not significantly different

for 4 instances (3 small instances and 1 medium instance). SAHH outperformed GHH for 5 instances (medium 1,

2, 3, 4 and large) and GHH did better than SAHH for 2 instances (small 3 and 4). In summary, it seems that the

8

proposed simulated annealing hyper-heuristic is particularly suited to instances of larger sizes. This is probably

due to the hyper-heuristic learning mechanism which learns how to bias solution sampling strategies towards

more promising regions of the search space. When a longer computational time is allowed (e.g. K=2*10
7
),

SAHH is able to further improve these results considerably.

#insert table 3 here#

Table 3 gives a comparison for the second data set between our simulated annealing hyper-heuristic and the

top seven bespoke approaches in the international timetabling competition (Metaheuristics Network 2003). The

best results are highlighted in bold. It can be seen that, on this data set, our simulated annealing hyper-heuristic

would be ranked in fourth place both in terms of average objective value and the official ranking approach across

twenty instances. Three approaches perform better in terms of solution quality. In fact, another hybrid algorithm

by Chiarandini et al. (2006) would have won the competition but could not enter because they were the

organisers (see their results in table 4). This is not surprising since these bespoke approaches were specifically

tailored for these problem instances and heavily utilised some of features of these instances while our method

was designed with generality in mind. For example, according to (Kostuch 2004), one of the features is that all

the instances are created in such a way that at least a “perfect” solution (i.e. solution with a zero penalty value)

exists. This feature was heavily exploited by the winning algorithm in its initial solution procedure in order to

obtain an initial solution being very close to an optimal solution (note that this does not necessarily mean this

initial solution has a very small objective value). Therefore, these procedures may not be as effective when

applied to other problem instances which do not contain these features. In fact, we have run one of the top three

algorithms on the first data set and some results are far worse than our results on these instances. This indicates

that although these bespoke algorithms perform very well on the competition data set, their performance can

decrease significantly even when applied to different instances from the same domain.

#Insert table 4 here#

4.2 An application to bin packing

In the previous section, we have shown that our proposed simulated annealing hyper-heuristic is able to

improve upon the performance of a recently proposed tabu search hyper-heuristic. In fact, it also produced better

results than some problem specific bespoke meta-heuristic approaches. In this section, we apply the proposed

algorithm to the well-known bin-packing problem to further test its generality across different problem solving

environments. We will use exactly the same parameter settings as in the previous experiment. As before, we only

need to change the initial solution, the evaluation function and the set of low-level heuristics.

4.2.1 The bin packing problem

The one dimensional bin packing problem is defined as follows. Given a set of items I (i =1,…, n) each

having an associated size or weight wi, and a set of bins with identical capacities c, the problem is to pack all the

items into as few bins as possible, without exceeding the capacity of the bins. The bin packing problem is a well-

known NP-hard combinatorial optimisation problem (Martello and Toth 1990a). However, it is not difficult to

get a lower bound of the problem. A straightforward lower bound can be obtained by 1 1
/

n

ii
L w c


 . Some

stronger lower bounds were studied in (Martello and Toth 1990b, Scholl et al. 1997). Considerable research has

been carried out on exact methods. One of the most successful algorithms for bin packing is known as the

Martello-Toth Procedure. This is a branch and bound based exact method originally proposed in (Martello and

Toth 1990b). Some other versions of exact methods are proposed in (Scholl et al. 1997, Belov and Scheithauer

2006). Heuristic based approaches have also been studied. Apart from some well-known constructive heuristics

(for example, First-Fit-Descent and Best-Fit-Descent), meta-heuristic approaches have been adapted for the bin

packing problem, including a grouping genetic algorithm (Falkenauer 1996) and variable neighbourhood search

(Fleszar and Hindi 2002). In both applications, transformed objective functions were used because if the number

of used bins is chosen as the objective function, the bin packing problem solution space is fairly flat and a large

number of solutions correspond to the same objective value. General local search approaches cannot be well

guided by this objective function (Falkenauer 1996, Falkenauer 1998). Recently, Alvim et al. (Alvim et al. 2004)

proposed a hybrid algorithm which combines several strategies, including a dual min-max method for generating

initial solutions, new dominance criteria, unbalancing heuristic, etc. Superior results were obtained by the

algorithm compared with other existing heuristic approaches. However, the algorithm is highly problem-specific

9

and is difficult to adapt to other problems with different solution structures. For instance, one may want to use

different objective functions (instead of the number of bins), or have some additional constraints, which would

probably lead to these strategies being invalid or ineffective. Ross et al. (2003) proposed a genetic algorithm

hyper-heuristic for the problem. The algorithm was firstly trained on a subset of benchmark problems and after

the training, the fittest chromosome was then applied to every benchmark problem. The computational results

demonstrate that the evolved algorithm performs better than any of the individual low-level heuristics.

4.2.2 Problem specific input

Initial solution and evaluation function

Our initial solution is created by a time bounded relaxed Minimum Bin Slack (MBS) heuristic that is similar

to the MBS heuristic used in (Fleszar and Hindi 2002) except that the stopping criteria is relaxed by allowing a

small slack value (equal to average slack value allowed in the lower bound L1) and 0.02 seconds computational

time limit. This modification could let the heuristic run much faster without compromising its performance. We

use the original objective function (i.e. the number of used bins) rather than using some of the transformed

evaluation functions as in (Falkenauer 1996, Scholl et al. 1997, Fleszar and Hindi 2002).

Low-level heuristics

A total of five heuristics are used, which are described as follows:

H1. Shift: This heuristic selects each item from the bin with the largest residual capacity and tries to move the

items to the rest of the bins using the best fit descent heuristic.

H2. Split: This heuristic simply moves half the items (randomly selected from) the current bin to a new bin if

the number of items in the current bin exceeds the average item numbers per bin.

H3. Exchange largestBin_largestItem: This heuristic selects the largest item from the bin with the largest

residual capacity and exchanges this item with another smaller item (or several items whose capacity sum is

smaller) from another randomly selected non-fully-filled bin. The idea behind this heuristic is to transfer

smaller residual capacity from a random bin to a bin with the largest residual capacity so that this bin can be

emptied by other heuristic(s).

H4. Exchange randomBin_reshuffle: The idea behind this heuristic is similar to H3, which attempts to transfer

residual capacity to the bins with larger residual capacity. This heuristic randomly selects two non-fully-

filled bins. The probability of the selection is proportional to the amount of their residual capacities. All

items from these two bins are then considered and the best items’ combination is identified so that it can

maximally fill one bin. The remaining items are filled into the other bin.

H5. BestPacking: This heuristic firstly selects the biggest item from a probabilistically selected bin. The time

bounded relaxed MBS heuristic is then used to search for a good packing that contains this item and

considers all the other items (the sequence of these items is sorted by the residual capacity of the

corresponding bins with ties broken arbitrarily). All the items that appeared in the packing found by time

bounded relaxed MBS are then transferred into a new bin. Again, the time limit is set to a small value for

quick implementation of the heuristic (0.02 seconds in this case). The probability of selecting a bin is

calculated by i

i

resCap

resCap
 


, where resCapi is the residual capacity of the bin i. Hence the selection is in

favour of the bins with the larger residual capacity.

Note that all of the heuristics outlined above will guarantee to output feasible solutions (the current solution is

returned if the new candidate solution is infeasible). All of the heuristics are simple, straightforward and easy to

implement.

4.2.3 Bin packing benchmark problems

Three sources (groups) of benchmark problems are available from the literature for the one dimensional bin

packing problem. One of them is from the OR-Library (http://people.brunel.ac.uk/~mastjjb/jeb/orlib/

binpackinfo.html). This group of data sets consists of two classes of problems: uniform and triplet. In the

uniform class, the number of items is 120, 250, 500 and 1,000 respectively and their sizes are uniformly

distributed in the range of [20,100]. The bin capacity is 150. We shall denote these by Fal_U120, Fal_U250,

Fal_U500 and Fal_U1000 respectively. There are 20 instances for each problem size and hence 80 problem

instances in total. In the triplet class, the bin capacity is 1,000 and the item sizes are deliberately generated such

10

that, in the optimal solution, every bin contains exactly three items (one “big” and two “small”) without any

residual capacity. The number of the items is 60, 120, 249 and 501 (denoted by Fal_T60, Fal_T120, Fal_T249

and Fal_T501 respectively) and each of them contains 20 instances. This class of data sets is claimed to be more

difficult because of the fact that no residual capacity is allowed in any bin in the optimal solution. In (Fleszar and

Hindi 2002), 1,000 runs of perturbation MBS were implemented before applying their variable neighbourhood

search algorithm in order to solve this class of data sets. However, in this paper, we allow the simulated

annealing hyper-heuristic to automatically adapt to different classes of problem instances by choosing different

heuristics.

The second group of data sets was generated and studied by Scholl et al. (1997) and is available at

http://www.wiwi.uni-jena.de/Entscheidung/binpp/index.htm. It contains three sets (denoted by Sch_Set1,

Sch_Set2 and Sch_Set3 respectively) and comprises a total of 1,210 instances. The lower bounds of these

instances are available on the same website. The parameters to create Sch_Set1 and Sch_Set2 include the

number of the items (ranging from 50 to 500), bin capacity and the ranges that the items’ sizes are drawn from.

Sch_Set1 consists of 720 problem instances and the expected average number of items per bin is no larger than

three. However, in Sch_Set2, the average number of items per bin varies between three, five, seven and nine.

The data sets Sch_Set3 are considered to be harder problem instances because the item size is drawn from a very

large range such that no two items have the same size. Only 10 instances are included in this set.

The third group of benchmark data sets are maintained by the EURO Special Interest Group on Cutting and

Packing and are downloadable from (http://www.apdio.pt/sicup/index.php). This group of data sets represents a

collection of difficult instances from a large number of test instances in three publications (Waescher and Gau

1996, Schwerin and Wascher 1997, Belov and Scheithauer 2006). The data sets Sch_Wae1 and Sch_Wae2

consist of 200 instances selected from (Schwerin and Wascher 1997) which are particularly hard for First-Fit-

Descent and partially hard for Martello-Toth Procedure (in fact none of these instances can be solved optimally

by First-Fit-Descent). The data sets Wae_Gau1 are collections of 17 instances from (Waescher and Gau 1996)

which have not yet been solved by either First-Fit-Descent or Martello-Toth Procedure. Note that all the

instances in data sets Wae_Gau2 also appear in Wae_Gau1 so they are considered in this paper. The lower

bounds of these instances are available from http://www.inf.puc-rio.br/~alvim/adriana/_les/detbp.pdf.

4.2.4 Computational results

The low-level heuristics and initial solutions were input to our simulated annealing hyper-heuristic framework

which was run on a PC with Intel Core 2 CPU 1.8GHz and 2GB RAM running Windows XP, but the

computation was limited to one processor only. The algorithms were run 20 times for each instance, using a

different random seed each time. For each problem instance, the simulated annealing hyper-heuristic stops either

after the number of iterations reaches K or when the computational time exceeds a given limited t. Therefore, we

can use both K and t to control the amount of computational time permitted for the SAHH. To compare the

performance of the different algorithms, the following symbols are used:

 #num: the number of instances in the given data sets.

 #opt: the number of instances for which the given algorithm finds a solution with the lower bound objective

value (i.e. the algorithm has solved those instances optimally). For the algorithm SAHH, the average values

over 20 runs were reported. For the meta-heuristic approach, perturbation MBS’ + VNS (Fleszar and Hindi

2002), only single run results are reported due to no average results being available.

 max abs.: the maximal absolute deviation from the optimal solution or the best known lower bound if the

optimal solution is not known.

 av. cpu: the average CPU time spent for the given data sets (in seconds).

 max cpu: the maximal CPU time spent for an instance in the given data sets (in seconds).

#insert table 5 somewhere here#

#insert table 6 somewhere here#

We choose to compare our algorithm against two state-of-the-art bin packing heuristics, a variable

neighbourhood search based approach (MBS’+VNS) proposed in (Fleszar and Hindi 2002) and a hybrid

procedure (HP_BP) in (Alvim et al. 2004). Perturbation MBS’+VNS was run on a PC with 400 MHz Pentium II

CPU running Windows NT4.0, while HP_BP was tested on a 1.7 GHz Pentium IV PC with 256MB RAM. In

order to let our proposed algorithm having comparable computational power when they are compared against

these two approaches from the literature, we scaled our computational time and run SAHH with settings:

(K=150,000, t=1 second) and (K=1,600,000, t=40 seconds). These two settings are based on the performance

scaling information of different computers available from http://www.roylongbottom.org.uk/

linpack%20results.htm. That is, the CPU time limit for SAHH was 1 second when compared against the hybrid

11

VNS method in (Fleszar and Hindi 2002) and 40 seconds when compared with the HP_BP approach in (Alvim et

al. 2004). Note that the computational time limits here are applied to SAHH and do not include the time for the

generation of an initial solution where SAHH starts the search. Tables 5 and 6 respectively present a comparison

of our simulated annealing hyper-heuristic with Perturbation MBS’ + VNS and HP_BP (the computational

results of Perturbation MBS’ + VNS on the third group of data sets, Sch_Wae1, Sch_Wae2, Wae_Gau1, are not

available in the literature). Numbers in bold represent the best results. It can be seen that our simulated annealing

hyper-heuristic was slightly inferior to the hybrid VNS approach for the first group of data sets but did better for

the second group of data sets in terms of solution quality. Overall, the simulated annealing hyper-heuristic

(which, recall, is not specifically designed for the bin packing problem) solved around 5 more instances to

optimality than the hybrid VNS. Note that our simulated annealing hyper-heuristic is generally slower than

tailor-made meta-heuristics since the hyper-heuristic needs to spend time to learn about the nature of the problem

and then adapt to that problem. In the next section, it can be seen that better results can be obtained when more

computational time is permitted. However, according to (Fleszar and Hindi 2002), results by Perturbation MBS’

+ VNS failed to improve noticeably even when the computational time was tripled.

Compared with the current best bin packing heuristic approach HP_BP (Alvim et al. 2004), the simulated

annealing hyper-heuristic is slightly worse in terms of solution quality (see table 6). In fact, HP_BP performed

excellently and achieved around 1581 optimal solutions out of 1587 problem instances. Our simulated annealing

hyper-heuristic solved 1561.9 out of 1587 (98.4%) instances to optimality on average. For the remaining 1.6% of

the instances, the solution obtained by the simulated annealing hyper-heuristic is only one bin away from the

lower bounds. The slightly better performance by HP_BP does not come as a surprise as it draws heavily upon

several problem-specific features, such as the reduced procedure MTRP, the dual min-max problem (BPP-2),

etc. It would be very difficult to apply HP_BP to other problems (such as course timetabling for example).

However, with the slight decrease in solution quality, the simulated annealing hyper-heuristic is able to gain a

much higher level of generality and reusability. As shown throughout this paper, one can conveniently adapt the

simulated annealing hyper-heuristic to a very different problem without significant effort and by drawing only

upon a small set of simple low-level heuristics.

Our simulated annealing hyper-heuristic has also shown significant improvement over a previously proposed

genetic algorithm hyper-heuristic (Ross et al. 2003) for the bin packing problem. In (Ross et al. 2003), the

proposed hyper-heuristic managed to solve 80% of instances to optimality. However, as shown in tables 5 and 6,

the proposed simulated annealing hyper-heuristic is able to solve around 98% of instances to optimality, on

average. The main advantage of the genetic algorithm hyper-heuristic for the bin packing is that the algorithm is

constructive. That is, once a heuristic is evolved, it can be used to solve many instances with less computational

time than the simulated annealing hyper-heuristic in this paper.

Across several data sets, our simulated annealing hyper-heuristic exhibits very good performance considering

that it is not specifically designed for this problem and, indeed, the main purpose of designing it was to develop a

methodology which could easily be applied to a number of different problems. As stated in section 3.3, all the

parameters (except the total number of iterations) used in the simulated annealing hyper-heuristic are the same

for both problems and problem instances.

5 Conclusions

This paper has proposed a new simulated annealing hyper-heuristic methodology as a generic framework for

search problems. The proposed hyper-heuristic adopted the two layer framework of previous hyper-heuristics

which helps to improve the generality of the algorithm but we have incorporated three new features: a simulated

annealing acceptance criterion, a stochastic heuristic selection strategy and a short-term memory. The simulated

annealing acceptance criterion helps to improve the acceptance decisions of heuristic moves and it also provides

useful feedback for better heuristic selections in the future. A stochastic heuristic selection strategy was

employed in this hyper-heuristic, in preference to the deterministic heuristic selection methods used in most

current hyper-heuristic approaches that have been reported in the literature. A short-term memory underpins the

heuristic selection mechanism. The underlining rationale is that the search proceeds within a dynamic

environment which may change during different stages of the search and the information gathered during the

initial stages may be not useful later in the search.

To demonstrate the increased level of generality and competitive performance of the proposed simulated

annealing hyper-heuristic, we have applied the algorithm to two very different and challenging search problems

with the same parameter settings across two problem domains: university course timetabling and bin packing.

Experimental results on a large number of benchmark data sets show that the proposed simulated annealing

hyper-heuristics provides considerable improvement on a previously proposed tabu search hyper-heuristic. In

fact, the simulated annealing hyper-heuristic also produced better results than several recently proposed

12

problem-specific meta-heuristic approaches which do not have the significant advantage of having a higher level

of generality. This paper contributes to the literature with a more efficient hyper-heuristic search technique

which can be readily applied to different applications and which can still produce high quality solutions that are

either competitive with or (sometimes) better than bespoke problem specific methods. Almost all of the

heuristics which have appeared in the scientific literature have been designed and chosen by humans. The work

described in this paper provides a step toward the goal of understanding how we can automate the heuristic

design process and begin to design computer systems which can select and design heuristics.

References

Abdullah S, Burke EK, McCollum B (2007) Using a randomised iterative improvement algorithm with

composite neighbourhood structures for the university course timetabling problem. In Doerner KF, Gendreau

M, Greistorfer P, Gutjahr G, Hartl RF, Reimann M (Eds.), Metaheuristics - Progress in Complex Systems

Optimization (pp.153-169). New York: Springer.

Alvim ACF, Ribeiro CC, Glover F, Aloise DJ (2004) A hybrid improvement heuristic for the one-dimensional

bin packing problem. Journal of Heuristics, 10, 205-229.

Asmuni H, Burke EK, & Garibaldi JM (2005) Fuzzy multiple heuristic ordering for course timetabling. In the

Proceedings of the 5th United Kingdom Workshop on Computational Intelligence (UKCI05), London, UK,

pp. 302-309.

Bai R & Kendall G (2005) An investigation of automated planograms using a simulated annealing based hyper-

heuristic. In Ibaraki T, Nonobe K, Yagiura M (Eds.), Metaheuristics: Progress as Real Problem Solver -

(Operations Research/Computer Science Interface Serices, Vol.32) (pp. 87-108). New York: Springer.

Belov G, Scheithauer G (2006) A branch-and-cut-and-price algorithm for one-dimensional stock cutting and

two-dimensional two-stage cutting. European Journal of Operational Research, 171(1), 85-106.

Burke EK, Kendall G (2005) Search methodologies: introductory tutorials in optimization and decision support

techniques. Kluwer, Dordrecht.

Burke EK, Bykov Y, Newall J P, Petrovic S (2003a) A time-predefined approach to course timetabling. Yugosl J

Oper Res 13(2):139–151

Burke EK, Kendall G, Soubeiga E (2003b) A tabu-search hyperheuristic for timetabling and rostering. J

Heuristics 9:451–470.

Burke EK, Petrovic S, Qu R (2006) Case based heuristic selection for timetabling problems. J Sched 9(2):115–

132.

Burke EK, McCollum B,Meisels A, Petrovic S, Qu R (2007) A graph-based hyper-heuristic for timetabling

problems. Eur J Oper Res 176(1):177–192

Burke EK, Hyde M, Kendall G, Ochoa G, Ozcan E, Woodward JR (2009) A classification of hyperheuristic

approaches. In: Gendreau M, Potvin J-Y (eds) Handbook of metaheursistics. Springer, New York , pp 449–

468.

Burke EK, Hyde M, Kendall G, Woodward JR (2010) A genetic programming hyper-heuristic approach for

evolving 2-D strip packing heuristics. IEEE Trans Evol Comput 14(6):942–958.

Chiarandini M, Birattari M, Socha K, Rossi-Doria O (2006) An effective hybrid algorithm for university course

timetabling. Journal of Scheduling. 9(5), 403-432.

Chiarandini M, Stutzle T (2003) A landscape analysis for a hybrid approximate algorithm on a timetabling

problem. TU Darmstadt Technical Report, AIDA-03-05.

Conover WJ (1999) Practical Nonparametric Statistics. 3
rd

 Edition, New York, Wiley.

Cowling P, Kendall G and Soubeiga E (2001) A hyperheuristic approach to scheduling a sales summit. In Burke

EK and Erben W (eds.), Selected Papers of the 3rd International Conference on the Practice and Theory of

Automated Timetabling, Lecture Notes in Computer Science Series Vol. 2079, Springer, pp. 176-190.

Crowston WB, Glover F, Thompson GL, Trawick JD (1963) Probabilistic and parametric learning combinations

of local job shop scheduling rules. ONR Research Memorandum, GSIA, Carnegie Mellon University,

Pittsburgh, p 117.

Dowsland KA, Soubeiga E, Burke EK (2006) A simulated annealing hyper-heuristic for determining shipper

sizes. European Journal of Operational Research, 179(3), 759-774.

Falkenauer E (1996) A hybrid grouping genetic algorithm for bin packing. Journal of Heuristics, 2, 5-30.

Falkenauer E (1998) Genetic algorithms and grouping problems. John Wiley & Sons Ltd.

Fisher H, Thompson GL (1963) Probabilistic learning combinations of local job-shop scheduling rules. In J F

Muth and G L Thompson (Eds.), Industrial Scheduling (pp. 225-251). Prentice-Hall.

Fleszar K, Hindi KS (2002) New heuristics for one-dimensional bin-packing. Computers and Operations

Research, 29(7), 821-839.

13

Glover F, Kochenberger G (2003). Handbook of metaheuristics. Kluwer.

Han L, Kendall G (2003) Guided operators for a hyper-heuristic genetic algorithm. In: AI 2003: advances in

artificial intelligence: the proceedings of 16th Australian conference on AI. Lecture notes in computer

science, vol 2903. Springer, pp 807–820.

Hart E, Ross P, Nelson JA (1998) Solving a real-world problem using an evolving heuristically driven schedule

builder. Evolutionary Computing, 6(1), 61-80.

Hansen P, Mladenovic N, Moreno Perez JA (2008) Variable neighbourhood search: methods and applications,

4OR-A Quarterly Journal of Operations Research, 6,319-360.

Kitano H (1990) Designing neural networks using genetic algorithms with graph generation system. Complex

Systems, 4, 461-476.

Kostuch P (2004) The University Course Timetabling Problem with a 3-Phase Approach. in Burke EK and Trick

M (Eds.) The Practice and Theory of Automated Timetabling V - Lecture Notes in Computer Science, Vol.

3616 (pp. 109-125). Springer-Verlag.

Lourenco HR, Martin OC, Stutzle T (2003) Iterated Local Search. In F. Glover and G. Kochenberger (Eds.),

Handbook of Metaheuristics (pp. 321-354). Kluwer.

Lundy M, Mees A (1986) Convergence of an Annealing Algorithm. Mathematical Programming, 34, 111-124.

Martello S, Toth P (1990a) Knapsack problems: algorithms and computer implementations. John Wiley & Sons.

Martello S, Toth P (1990b) Lower pounds and reduction procedures for the bin packing problem. Discrete

Applied Mathematics, 28, 59-70.

McMullan P (2007) An Extended Implementation of the Great Deluge Algorithm for Course Timetabling,

Lecture Notes in Computer Science, Vol. 4487 (pp. 538-545). Springer.

Metaheuristic Network (2003) International timetabling competition: Competition results

http://www.idsia.ch/Files/ttcomp2002/results.htm. Accessed 11 October, 2010.

Mockus J (1989) Bayesian approach to global optimization. Kluwer.

Mockus J (1994) Application of bayesian approach to numerical methods of global and stochastic optimization.

Journal of Global Optimization, 4(4), 347-366.

Mockus J (1997) Bayesian heuristic approach to discrete and global optimization. Kluwer.

Mockus J (2000) A set of examples of global and discrete optimization: application of bayesian heuristic

approach. Kluwer.

Nareyek A (2003) Choosing search heuristics by non-stationary reinforcement learning. In Resende MGC and

de Sousa JP(Eds.), Metaheuristics: Computer Decision-Making (pp. 523-544). Kluwer.

Qu R and Burke EK (2009) Hybridisations within a graph based hyper-heuristic framework for university

timetabling problems. Journal of Operational Research Society, 60, 1273-1285.

Rattadilok P, Gaw A, Kwan RSK (2005) Distributed Choice Function Hyper-heuristics for Timetabling and

Scheduling. In Burke EK and Trick M (eds.), Selected Papers from the 5th International Conference on the

Practice and Theory of Automated Timetabling. Lecture Notes in Computer Science Series, Vol. 3616 (pp.

51-70). Springer.

Ropke S, Pisinger D (2006) An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery

Problem with Time Windows. Transportation Science, 40(4), 455-472.

Ross P (2005) Hyper-heuristics. In Burke EK and Kendall G (Eds.), Search Methodologies: Introductory

Tutorials in Optimization and Decision Support Techniques (pp. 529-556). Springer.

Ross P, Marin-Blazquez JG, Schulenburg S, Hart E (2003) Learning a procedure that can solve hard bin-packing

problems: A new GA-based approach to hyper-heuristics. In the Proceeding of the Genetic and Evolutionary

Computation Conference, GECCO 2003 (pp. 1295-1306). Springer.

Rossi-Doria O, Blum C, Knowles J, Samples M, Socha K, Paechter B (2002) A local search for automated

timetabling. In the Proceedings of the 4th International Conference on the Practice And Theory of

Automated Timetabling [PATAT 2002] (pp. 124-127).

Runarsson TP, Yao X (2000) Stochastic ranking for constrained evolutionary optimization. IEEE Transactions

on Evolutionary Computation, 4(3), 344-354.

Scholl A, Klein R, Jurgens C (1997) BISON: A fast hybrid procedure for exactly solving the one-dimensional

bin packing problem. Computers & Operations Research, 24(7), 627-645.

Schwerin P and Wascher G (1997) The bin-packing problem: A problem generator and some numerical

experiments with FFD packing and MTP. International Transactions in Operational Research, 4(5/6), 377-

389.

Socha K, Knowles J, Samples M (2002) A max-min ant system for the university course timetabling problem. In

the Proceedings of the 3rd International Workshop on Ant Algorithm, ANTS 2002, Lecture Notes in

Computer Science, Vol. 2463 (pp. 1-13).

Soubeiga E (2003) Development and application of hyperheuristics to personnel scheduling, PhD Thesis, The

University of Nottingham, UK.

Sutton R S, Barto A G (1998) Reinforcement learning: An introduction. Cambridge, MA: MIT Press.

14

Terashima-Marin H, Ross P& Valenzuela-Rendon M (1999) Evolution of constraint satisfaction strategies in

examination timetabling. The Proceedings of the Genetic and Evolutionary Computation Conference,

GECCO 1999 (pp. 635-642). Morgan Kaufmann.

Venkatraman S, Yen G G (2005) A generic framework for constrained optimization using genetic algorithms.

IEEE Transactions on Evolutionary Computation, 9(4), 424-435.

Waescher G and Gau T (1996) Heuristics for the integer one-dimensional cutting stock problem: a computational

study. OR Spektrum, 18, 131-144.

15

List if figures:

Fig. 1. The framework of our simulated annealing hyper-heuristic

Simulated

Annealing

Acceptance

Criterion

Domain Barrier

Stochastic Heuristic

Selection Mechanism

Collecting domain-independent information from the domain barrier (e.g. the

number of heuristics, the changes in evaluation function, a new solution or not,

the distance between two solutions, whether it gets stuck or not, etc.)

Apply the selected

heuristic

Simulated Annealing Hyper-heuristic

Feedback

Heuristic Repository

Problem Domain

H1

H2

Hn

…

 Problem representation

 Evaluation Function

 Initial Solution

 Others…

procedure learn (LP)

begin

ci
total ++;

Let δ be the difference in the evaluation function between s' (generated by heuristic Hi from s) and s;

if (s’ != s) ci
new ++; endif

if (δ < 0) ci
accept ++; Ca ++; timp = t; fr = false; endif

if (δ > 0 && exp(-δ/t)>random(0,1)) ci
accept ++; Ca ++; endif

if (mod(iter, LP) = 0)

if (Ca /LP < re)

fr=true; timp = timp/(1- βtimp); t= timp; s = sbest;

for each i in {1,…,n} do

if (ci
total =0) wi = wmin;

else wi = max{wmin, ci
new/ ci

total}

endif

ci
accept =0, ci

new =0; ci
total =0;

done

else

for each i in {1,…,n} do

if (ci
total =0) wi = wmin;

else wi = max{wmin, ci
accept/ ci

total}

endif

ci
accept =0, ci

new =0; ci
total =0;

done

 endif

Ca = 0;

endif

end

Fig. 2. The learning procedure in the proposed simulated annealing hyper-heuristic

Initialisation:

Generate an initial solution s0;

Define a set of heuristics Hi (i = 1,…, n), associate each heuristic Hi with three counters ci
accept =0, ci

new =0; ci
total =0, a

minimal weight wmin and an initial weight wi = wmin;

Set initial non-improving acceptance ratio rs and stopping non-improving acceptance ratio re. Estimate the starting

temperature ts and stopping temperature te by rs and re.

Set total iterations K, iterations at each temperature nrep and the length of single learning period LP;

Calculate the temperature reduction rate β=(ts-te)·nrep/(K·ts·te);

Set t =ts; timp = ts; iter = 0; Ca = 0; fr=false;

Iterative improvement:

while (iter < K) do

Select a heuristic (Hi) based on probability
1

/
n

i i ii
p w w


  ;

Generate a candidate solution s’ from the current solution s using heuristic Hi;

Let δ be the difference in the evaluation function between s' and s;

iter ++;

if (δ <= 0 && new solution generated) s := s’; endif

if (δ > 0 && (exp(-δ/t)>random(0,1)) s = s’; endif

if (fr = true) timp = timp/(1- βtimp); t= timp;

else if (mod(iter, nrep)=0) t = t/(1+βt); endif

endif

call procedure learn(LP)

done

Fig. 3. Pseudo-code of the proposed simulated annealing hyper-heuristic (for a minimisation problem).

17

List of tables

Table 1. A comparison of SAHH with other approaches for the course timetabling problem on the first data set.

VNS+

(Abudulah et

al. 2007)

TSHH

(Burke et al.

2003b)

GHH

(Qu and Burke

2009)

SAHH

(K=500000)
SAHH

(K=2*107)

Datasets best mean best mean best mean best mean time(s) best mean time(s)

small1 0 0 1 2.2 0 0.2 0 0.6 42.2 0 0 463.7

small2 0 0 2 3.0 0 0.6 0 2.2 49.1 0 0 560.2

small3 0 0 0 1.4 0 0 1 1.2 51.3 0 0 507.9

small4 0 0 1 1.8 0 0.4 1 1.8 53.4 0 0.2 760.0

small5 0 0 0 0.2 0 0.1 0 0.6 36.6 0 0 351.4

medium1 242 245 146 179.0 257 261 102 117.0 88.4 38 45.8 2498.4

medium2 161 162.6 173 197.6 259 273 114 122.0 86.9 28 36.2 2462.9

medium3 265 267.8 267 295.4 192 241.5 125 150.2 86.4 48 54.2 2539.6

medium4 181 183.6 169 180.0 235 242 106 110.6 86.5 21 27.0 2480.2

medium5 151 152.6 303 388.5 112 116 106 143.2 81.1 12 18.2 2497.3

large n.a. n.a. 1166 1166.0 1132 1135 653 670.2 89.0 519 569.2 2877.9

Table 2. The statistic values (p values) of the Friedman tests for the first course timetabling data set.

 All Algorithms SAHH vs. VNS+ SAHH vs. TSHH SAHH vs. GHH

small1 0.009 0.371 0.025 0.655

small2 0.011 0.074 0.371 0.180

small3 0.006 0.025 0.180 0.025

small4 0.003 0.025 0.180 0.025

small5 0.046 0.371 0.655 0.655

medium1 0.002 0.025 0.025 0.025

medium2 0.002 0.025 0.025 0.025

medium3 0.002 0.025 0.025 0.025

medium4 0.002 0.025 0.025 0.025

medium5 0.007 0.655 0.025 0.180

large 0.007 n.a 0.025 0.025

Table 3. A comparison of SAHH with bespoke approaches for the course timetabling problem on the

competition data set.

Instances Winner 2nd
 3rd 4th 5th 6th 7th

SAHH

best mean

1 45 61 85 63 132 148 178 86 96.0

2 25 39 42 46 92 101 103 59 68.6

3 65 77 84 96 170 162 156 116 125.6

4 115 160 119 166 265 350 399 135 162.0

5 102 161 77 203 257 412 336 196 213.8

6 13 42 6 92 133 246 246 11 14.4

7 44 52 12 118 177 228 225 12 18.2

8 29 54 32 66 134 125 210 36 43.0

9 17 50 184 51 139 126 154 46 49.4

10 61 72 90 81 148 147 153 85 95.2

11 44 53 73 65 35 144 169 76 93.2

12 107 110 79 119 290 182 219 134 140.4

13 78 109 91 160 251 192 248 120 134.6

14 52 93 36 197 230 316 267 40 56.4

15 24 62 27 114 140 209 235 25 41.6

16 22 34 300 38 114 121 132 33 42.2

17 86 114 79 212 186 327 313 249 280.0

18 31 38 39 40 87 98 107 57 78.6

19 44 128 86 185 256 325 309 104 119.8

20 7 26 0 17 94 185 185 1 7.2

Average 50.6 76.8 77.1 106.5 166.5 207.2 217.2 81.1 94.0

18

Table 4. A comparison of SAHH with the hybrid algorithm by Chiarandini et al. (2006).

Instances 1 2 3 4 5 6 7 8 9 10

Chiarandini et al. (2006) 57 31 61 112 86 3 5 4 16 54

SAHH 86 59 116 135 196 11 12 36 46 85

Instances 11 12 13 14 15 16 17 18 19 20

Chiarandini et al. (2006) 38 100 71 25 14 11 69 24 40 0

SAHH 76 134 120 40 25 33 249 57 104 1

Table 5. A comparison with perturbation MBS' + VNS (Fleszar and Hindi 2002).

 Perturbation MBS' + VNS SAHH

Data Sets #num #opt
max

abs.

av.

cpu

max

cpu
#opt

max

abs.

av.

cpu

max

cpu

Fal_U120 20 20 0 0.02 0.04 20.0 0 0.00 0.19

Fal_U250 20 19 1 0.03 0.16 17.5 1 0.15 1.02

Fal_U500 20 20 0 0.04 0.14 19.0 1 0.07 1.00

Fal_U1000 20 20 0 0.07 0.27 20.0 0 0.01 0.22

Fal_T60 20 20 0 0.01 0.01 19.9 1 0.03 1.00

Fal_T120 20 20 0 0.02 0.04 20.0 0 0.04 1.00

Fal_T249 20 20 0 0.02 0.04 20.0 0 0.04 1.00

Fal_T501 20 20 0 0.06 0.10 19.9 1 0.05 0.86

Sch_Set1 720 694 2 0.15 1.78 697.5 1 0.04 1.02

Sch_Set2 480 474 1 0.10 4.57 473.4 1 0.03 1.02

Sch_Set3 10 2 1 3.74 5.05 7.3 3 0.35 1.02

All 1370 1329 2 0.14 5.05 1334.3 3 0.07 1.02

Table 6. A comparison with the hybrid procedure in (Alvim et al. 2004).

HP_BP SAHH

Data Sets #num #opt
max

abs.

av.

cpu

max

cpu
#opt max abs.

av.

cpu

max

cpu

Fal_U120 20 20.0 0 0.00 0.01 20.0 0 0.00 0.13

Fal_U250 20 20.0 0 0.15 3.19 19.0 1 2.09 39.74

Fal_U500 20 20.0 0 0.00 0.01 19.1 1 1.92 40.02

Fal_U1000 20 20.0 0 0.01 0.03 20.0 0 0.01 0.11

Fal_T60 20 20.0 0 0.33 2.53 20.0 0 0.03 0.56

Fal_T120 20 20.0 0 1.14 6.88 20.0 0 0.03 0.42

Fal_T249 20 20.0 0 0.29 2.91 20.0 0 0.03 0.39

Fal_T501 20 20.0 0 1.24 19.26 20.0 0 0.05 0.52

Sch_Set1 720 719.2 1 0.20 23.89 708.8 1 0.65 40.03

Sch_Set2 480 480.0 0 0.01 1.89 475.7 1 0.38 40.03

Sch_Set3 10 10.0 0 4.71 50.61 8.0 1 8.10 40.03

Sch_Wae1 100 100.0 0 0.02 0.14 100.0 0 0.19 32.41

Sch_Wae2 100 100.0 0 0.02 3.58 99.5 1 0.36 40.05

Wae_Gau1 17 12.0 1 0.60 2.40 12.0 1 11.77 40.03

 All 1587 1581.2 1 0.38 50.61 1561.9 1 1.83 40.05

