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Abstract    Most of the current search techniques represent approaches that are largely adapted for specific 

search problems. There are many real-world scenarios where the development of such bespoke systems is 

entirely appropriate. However, there are other situations where it would be beneficial to have methodologies 

which are generally applicable to more problems. One of our motivating goals for investigating hyper-heuristic 

methodologies is to provide a more general search framework that can be easily and automatically employed on 

a broader range of problems than is currently possible. In this paper, we investigate a simulated annealing hyper-

heuristic methodology which operates on a search space of heuristics and which employs a stochastic heuristic 

selection strategy and a short-term memory. The generality and performance of the proposed algorithm is 

demonstrated over a large number of benchmark datasets drawn from two very different and difficult problems, 

namely; course timetabling and bin packing. The contribution of this paper is to present a method which can be 

readily (and automatically) applied to different problems whilst still being able to produce results on benchmark 

problems which are competitive with bespoke human designed tailor made algorithms for those problems. 

Keywords: hyper-heuristics; simulated annealing; bin packing; course timetabling;  

1 Introduction 

Many real-world search problems represent particularly demanding research challenges. A wide range of 

methods and techniques (Glover and Kochenberger 2003, Burke and Kendall 2005) have been intensively 

investigated and studied to tackle such problems. However, many of these algorithms are either tailored for 

problem models by making use of problem-specific structures and properties, or they involve considerable 

parameter tuning. The performance of these algorithms often decreases (sometimes drastically) when some of 

the problem properties alter (even if only slightly). To improve the algorithmic performance for new problem 

instances, it is often necessary to invest considerable time and effort in tuning the parameters once again or even 

to completely redesign the algorithm. Moreover, these methodologies are selected and adapted by humans. We 

are concerned here with establishing scientific principles that are required to automate this process.  

It should be recognised that problem modelling is a continual process. A model is only an approximation of 

reality. New observations or situations may lead to a refinement, modification, or replacement of a model 
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because real-world problems often have to reflect an environment that is rapidly changing. Such observations 

motivate the development of flexible search techniques which can easily be adapted to respond to such changes.   

Hyper-heuristics have recently received considerable research attention [see (Ross 2005), (Burke et al. 2009) 

for recent overviews of on hyper-heuristics] in order to address some of these issues. In (Venkatraman and Yen 

2005), a generic two-stage evolutionary algorithm framework was proposed for constrained optimisation 

problems. The algorithm avoids incorporating problem-specific characteristics but adaptively guides the 

exploration and exploitation using a non-deterministic ranking strategy. In this paper, we investigate and develop 

a simulated annealing hyper-heuristic framework which adopts a stochastic heuristic selection strategy 

(Runarsson and Yao 2000) and a short-term memory. We demonstrate the performance and generality of the 

algorithm over two very different and challenging optimisation problems: university course timetabling and bin 

packing.  

2 Hyper-heuristics: an overview 

One of the aims of hyper-heuristic research is to underpin the development of decision support systems which 

are applicable to a range of different problems and different problem instances. Hyper-heuristics can be defined 

as “an automated methodology for selecting or generating heuristics to solve hard computational search 

problems” (Burke et al. 2009). This differs from most implementations of meta-heuristic methods which operate 

directly on a solution space. A hyper-heuristic methodology will explore a search space of heuristics. It is 

possible to make use of a repository of simple low-level heuristics or neighbourhood functions and to 

strategically change their preferences during the search in order to adapt to different situations and problem 

instances (Ross 2005, Burke et al. 2009). Note that hyper-heuristic research has been undertaken for a number of 

years although the term “hyper-heuristics” is relatively new. The roots of such work can be traced back to the 

1960s (Fisher and Thompson 1963, Crowston et al. 1963) and throughout the 1980s and 1990s (Mockus 1989, 

Kitano 1990, Hart, Ross and Nelson 1998). This section gives a short overview of relevant hyper-heuristic 

methods. The interested reader can refer to (Soubeiga 2003, Ross 2005, Burke et al. 2009) for more detailed 

overviews. 

It is possible to broadly categorise hyper-heuristics into those which represent local search methods and those 

which generate new heuristics. Constructive hyper-heuristics construct solutions from “scratch” by intelligently 

calling different heuristics at different stages in the construction process. Examples of constructive hyper-

heuristic research can be seen in (Fisher and Thompson 1963, Kitano 1990, Hart, Ross and Nelson 1998, Ross et 

al. 2003, Burke et al. 2006, Qu and Burke 2009). Local search hyper-heuristics start from a complete initial 

solution and repeatedly select appropriate heuristics to lead the search in promising new directions. This is the 

type of hyper-heuristic method with which this paper is concerned.  

In local search hyper-heuristics, low-level heuristics usually correspond to several neighbourhood functions or 

neighbourhood exploration rules that could be used to alter the state of the current solution. Several types of 

local search hyper-heuristic have been investigated in the literature. Some hyper-heuristics draw upon ideas from 

reinforcement learning (Sutton and Barto 1998) to guide the choice of the heuristics during the search. Nareyek 

(2003) biased the heuristic selection probabilistically based on non-stationary reinforcement learning. Several 

weight adaptation strategies were tested and compared on two combinatorial optimisation problems. 

Several evolutionary hyper-heuristics have also been investigated and studied. Kitano (1990) employed a 

genetic algorithm based hyper-heuristic to optimise neural network design. Instead of encoding the network 

configuration directly, his GA chromosome consisted of a set of rules that can be used to generate networks. 

This approach was shown to be superior to a conventional GA. Hart et al. (1998) solved a real-world scheduling 

problem using a GA based hyper-heuristic. The problem involved scheduling the collection and delivery of 

chickens from farms to processing factories.  The GA was used to evolve a strategy to build a good solution 

instead of finding the solution directly. The experimental results showed this approach to be fast, robust and easy 

to implement. Other recent research work related to evolutionary hyper-heuristics includes (Han and Kendall 

2003, Ross et al. 2003, Terashima-Marin, Ross and Valenzuela-Rendon 1999). Recently, Burke et al. (2010) 

used genetic programming as a hyper-heuristic approach to evolve new heuristics for the 2-dimensional strip 

packing problem. Computational tests show that the best heuristic evolved by the hyper-heuristic is competitive 

when compared against the best human-designed heuristics.  

A tabu search based hyper-heuristic has also been developed which was effective on both a nurse rostering 

problem and a university course timetabling problem which demonstrated the level of generality of the method 

(Burke et al. 2003b). In this approach, the hyper-heuristic dynamically ranks a set of heuristics according to their 

performance in the search history. At each iteration, the hyper-heuristic applies the highest "non-tabu" heuristic 

to the current solution until the stopping criterion is met. Competitive results were obtained on both problems 

when compared with other state-of-the-art techniques. In (Dowsland et al. 2006), their hyper-heuristic was 
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enhanced within a simulated annealing framework and was used to solve a shipper sizes optimisation problem. 

The authors also discussed some heuristic performance measurement issues within this new hyper-heuristic 

framework.   

Another type of hyper-heuristic has been proposed which uses a Bayesian heuristic approach to randomise 

and optimise the probability distribution of each heuristic call (Mockus 1989). This approach is based on the 

analysis of the average-case performance of the heuristics. It attempts to determine a set of parameters, or a 

probability distribution, so that the deviation from the global optimum is minimised. The method has been 

applied to a variety of discrete optimisation problems. See (Mockus 1994, 1997, 2000) for further details.  

Other search methods which have been employed as hyper-heuristics include graph based methods (Burke et 

al. 2007), choice functions (Cowling et al. 2001, Rattadilok et al., 2005) and case-based reasoning (Burke et al. 

2006).  

The simulated annealing hyper-heuristic we propose in this paper builds upon the methodologies presented in 

(Bai and Kendall 2005) and (Burke et al. 2003b). 

3 A flexible simulated annealing hyper-heuristic (SAHH) 

3.1 Framework of the proposed hyper-heuristic 

In a similar way to other hyper-heuristic frameworks (e.g. Soubeiga 2003), our proposed simulated annealing 

hyper-heuristic has a domain barrier sitting between the hyper-heuristic and the problem domain. In order to 

facilitate a satisfactory level of generality, we restrict domain-dependent information from being transferred to 

the hyper-heuristic algorithm. However, non-domain information is allowed to pass through the barrier so that 

the hyper-heuristic can exploit this information. For example, the hyper-heuristic can be aware of the number of 

low-level heuristics available, changes in the evaluation function, whether a new solution has been generated or 

not and the distance between two solutions (i.e. how much two solutions differ), as this data is available no 

matter what problem domain we are operating on. Recall that the goal of this research is to be as “domain 

independent” as possible. 

 

#Insert figure 1 somewhere here # 

Our proposed hyper-heuristic is shown in Fig. 1, which is adapted from (Soubeiga 2003). It has the following 

features.  

Firstly, it adopts a simulated annealing acceptance criterion  (Lundy and Mees 1986) to alleviate the 

shortcomings of two simple acceptance criteria (improvement-only and accept all moves) that have been used in 

other hyper-heuristic approaches (Cowling et al. 2001, Nareyek 2003, Burke et al. 2003b). The simulated 

annealing acceptance criterion defines a probability, p=exp(-δ/t), with which a given candidate solution is 

accepted.  

Secondly, stochastic heuristic selection mechanisms are used instead of the widely used deterministic 

heuristic selection strategies. In (Runarsson and Yao 2000), it was shown that stochastic ranking is superior to 

other popular selection strategies in the context of an evolutionary algorithm for constrained optimisation. The 

heuristic selection mechanism dynamically tunes the priorities of different heuristics during the search. Initially, 

of course, the heuristic selection mechanism does not know whether any heuristic will perform any better than 

any other. Therefore, all low-level heuristics are treated equally and the heuristic selection decisions are made 

randomly. While the search is proceeding, the heuristic selection mechanism starts to apply preferences among 

different low-level heuristics by learning from, and adapting to, their historical performance. Therefore, the 

heuristics that have been performing well are more likely to be chosen. To successfully apply a selected 

heuristic, the simulated annealing acceptance criterion also has to be satisfied. That is, once a decision is made 

by the heuristic selection mechanism, the chosen heuristic is then applied to the current solution. The simulated 

annealing acceptance criterion is employed to decide whether to accept this heuristic move or not. Information 

about the acceptance decisions by the acceptance criterion is then fed back to the heuristic selection mechanism 

in order to make better decisions in the future.  

Thirdly, short-term memories are utilised, as opposed to long-term memories (as in some recent hyper-

heuristic methods). The length of these memories (which we call a learning period) is much shorter compared 

with the whole search period. The underlying assumption is that each low-level heuristic may exhibit different 

levels of performance in different regions of the search space, or at different periods of the simulated annealing 

process. A heuristic that is effective in some regions of the search space might perform badly in other regions. If 

a heuristic frequently improves the current solution in the initial stages of the search, this does not necessarily 
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mean that it will be effective in the middle or final phases of the annealing process. Therefore, we prefer to limit 

the memory of the hyper-heuristic.  

In addition, the algorithm should distinguish between situations where a heuristic failed to generate a new 

solution and those where a heuristic returned a new solution but was unable to improve the objective function. 

Our hyper-heuristic encourages calls of the latter type of heuristic whilst reducing the first type, especially when 

the algorithm gets stuck at a local optimum.  

In Fig. 3 we present the pseudo-code of our proposed algorithm which uses the learning procedure shown in 

Fig. 2. It assumes a minimisation problem but, of course, it is trivial to convert it to a maximisation problem. It 

can be seen that the main structure of the proposed algorithm in Fig. 3 is similar to a general simulated annealing 

algorithm. Note that in figure 3, a heuristic Hi can be considered as a mapping function from a current solution to 

a candidate solution. This candidate solution could be generated by a random sampling of a neighbourhood 

defined by Hi. Alternatively it could also be a better solution obtained by evaluating partial or entire 

neighbourhoods. Therefore, the set of heuristics H can be a mixture of both types of heuristics, providing a 

balance between exploration and diversification. As might be expected, we found that, for our proposed SAHH, 

having more heuristics of the first type in the heuristic repository gives better performance in general for the 

problems we have tested (i.e. course timetabling and the bin packing). Coupled with simulated annealing criteria, 

the second type of low level heuristics may lead to occasional premature convergences during the search. In 

summary, our proposed algorithm has the following new features (see Fig. 2 and Fig. 3). 

 

#Insert figure 2 somewhere here # 

#Insert figure 3 somewhere here # 

For each low-level heuristic, we associate a weight wi ( min 1iw w  ) to represent its preference in 

comparison to the other heuristics. Initially, this weight is set to the minimal weight wmin (a very small positive 

value). The weights are then updated periodically.  

 The starting temperature, ts, and the stopping temperature, te, are estimated so that the initial and the final 

non-improving acceptance ratios (i.e. the ratio of the accepted non-improving moves to the total non-

improving moves) approximately equal the predefined values rs and re respectively. The temperature 

reduces according to Lundy and Mees’ (1986) nonlinear function t= t/(1 + βt) where β= (ts - 

te) · nrep/K · ts · te and nrep is the number of iterations at each temperature and K is the number of total 

iterations allowed.  

 Since the performance of a heuristic may change at a different temperature or when in different region of 

the search space, we measure a heuristic’s performance based on the information gathered during a 

relatively short learning period, as opposed to the whole search history. Let LP (LP<K) be the length of a 

single learning period. Counters are used which track; ci
total

 the total number of calls of heuristic i by the 

hyper-heuristic during the current learning period; ci
new

 the total number of new solutions generated by the 

heuristic i and ci
accept

 counts how many of them have passed the simulated annealing acceptance criterion. 

 A “reheating” strategy is also used and is triggered when the acceptance ratio is below the stopping 

acceptance ratio re. To do this, another counter (Ca) is used to record the total number of accepted heuristic 

calls during the current learning period. If the acceptance ratio is too low (i.e. Ca /LP < re), the system is 

switched to a “reheating” phase (flagged by variable fr): the temperature is increased to the last 

“improvement temperature” timp (the temperature at which the last better solution was found) and the search 

starts from the best solution found so far. The temperature continues to increase according to the function 

t= t/(1-βt) until an improved solution is found. The system is then switched to the “annealing” phase and 

the temperature begins to decrease again. Therefore, in this algorithm, the temperature decreases gradually 

and frequently. However, once the system gets stuck at a local optimum, the temperature increases very 

quickly to escape from the local optimum. 

 The weights of the low-level heuristics are updated after every learning period and normalised by their 

acceptance ratios (ci
accept

/ ci
total

) during the “annealing” phase and by ratios ci
new

/ ci
total

 during the “reheating” 

phase. At each iteration, a low-level heuristic is selected with probability 
1

/
n

i i ii
p w w


  , which is similar 

to the stochastic ranking method used in the evolutionary algorithm in (Runarsson and Yao 2000). 

3.2 Compared with other relevant meta-heuristics 

The proposed simulated annealing hyper-heuristic (SAHH) is closely related to some existing metaheuristics, 

in particular, iterative local search (ILS) (Lourenco et al. 2003) and adaptive large neighbourhood search 

(ALNS) (Ropke and Pisinger 2006). We now briefly compare our proposed SAHH against ILS and ALNS.  
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3.2.1 SAHH vs ILS 

Like SAHH, the basic iterated local search is simple and easy to implement. An ILS method contains two 

iteratively executed phases: a solution perturbation phase and a local search phase. The main idea is to 

repeatedly find the local optima at different regions of the solution space. The choices of the perturbation 

strategy and the local search method are the key components to the success of ILS. ILS is very similar to variable 

neighbourhood search (VNS) (Hansen et al. 2008) except that ILS is more general in the sense that the 

perturbation in ILS is more flexible. Both ILS and VNS make use of multiple neighbourhoods which are 

explored in a pre-defined sequence. Furthermore, at each iteration, often the entire neighbourhood is explored 

and the best solution is returned and accepted. However, in our proposed SAHH approach, only a part of a 

neighbourhood is sampled and the selection of neighbourhoods/heuristics at each iteration is dynamically 

determined based on a reinforcement learning mechanism. In addition, a simulated annealing acceptance 

criterion is used in SAHH, instead of simple acceptance criteria used in ILS and VNS. Finally, the outcome of 

the SA acceptance criterion in SAHH is fed into the heuristic selection phase to continuously improve heuristic 

selection in the future.  

3.2.2 SAHH vs ALNS 

In some ways, ALNS is very similar to SAHH. For example, both methods make use of multiple heuristics to 

improve the current solution. The learning mechanisms in both methods are based on the ideas of reinforcement 

learning. The main difference between SAHH and ALNS is two-fold. Firstly, SAHH emphasizes the importance 

and significance of the SA acceptance criterion as opposed to other simple acceptance criteria (e.g. 

improvement-only acceptance and all-moves acceptance). Secondly, the heuristics (or neighbourhood functions) 

used in SAHH and ALNS are very different. ALNS primarily uses ruin-and-recreate heuristics to allow for the 

search oscillating between feasible and infeasible regions of the search space as these regions are often where 

high quality solutions can be found. While in SAHH, the feasibility of the incumbent solution is always 

maintained and the search is only carried out in the feasible solution space. It is difficult to compare the 

performance between them as it depends on the structure of the problem and how these heuristics are designed 

for each problem. In general, ruin-and-recreate heuristics may be more suitable for handling problems with 

challenging constraints (e.g. constraints that lead to most neighbourhood moves being infeasible) while 

heuristics used in SAHH may be more applicable for problems with large, but relatively less constrained, search 

spaces. Furthermore, SAHH aims to relieve users and practitioners from tedious, complex programming and 

advocates using simple, intuitive heuristics. Designing and implementing effective ruin-and-recreate heuristics 

requires profound understanding of the structures of the problem and constraints. When the problem changes, 

which is often the case as we mentioned earlier, much more work is required to adapt ALNS to the new 

environment than SAHH does. 

  

3.3 Parameter settings 

In the next section we will demonstrate the high level of generality of the proposed methodology by 

experimenting on two very different optimisation problems: course timetabling, and bin packing. The search 

spaces of the course timetabling and bin packing problem are very different. Course timetabling generally has a 

very large search space with difficult constraints (Chiarandini and Stutzle 2003) while bin packing tends to have 

an “unfriendly” plateau-like search space with relatively easy constraints (Falkenauer 1996). The key 

contribution to the literature is that we have developed a methodology which can operate on very different 

problems without the high level of human development and “tailoring” that is usually required for meta-heuristic 

approaches to these problems. We also demonstrate that the methodology obtains results that are competitive 

with special purpose algorithms that have been tailored for just one problem.  

 

A few parameters are required to be set. To obtain generality, we want to minimise the number of parameters 

that are required to be tuned by a user; if we have to include some user parameters, they should be less sensitive 

to the changes of problem instances or domains. Let us assume that there are n low-level heuristics. The 

parameter settings for the simulated annealing hyper-heuristic are defined as follows and will be the same across 

both applications: rs=0.1, re=0.005, nrep=n, wmin =min{100n/K, 0.1}, LP=max{K/500, n}. The initial and 

stopping acceptance ratio (rs and rs) are set so that there are about 10% non-improving moves being accepted at 

the initial stage and only 0.5% at the final stage. nrep=n means that each heuristic is called approximately once 

at each temperature. The values of wmin and LP are based on some preliminary experiments on a subset of 
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representative course timetabling instances (small 1, medium 1, large, and competition data instances 1, 6, 11 

and 16) but will be set by the same method across both applications. Therefore, we do not need to re-tune the 

parameters of the proposed simulated annealing hyper-heuristic to different problems and applications, which is 

one of the key aims of hyper-heuristic approaches. Parameter K provides an alternative way for users to adjust 

the computational time by the algorithm to appropriate values that are permitted in various problem solving 

scenarios. For example, time-critical problem-solving should adopt a relative small K while non-time-critical 

problems (e.g. timetabling) could use a relatively large K to obtain high quality solutions. Therefore, in this 

paper K will be set to different values for different problems. All the experiments were run on a PC Pentium IV 

1.8GHZ with 256MB RAM running Microsoft Windows XP Professional. 

4 Computational Experiments 

4.1 An application to university course timetabling 

4.1.1 Problem description 

The university course timetabling problem involves assigning a given number of events (including lectures, 

seminars, labs, tutorials, etc) into a limited number of time-slots and rooms subject to a given set of constraints. 

For the purpose of comparison, we shall use the same model presented in (Rossi-Doria et al. 2002) and (Socha et 

al. 2002). This model provides a representation of a typical course timetabling problem and has been widely used 

in recent publications (McMullan 2007). The model formulates the problem as follows: 

Given a set of events ei (i = 0,…,E) and a number of rooms rj (j = 0,…,R), with each room having F types of 

features. Each event is attended by a given number of students and requires some of the room features. The total 

number of students is S. The aim of the problem is to assign every event ei to a timeslot tk (k = 1,…,45) and a 

room rj so that the following hard constraints are satisfied: 

 No student should be assigned to more than one event in a timeslot; 

 The room assigned to an event should have sufficient capacity and all the features required by the given 

event; 

 No more than two events can be scheduled in one room in a timeslot. 

The objective of the problem is to minimise the number of students involved in the following soft constraint 

violations: 

 An event is scheduled in the last timeslot of the day; 

 A student has only one event in a day; 

 A student has more than two consecutive events. 

We adopt the same solution representation that was used in both (Socha et al. 2002) and (Burke et al. 2003b). 

In this representation, a solution was encoded as an E dimensional vector where a position in the vector denotes 

an event index and the value corresponds to the timeslots assigned to the given events. Again, similar to (Socha 

et al. 2002) and (Burke et al. 2003b), room assignments are dealt with separately by using a matching algorithm. 

A fast pattern-based objective evaluation method was also used (see (Burke et al. 2003a) for more details).  

4.1.2 Low-level heuristics 

The three simple low-level heuristics that we use are as follows: 

H1. Shift: Move a random event from its current timeslot to another random timeslot. 

H2. Swap event: Swap the timeslots of two random events. 

H3. Swap timeslot: Swap all events of two randomly selected timeslots. 

Note that the above low-level heuristics only operate on feasible solutions. The current solution is returned if 

an infeasible solution is generated. All three heuristics are relatively easy to implement and are much simpler 

than those neighbourhood structures that were used in other approaches, for example, (Abdullah et al. 2007). 

4.1.3 Computational results 

The proposed simulated annealing hyper-heuristic algorithm was tested on two course timetabling benchmark 

data sets. The first data set was originally used in (Socha et al. 2002). It consists of five small instances (E=100, 

S=80, R=5 F=5), five medium instances (E=400, S=200, R=10 F=5) and one large instance (E=400, S=400, 
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R=10 F=10). The second data set is drawn from the International Timetabling Competition organised by the 

Metaheuristic Network (2003). This data set contains twenty problem instances. The parameters of these 

instances are as follows: E [350,440], S  [200,350], R [10,11], F [5,10]. The proposed simulated annealing 

hyper-heuristic starts from a feasible initial solution which was constructed by a simple and quick hybrid 

heuristic procedure similar to the approach proposed in (Asmuni et al. 2005). However, to quickly obtain a 

feasible initial solution, which can be used by our simulated annealing hyper-heuristic, the hybrid heuristic 

procedure used in this paper stops as soon as a feasible solution is found. The number of iterations for SAHH is 

set as follows: for the first data set, the initial experiment is set to a relatively small number of iterations 

K=500,000, which corresponds to less than one minute of computational time for small instances and one and 

half minutes for medium and large instances (see table 1 for details). Furthermore, since computational time is 

generally considered to be non-critical for the course timetabling problem, a larger number of iterations 

(K=2*10
7
) were also investigated for this data set. For the second data set (the competition data set), we set 

K=2*10
7
 which corresponds to between 45 and 55 minutes of computational time on the same machine. All the 

other parameters remain unchanged. In a similar way to the research undertaken by Burke et al. (2003), five 

independent runs were carried out for each problem instance using different random seeds and both best and 

average results are reported. Note that although the total number of iterations for SAHH is larger than the tabu 

search hyper-heuristic (TSHH) in (Burke et al. 2003b), all three low-level heuristics used in this paper are much 

faster than some of the low-level heuristics used in TSHH. For example, one of the low-level heuristics used in 

TSHH is defined as “1st improving soft constraints without worsening hard constraints”. A single run of this 

heuristic usually involves evaluating several neighbouring solutions, or even the whole neighbourhood before 

finding an improved solution. Therefore it can be much more computationally expensive than the low-level 

heuristics used in SAHH. 

 

#insert table 1 somewhere here# 

#insert table 2 somewhere here# 

 

 

Table 1 presents a comparison between SAHH and other meta-heuristic and hyper-heuristic approaches 

reported in the literature for the first data set instances, including a tabu search hyper-heuristic (TSHH) (Burke et 

al. 2003b), a variant of variable neighbourhood search (VNS
+
) (Abdullah et al. 2007) and a graph-based hyper-

heuristic (GHH) (Qu and Burke 2009). The computational times by VNS+ (Abdullah et al. 2007) are 50 seconds 

for small instances, and around 8 hours for medium and large instances on a PC with Pentium 1.2GHz with 

256MB RAM. The experimental environment for GHH (Qu and Burke 2009) was a PC with Pentium IV 3.0GHz 

and 1GB RAM. The computational time for small instances (respectively the medium instances and the large 

instance) is around 50 seconds (4.6 hours, and 5.6 hours respectively). Our SAHH was run on a PC Pentium IV 

1.8GHz CPU and 256MB RAM with the computational time (when K=500,000) ranging from 0.7 to 1.5 

minutes. Therefore, we generally uses less computational time (particularly for the medium instances and the 

large instance) even taking into account the performance scales of these different machines. Both the best and 

average results among the 5 runs are reported in table 1. The best results among all the four algorithms are 

presented in bold. The results of VNS+ for the large instance are missing here due to unavailability.  

In order to find out whether the performance of the four algorithms (SAHH with K=500,000, VNS+, TSHH, 

and GHH) are different in terms of solution quality, and whether our SAHH performs better, several Friedman 

tests (Conover 1999) were carried out. The mean values by VNS+, TSHH, and GHH were used in the tests. Our 

first test included all four algorithms. The null hypothesis, therefore, is that there is no significant difference 

between VNS+, TSHH, GHH, and SAHH. The second column of table 2 gives the corresponding statistic values 

(p values). It can be seen that this null hypothesis is rejected for every problem instance at confidence levels 

ranging between 0.002 and 0.046. This means that at least 2 algorithms performed significantly differently for 

each of these problem instances.  

In the next step, we then carried out paired Friedman tests between our SAHH (K=500,000) and each of the 

other three algorithms. The null hypotheses respectively are that there is no significant performance difference 

between SAHH and VNS+ (respectively TSHH, GHH). The corresponding p values are shown in table 2 

(columns 3-5) and large p values (i.e. >0.05) are highlighted in bold. Based on the data from both table 1 and 

table 2, it can be concluded that, at the confidence level p=0.05, VNS+ performed significantly better than 

SAHH for 2 small instances (small 3, and 4), but SAHH was significantly better for 4 medium instances 

(medium 1, 2, 3, and 4). For the other 4 instances, there is no significant performance difference between them. 

The comparison between SAHH and TSHH is more straightforward. SAHH outperformed TSHH significantly 

for 7 instances. For the remaining 4 small instances, there is no significant difference between them. Comparing 

between SAHH and GHH, we can see that the performances by SAHH and GHH are not significantly different 

for 4 instances (3 small instances and 1 medium instance). SAHH outperformed GHH for 5 instances (medium 1, 

2, 3, 4 and large) and GHH did better than SAHH for 2 instances (small 3 and 4). In summary, it seems that the 
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proposed simulated annealing hyper-heuristic is particularly suited to instances of larger sizes. This is probably 

due to the hyper-heuristic learning mechanism which learns how to bias solution sampling strategies towards 

more promising regions of the search space. When a longer computational time is allowed (e.g. K=2*10
7
), 

SAHH is able to further improve these results considerably. 

 

#insert table 3 here# 

 

Table 3 gives a comparison for the second data set between our simulated annealing hyper-heuristic and the 

top seven bespoke approaches in the international timetabling competition (Metaheuristics Network 2003). The 

best results are highlighted in bold. It can be seen that, on this data set, our simulated annealing hyper-heuristic 

would be ranked in fourth place both in terms of average objective value and the official ranking approach across 

twenty instances. Three approaches perform better in terms of solution quality. In fact, another hybrid algorithm 

by Chiarandini et al. (2006) would have won the competition but could not enter because they were the 

organisers (see their results in table 4). This is not surprising since these bespoke approaches were specifically 

tailored for these problem instances and heavily utilised some of features of these instances while our method 

was designed with generality in mind. For example, according to (Kostuch 2004), one of the features is that all 

the instances are created in such a way that at least a “perfect” solution (i.e. solution with a zero penalty value) 

exists. This feature was heavily exploited by the winning algorithm in its initial solution procedure in order to 

obtain an initial solution being very close to an optimal solution (note that this does not necessarily mean this 

initial solution has a very small objective value). Therefore, these procedures may not be as effective when 

applied to other problem instances which do not contain these features. In fact, we have run one of the top three 

algorithms on the first data set and some results are far worse than our results on these instances. This indicates 

that although these bespoke algorithms perform very well on the competition data set, their performance can 

decrease significantly even when applied to different instances from the same domain.  

 

#Insert table 4 here# 

 

4.2 An application to bin packing 

In the previous section, we have shown that our proposed simulated annealing hyper-heuristic is able to 

improve upon the performance of a recently proposed tabu search hyper-heuristic. In fact, it also produced better 

results than some problem specific bespoke meta-heuristic approaches. In this section, we apply the proposed 

algorithm to the well-known bin-packing problem to further test its generality across different problem solving 

environments. We will use exactly the same parameter settings as in the previous experiment. As before, we only 

need to change the initial solution, the evaluation function and the set of low-level heuristics.   

4.2.1 The bin packing problem 

The one dimensional bin packing problem is defined as follows. Given a set of items I (i =1,…, n) each 

having an associated size or weight wi, and a set of bins with identical capacities c, the problem is to pack all the 

items into as few bins as possible, without exceeding the capacity of the bins. The bin packing problem is a well-

known NP-hard combinatorial optimisation problem (Martello and Toth 1990a). However, it is not difficult to 

get a lower bound of the problem. A straightforward lower bound can be obtained by 1 1
/

n

ii
L w c


 . Some 

stronger lower bounds were studied in (Martello and Toth 1990b, Scholl et al. 1997). Considerable research has 

been carried out on exact methods. One of the most successful algorithms for bin packing is known as the 

Martello-Toth Procedure. This is a branch and bound based exact method originally proposed in (Martello and 

Toth 1990b). Some other versions of exact methods are proposed in (Scholl et al. 1997, Belov and Scheithauer 

2006). Heuristic based approaches have also been studied. Apart from some well-known constructive heuristics 

(for example, First-Fit-Descent and Best-Fit-Descent), meta-heuristic approaches have been adapted for the bin 

packing problem, including a grouping genetic algorithm (Falkenauer 1996) and variable neighbourhood search 

(Fleszar and Hindi 2002). In both applications, transformed objective functions were used because if the number 

of used bins is chosen as the objective function, the bin packing problem solution space is fairly flat and a large 

number of solutions correspond to the same objective value. General local search approaches cannot be well 

guided by this objective function (Falkenauer 1996, Falkenauer 1998). Recently, Alvim et al. (Alvim et al. 2004) 

proposed a hybrid algorithm which combines several strategies, including a dual min-max method for generating 

initial solutions, new dominance criteria, unbalancing heuristic, etc. Superior results were obtained by the 

algorithm compared with other existing heuristic approaches. However, the algorithm is highly problem-specific 
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and is difficult to adapt to other problems with different solution structures. For instance, one may want to use 

different objective functions (instead of the number of bins), or have some additional constraints, which would 

probably lead to these strategies being invalid or ineffective. Ross et al. (2003) proposed a genetic algorithm 

hyper-heuristic for the problem. The algorithm was firstly trained on a subset of benchmark problems and after 

the training, the fittest chromosome was then applied to every benchmark problem. The computational results 

demonstrate that the evolved algorithm performs better than any of the individual low-level heuristics. 

4.2.2 Problem specific input 

Initial solution and evaluation function 

Our initial solution is created by a time bounded relaxed Minimum Bin Slack (MBS) heuristic that is similar 

to the MBS heuristic used in (Fleszar and Hindi 2002) except that the stopping criteria is relaxed by allowing a 

small slack value (equal to average slack value allowed in the lower bound L1) and 0.02 seconds computational 

time limit. This modification could let the heuristic run much faster without compromising its performance. We 

use the original objective function (i.e. the number of used bins) rather than using some of the transformed 

evaluation functions as in (Falkenauer 1996, Scholl et al. 1997, Fleszar and Hindi 2002). 

Low-level heuristics  

A total of five heuristics are used, which are described as follows: 

H1. Shift: This heuristic selects each item from the bin with the largest residual capacity and tries to move the 

items to the rest of the bins using the best fit descent heuristic. 

H2. Split: This heuristic simply moves half the items (randomly selected from) the current bin to a new bin if 

the number of items in the current bin exceeds the average item numbers per bin.  

H3. Exchange largestBin_largestItem: This heuristic selects the largest item from the bin with the largest 

residual capacity and exchanges this item with another smaller item (or several items whose capacity sum is 

smaller) from another randomly selected non-fully-filled bin. The idea behind this heuristic is to transfer 

smaller residual capacity from a random bin to a bin with the largest residual capacity so that this bin can be 

emptied by other heuristic(s). 

H4. Exchange randomBin_reshuffle: The idea behind this heuristic is similar to H3, which attempts to transfer 

residual capacity to the bins with larger residual capacity. This heuristic randomly selects two non-fully-

filled bins. The probability of the selection is proportional to the amount of their residual capacities. All 

items from these two bins are then considered and the best items’ combination is identified so that it can 

maximally fill one bin. The remaining items are filled into the other bin. 

H5. BestPacking: This heuristic firstly selects the biggest item from a probabilistically selected bin. The time 

bounded relaxed MBS heuristic is then used to search for a good packing that contains this item and 

considers all the other items (the sequence of these items is sorted by the residual capacity of the 

corresponding bins with ties broken arbitrarily). All the items that appeared in the packing found by time 

bounded relaxed MBS are then transferred into a new bin. Again, the time limit is set to a small value for 

quick implementation of the heuristic (0.02 seconds in this case). The probability of selecting a bin is 

calculated by i

i

resCap

resCap
 


, where resCapi is the residual capacity of the bin i. Hence the selection is in 

favour of the bins with the larger residual capacity.  

Note that all of the heuristics outlined above will guarantee to output feasible solutions (the current solution is 

returned if the new candidate solution is infeasible). All of the heuristics are simple, straightforward and easy to 

implement. 

4.2.3 Bin packing benchmark problems 

Three sources (groups) of benchmark problems are available from the literature for the one dimensional bin 

packing problem. One of them is from the OR-Library (http://people.brunel.ac.uk/~mastjjb/jeb/orlib/ 

binpackinfo.html). This group of data sets consists of two classes of problems: uniform and triplet. In the 

uniform class, the number of items is 120, 250, 500 and 1,000 respectively and their sizes are uniformly 

distributed in the range of [20,100]. The bin capacity is 150. We shall denote these by Fal_U120, Fal_U250, 

Fal_U500 and Fal_U1000 respectively. There are 20 instances for each problem size and hence 80 problem 

instances in total. In the triplet class, the bin capacity is 1,000 and the item sizes are deliberately generated such 
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that, in the optimal solution, every bin contains exactly three items (one “big” and two “small”) without any 

residual capacity. The number of the items is 60, 120, 249 and 501 (denoted by Fal_T60, Fal_T120, Fal_T249 

and Fal_T501 respectively) and each of them contains 20 instances. This class of data sets is claimed to be more 

difficult because of the fact that no residual capacity is allowed in any bin in the optimal solution. In (Fleszar and 

Hindi 2002), 1,000 runs of perturbation MBS were implemented before applying their variable neighbourhood 

search algorithm in order to solve this class of data sets. However, in this paper, we allow the simulated 

annealing hyper-heuristic to automatically adapt to different classes of problem instances by choosing different 

heuristics.  

The second group of data sets was generated and studied by Scholl et al. (1997) and is available at 

http://www.wiwi.uni-jena.de/Entscheidung/binpp/index.htm. It contains three sets (denoted by Sch_Set1, 

Sch_Set2 and Sch_Set3 respectively) and comprises a total of 1,210 instances. The lower bounds of these 

instances are available on the same website. The parameters to create Sch_Set1 and Sch_Set2 include the 

number of the items (ranging from 50 to 500), bin capacity and the ranges that the items’ sizes are drawn from. 

Sch_Set1 consists of 720 problem instances and the expected average number of items per bin is no larger than 

three. However, in Sch_Set2, the average number of items per bin varies between three, five, seven and nine. 

The data sets Sch_Set3 are considered to be harder problem instances because the item size is drawn from a very 

large range such that no two items have the same size. Only 10 instances are included in this set. 

The third group of benchmark data sets are maintained by the EURO Special Interest Group on Cutting and 

Packing and are downloadable from (http://www.apdio.pt/sicup/index.php). This group of data sets represents a 

collection of difficult instances from a large number of test instances in three publications (Waescher and Gau 

1996, Schwerin and Wascher 1997, Belov and Scheithauer 2006). The data sets Sch_Wae1 and Sch_Wae2 

consist of 200 instances selected from (Schwerin and Wascher 1997) which are particularly hard for First-Fit-

Descent and partially hard for Martello-Toth Procedure (in fact none of these instances can be solved optimally 

by First-Fit-Descent). The data sets Wae_Gau1 are collections of 17 instances from (Waescher and Gau 1996) 

which have not yet been solved by either First-Fit-Descent or Martello-Toth Procedure. Note that all the 

instances in data sets Wae_Gau2 also appear in Wae_Gau1 so they are considered in this paper. The lower 

bounds of these instances are available from http://www.inf.puc-rio.br/~alvim/adriana/_les/detbp.pdf. 

4.2.4 Computational results 

The low-level heuristics and initial solutions were input to our simulated annealing hyper-heuristic framework 

which was run on a PC with Intel Core 2 CPU 1.8GHz and 2GB RAM running Windows XP, but the 

computation was limited to one processor only. The algorithms were run 20 times for each instance, using a 

different random seed each time. For each problem instance, the simulated annealing hyper-heuristic stops either 

after the number of iterations reaches K or when the computational time exceeds a given limited t. Therefore, we 

can use both K and t to control the amount of computational time permitted for the SAHH. To compare the 

performance of the different algorithms, the following symbols are used:  

 #num: the number of instances in the given data sets. 

 #opt: the number of instances for which the given algorithm finds a solution with the lower bound objective 

value (i.e. the algorithm has solved those instances optimally). For the algorithm SAHH, the average values 

over 20 runs were reported. For the meta-heuristic approach, perturbation MBS’ + VNS (Fleszar and Hindi 

2002), only single run results are reported due to no average results being available. 

 max abs.: the maximal absolute deviation from the optimal solution or the best known lower bound if the 

optimal solution is not known. 

 av. cpu: the average CPU time spent for the given data sets (in seconds). 

 max cpu: the maximal CPU time spent for an instance in the given data sets (in seconds). 

 

#insert table 5 somewhere here# 

#insert table 6 somewhere here# 

 

We choose to compare our algorithm against two state-of-the-art bin packing heuristics, a variable 

neighbourhood search based approach (MBS’+VNS) proposed in (Fleszar and Hindi 2002) and a hybrid 

procedure (HP_BP) in (Alvim et al. 2004). Perturbation MBS’+VNS was run on a PC with 400 MHz Pentium II 

CPU running Windows NT4.0, while HP_BP was tested on a 1.7 GHz Pentium IV PC with 256MB RAM. In 

order to let our proposed algorithm having comparable computational power when they are compared against 

these two approaches from the literature, we scaled our computational time and run SAHH with settings: 

(K=150,000, t=1 second) and (K=1,600,000, t=40 seconds). These two settings are based on the performance 

scaling information of different computers available from http://www.roylongbottom.org.uk/ 

linpack%20results.htm. That is, the CPU time limit for SAHH was 1 second when compared against the hybrid 
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VNS method in (Fleszar and Hindi 2002) and 40 seconds when compared with the HP_BP approach in (Alvim et 

al. 2004). Note that the computational time limits here are applied to SAHH and do not include the time for the 

generation of an initial solution where SAHH starts the search. Tables 5 and 6 respectively present a comparison 

of our simulated annealing hyper-heuristic with Perturbation MBS’ + VNS and HP_BP (the computational 

results of Perturbation MBS’ + VNS on the third group of data sets, Sch_Wae1, Sch_Wae2, Wae_Gau1, are not 

available in the literature). Numbers in bold represent the best results. It can be seen that our simulated annealing 

hyper-heuristic was slightly inferior to the hybrid VNS approach for the first group of data sets but did better for 

the second group of data sets in terms of solution quality. Overall, the simulated annealing hyper-heuristic 

(which, recall, is not specifically designed for the bin packing problem) solved around 5 more instances to 

optimality than the hybrid VNS. Note that our simulated annealing hyper-heuristic is generally slower than 

tailor-made meta-heuristics since the hyper-heuristic needs to spend time to learn about the nature of the problem 

and then adapt to that problem. In the next section, it can be seen that better results can be obtained when more 

computational time is permitted.  However, according to (Fleszar and Hindi 2002), results by Perturbation MBS’ 

+ VNS failed to improve noticeably even when the computational time was tripled.   

Compared with the current best bin packing heuristic approach HP_BP (Alvim et al. 2004), the simulated 

annealing hyper-heuristic is slightly worse in terms of solution quality (see table 6). In fact, HP_BP performed 

excellently and achieved around 1581 optimal solutions out of 1587 problem instances. Our simulated annealing 

hyper-heuristic solved 1561.9 out of 1587 (98.4%) instances to optimality on average. For the remaining 1.6% of 

the instances, the solution obtained by the simulated annealing hyper-heuristic is only one bin away from the 

lower bounds. The slightly better performance by HP_BP does not come as a surprise as it draws heavily upon 

several problem-specific features, such as the reduced procedure MTRP, the dual min-max problem (BPP-2), 

etc. It would be very difficult to apply HP_BP to other problems (such as course timetabling for example). 

However, with the slight decrease in solution quality, the simulated annealing hyper-heuristic is able to gain a 

much higher level of generality and reusability. As shown throughout this paper, one can conveniently adapt the 

simulated annealing hyper-heuristic to a very different problem without significant effort and by drawing only 

upon a small set of simple low-level heuristics.  

Our simulated annealing hyper-heuristic has also shown significant improvement over a previously proposed 

genetic algorithm hyper-heuristic (Ross et al. 2003) for the bin packing problem. In (Ross et al. 2003), the 

proposed hyper-heuristic managed to solve 80% of instances to optimality. However, as shown in tables 5 and 6, 

the proposed simulated annealing hyper-heuristic is able to solve around 98% of instances to optimality, on 

average. The main advantage of the genetic algorithm hyper-heuristic for the bin packing is that the algorithm is 

constructive. That is, once a heuristic is evolved, it can be used to solve many instances with less computational 

time than the simulated annealing hyper-heuristic in this paper. 

Across several data sets, our simulated annealing hyper-heuristic exhibits very good performance considering 

that it is not specifically designed for this problem and, indeed, the main purpose of designing it was to develop a 

methodology which could easily be applied to a number of different problems. As stated in section 3.3, all the 

parameters (except the total number of iterations) used in the simulated annealing hyper-heuristic are the same 

for both problems and problem instances.  

5 Conclusions 

This paper has proposed a new simulated annealing hyper-heuristic methodology as a generic framework for 

search problems. The proposed hyper-heuristic adopted the two layer framework of previous hyper-heuristics 

which helps to improve the generality of the algorithm but we have incorporated three new features: a simulated 

annealing acceptance criterion, a stochastic heuristic selection strategy and a short-term memory. The simulated 

annealing acceptance criterion helps to improve the acceptance decisions of heuristic moves and it also provides 

useful feedback for better heuristic selections in the future. A stochastic heuristic selection strategy was 

employed in this hyper-heuristic, in preference to the deterministic heuristic selection methods used in most 

current hyper-heuristic approaches that have been reported in the literature. A short-term memory underpins the 

heuristic selection mechanism. The underlining rationale is that the search proceeds within a dynamic 

environment which may change during different stages of the search and the information gathered during the 

initial stages may be not useful later in the search.   

To demonstrate the increased level of generality and competitive performance of the proposed simulated 

annealing hyper-heuristic, we have applied the algorithm to two very different and challenging search problems 

with the same parameter settings across two problem domains: university course timetabling and bin packing. 

Experimental results on a large number of benchmark data sets show that the proposed simulated annealing 

hyper-heuristics provides considerable improvement on a previously proposed tabu search hyper-heuristic. In 

fact, the simulated annealing hyper-heuristic also produced better results than several recently proposed 
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problem-specific meta-heuristic approaches which do not have the significant advantage of having a higher level 

of generality. This paper contributes to the literature with a more efficient hyper-heuristic search technique 

which can be readily applied to different applications and which can still produce high quality solutions that are 

either competitive with or (sometimes) better than bespoke problem specific methods.  Almost all of the 

heuristics which have appeared in the scientific literature have been designed and chosen by humans. The work 

described in this paper provides a step toward the goal of understanding how we can automate the heuristic 

design process and begin to design computer systems which can select and design heuristics.  
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Fig. 1. The framework of our simulated annealing hyper-heuristic 
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procedure learn (LP) 

begin 

ci
total ++; 

Let δ be the difference in the evaluation function between s' (generated by heuristic Hi from s) and s; 

if (s’ != s) ci
new ++;   endif 

if (δ < 0)  ci
accept ++; Ca ++; timp = t; fr = false; endif 

if (δ > 0 && exp(-δ/t)>random(0,1)) ci
accept ++; Ca ++;   endif 

if (mod(iter, LP) = 0)  

if (Ca /LP < re)  

fr=true; timp = timp/(1- βtimp); t= timp; s = sbest; 

for each i in {1,…,n} do 

if (ci
total =0)   wi = wmin; 

else wi = max{wmin, ci
new/ ci

total} 

endif 

ci
accept =0, ci

new =0; ci
total =0; 

done 

else  

for each i in {1,…,n} do 

if (ci
total =0)  wi = wmin; 

else wi = max{wmin, ci
accept/ ci

total} 

endif 

ci
accept =0, ci

new =0; ci
total =0; 

done 

   endif 

Ca = 0;  

endif 

end 

Fig. 2. The learning procedure in the proposed simulated annealing hyper-heuristic 

 

Initialisation:  

Generate an initial solution s0; 

Define a set of heuristics Hi (i = 1,…, n), associate each heuristic Hi with three counters ci
accept =0, ci

new =0; ci
total =0, a 

minimal weight wmin and an initial weight wi = wmin; 

Set initial non-improving acceptance ratio rs and stopping non-improving acceptance ratio re. Estimate the starting 

temperature ts and stopping temperature te by rs and re. 

Set total iterations K, iterations at each temperature nrep and the length of single learning period LP; 

Calculate the temperature reduction rate β=(ts-te)·nrep/(K·ts·te); 

Set t =ts; timp = ts; iter = 0; Ca = 0; fr=false; 

 

Iterative improvement: 

while (iter < K) do 

Select a heuristic (Hi) based on probability 
1

/
n

i i ii
p w w


  ; 

Generate a candidate solution s’ from the current solution s using heuristic Hi; 

Let δ be the difference in the evaluation function between s' and s; 

iter ++; 

if (δ <= 0 && new solution generated)  s := s’;    endif 

if (δ > 0 && (exp(-δ/t)>random(0,1))   s = s’;    endif 

if (fr = true)   timp = timp/(1- βtimp);  t= timp;  

else if (mod(iter, nrep)=0) t = t/(1+βt);         endif 

endif 

call procedure learn(LP) 

done 

Fig. 3. Pseudo-code of the proposed simulated annealing hyper-heuristic (for a minimisation problem). 
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List of tables 
 

Table 1. A comparison of SAHH with other approaches for the course timetabling problem on the first data set.  

 

VNS+ 

(Abudulah et 

al. 2007) 

TSHH 

(Burke et al. 

2003b) 

GHH 

(Qu and Burke 

2009) 

SAHH 

(K=500000) 
SAHH 

(K=2*107) 

Datasets best mean best mean best mean best mean time(s) best mean time(s) 

small1 0 0 1 2.2 0 0.2 0 0.6 42.2 0 0 463.7 

small2 0 0 2 3.0 0 0.6 0 2.2 49.1 0 0 560.2 

small3 0 0 0 1.4 0 0 1 1.2 51.3 0 0 507.9 

small4 0 0 1 1.8 0 0.4 1 1.8 53.4 0 0.2 760.0 

small5 0 0 0 0.2 0 0.1 0 0.6 36.6 0 0 351.4 

medium1 242 245 146 179.0 257 261 102 117.0 88.4 38 45.8 2498.4 

medium2 161 162.6 173 197.6 259 273 114 122.0 86.9 28 36.2 2462.9 

medium3 265 267.8 267 295.4 192 241.5 125 150.2 86.4 48 54.2 2539.6 

medium4 181 183.6 169 180.0 235 242 106 110.6 86.5 21 27.0 2480.2 

medium5 151 152.6 303 388.5 112 116 106 143.2 81.1 12 18.2 2497.3 

large n.a. n.a. 1166 1166.0 1132 1135 653 670.2 89.0 519 569.2 2877.9 

 

Table 2. The statistic values (p values) of the Friedman tests for the first course timetabling data set. 

 All Algorithms SAHH vs. VNS+ SAHH vs. TSHH SAHH vs. GHH 

small1 0.009 0.371 0.025 0.655 

small2 0.011 0.074 0.371 0.180 

small3 0.006 0.025 0.180 0.025 

small4 0.003 0.025 0.180 0.025 

small5 0.046 0.371 0.655 0.655 

medium1 0.002 0.025 0.025 0.025 

medium2 0.002 0.025 0.025 0.025 

medium3 0.002 0.025 0.025 0.025 

medium4 0.002 0.025 0.025 0.025 

medium5 0.007 0.655 0.025 0.180 

large 0.007 n.a 0.025 0.025 

 

Table 3. A comparison of SAHH with bespoke approaches for the course timetabling problem on the 

competition data set. 

Instances Winner 2nd
 3rd 4th 5th 6th 7th 

SAHH 

best mean 

1 45 61 85 63 132 148 178 86 96.0 

2 25 39 42 46 92 101 103 59 68.6 

3 65 77 84 96 170 162 156 116 125.6 

4 115 160 119 166 265 350 399 135 162.0 

5 102 161 77 203 257 412 336 196 213.8 

6 13 42 6 92 133 246 246 11 14.4 

7 44 52 12 118 177 228 225 12 18.2 

8 29 54 32 66 134 125 210 36 43.0 

9 17 50 184 51 139 126 154 46 49.4 

10 61 72 90 81 148 147 153 85 95.2 

11 44 53 73 65 35 144 169 76 93.2 

12 107 110 79 119 290 182 219 134 140.4 

13 78 109 91 160 251 192 248 120 134.6 

14 52 93 36 197 230 316 267 40 56.4 

15 24 62 27 114 140 209 235 25 41.6 

16 22 34 300 38 114 121 132 33 42.2 

17 86 114 79 212 186 327 313 249 280.0 

18 31 38 39 40 87 98 107 57 78.6 

19 44 128 86 185 256 325 309 104 119.8 

20 7 26 0 17 94 185 185 1 7.2 

Average 50.6 76.8 77.1 106.5 166.5 207.2 217.2 81.1 94.0 
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Table 4. A comparison of SAHH with the hybrid algorithm by Chiarandini et al. (2006). 

Instances 1 2 3 4 5 6 7 8 9 10 

Chiarandini et al. (2006) 57 31 61 112 86 3 5 4 16 54 

SAHH 86 59 116 135 196 11 12 36 46 85 

Instances 11 12 13 14 15 16 17 18 19 20 

Chiarandini et al. (2006) 38 100 71 25 14 11 69 24 40 0 

SAHH 76 134 120 40 25 33 249 57 104 1 

 

Table 5. A comparison with perturbation MBS' + VNS (Fleszar and Hindi 2002).   

  Perturbation MBS' + VNS SAHH 

Data Sets #num #opt 
max 

abs. 

av. 

cpu 

max 

cpu 
#opt 

max 

abs. 

av. 

cpu 

max 

cpu 

Fal_U120 20 20 0 0.02 0.04 20.0  0 0.00  0.19  

Fal_U250 20 19 1 0.03 0.16 17.5  1 0.15  1.02  

Fal_U500 20 20 0 0.04 0.14 19.0  1 0.07  1.00  

Fal_U1000 20 20 0 0.07 0.27 20.0  0 0.01  0.22  

Fal_T60 20 20 0 0.01 0.01 19.9  1 0.03  1.00  

Fal_T120 20 20 0 0.02 0.04 20.0  0 0.04  1.00  

Fal_T249 20 20 0 0.02 0.04 20.0  0 0.04  1.00  

Fal_T501 20 20 0 0.06 0.10 19.9  1 0.05  0.86  

          

Sch_Set1 720 694 2 0.15 1.78 697.5  1 0.04  1.02  

Sch_Set2 480 474 1 0.10 4.57 473.4  1 0.03  1.02  

Sch_Set3 10 2 1 3.74 5.05 7.3  3 0.35  1.02  

All 1370 1329 2 0.14 5.05 1334.3  3 0.07  1.02  

 

Table 6. A comparison with the hybrid procedure in (Alvim et al. 2004).  
  

HP_BP SAHH 

Data Sets #num #opt 
max 

abs. 

av. 

cpu 

max 

cpu 
#opt max abs. 

av. 

cpu 

max 

cpu 

Fal_U120 20 20.0 0 0.00 0.01 20.0  0 0.00  0.13  

Fal_U250 20 20.0 0 0.15 3.19 19.0  1 2.09  39.74  

Fal_U500 20 20.0 0 0.00 0.01 19.1  1 1.92  40.02  

Fal_U1000 20 20.0 0 0.01 0.03 20.0  0 0.01  0.11  

Fal_T60 20 20.0 0 0.33 2.53 20.0  0 0.03  0.56  

Fal_T120 20 20.0 0 1.14 6.88 20.0  0 0.03  0.42  

Fal_T249 20 20.0 0 0.29 2.91 20.0  0 0.03  0.39  

Fal_T501 20 20.0 0 1.24 19.26 20.0  0 0.05  0.52  
          

Sch_Set1 720 719.2 1 0.20 23.89 708.8  1 0.65  40.03  

Sch_Set2 480 480.0 0 0.01 1.89 475.7  1 0.38  40.03  

Sch_Set3 10 10.0 0 4.71 50.61 8.0  1 8.10  40.03  
          

Sch_Wae1 100 100.0 0 0.02 0.14 100.0  0 0.19  32.41  

Sch_Wae2 100 100.0 0 0.02 3.58 99.5  1 0.36  40.05  

Wae_Gau1 17 12.0 1 0.60 2.40 12.0  1 11.77  40.03  

 All 1587 1581.2 1 0.38 50.61 1561.9 1 1.83 40.05  

 

 


