
The Second International Timetabling Competition (ITC-2007):
Curriculum-based Course Timetabling (Track 3)

— preliminary presentation —

Luca Di Gaspero and Andrea Schaerf
DIEGM, University of Udine

via delle Scienze 208, I-33100, Udine, Italy
{l.digaspero|schaerf }@uniud.it

Barry McCollum
School of Electronics, Electrical Engineering
and Computer Science, Queen’s University
SARC Building, Belfast, United Kingdom

b.mccollum@qub.ac.uk

Abstract

Following the success of the First International Timetabling
Competition in 2002, the timetabling research community
is organising a new competition on this problem (opening
July 1st). This new competition will be on three different
timetabling problems, and one of the tracks concerns the
course timetabling formulation that applies to Italian univer-
sities (called Curriculum-based Course Timetabling). The
dataset is composed by real-world instances provided by the
University of Udine. In this work, we overview the general
rules of the competition and we describe in details the prob-
lem formulation and the instances proposed for this track.

Introduction
Timetabling within Universities has long been recognised
as a difficult combinatorial problem of practical relevance.
Whether it be timetabling exams or courses, much (human
or computing) effort is spent in producing solutions that
are both workable and of a high quality (see, e.g., Schaerf,
1999).

Recently, timetabling has also been a subject for a com-
petition. In 2002, the International Metaheuristic Network
organised the First International Timetabling Competition
(ITC-2002), which attracted 24 feasible submissions from
all over the world. Information relating to the problem defi-
nition, instances, rules, and solution evaluation of ITC-2002
is available at the webpage:http://www.idsia.ch/
Files/ttcomp2002/ .

Based on a specific problem model proposed for the com-
petition, the formulation contained many of the characteris-
tics found in certain Universities. Artificially generated in-
stances were used in the competition. Thanks to the compe-
tition, this formulation has successively become a standard
within the research area, and many researchers have used it
within their work (Kostuch 2005; Chiarandiniet al. 2006;
Di Gaspero & Schaerf 2006; Abdullah, Burke, & McCol-
lum 2007). ITC-2002 therefore has had a positive effect of
generating common ground for cross-fertilisation of ideas
within research groups in the timetabling community.

The Second International Timetabling Competition (ITC-
2007), opening July 1st, follows the main ethos of the first

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

edition, but also aims at advancing upon it in a number of
respects.

In this paper, we describe one of the competition tracks,
namely the Curriculum-based Course Timetabling, which is
under the responsibility of the authors. We present the gen-
eral rules of ITC-2007, the problem formulation of the track,
and the description of the instances. The paper closes with
some discussion.

The information presented here is preliminary, as the or-
ganisation is on-going and some rules may still change up to
the actual opening of the competition. Updated information
will appear in the ITC-2007 web site:http://www.cs.
qub.ac.uk/itc2007/ .

Competition rules
The competition has a set of rules that the participants have
to satisfy. The rules of ITC-2007 are in large part taken from
those of ITC-2002, but obviously some modifications have
been made based on the previous experience.

1. The competition has an opening day and a deadline (ap-
proximately 6 months later). All coding and experiment-
ing must be finished by the deadline.

2. Participants have to implement an algorithm to tackle the
problem on a single processor machine. It can be ex-
pressed using any programming language.

3. The goal is to produce feasible timetables, in which a
number of hard constraints are satisfied, and to minimise
the number of broken soft constraints. If feasibility cannot
be reached, information outlined on the solution produced
should be provided, and the number of violated hard con-
straints is used for evaluation.

4. The dataset will be split into three sets of instances:

Early instances: A first set of instances will appear on
the web at the opening of the competition.

Late instances: A second set of instances will be pub-
lished two weeks before the deadline.

Hidden instances: A third set of instances will be re-
vealed only after the competition has closed and the
participants have submitted their solvers. These will be
used internally to rank the solvers submitted.



5. All solvers will be granted a fixed CPU time, which will
be in the range of 10 minutes on a recent computer. Par-
ticipants have to benchmark their machine with a program
provided to them in order to establish how long they can
run their program on their machines.

6. The algorithms should run on a single processor machine,
take as input a problem file in the format described, and
produce as output a timetable with a minimum number
of hard and soft constraint violations in the allowed CPU
time. The output timetable must adhere to the data format
determined by the organisers.

7. The algorithm should not take account of additional
knowledge about the instance (e.g., results from previous
runs). The same version (and fixed parameters) of the
algorithm must be used for all instances. That is, the al-
gorithm should not “know” which instance it is solving:
although it might analyse the instance and set parameters
accordingly, it should not “recognise” the particular in-
stance.

8. The solver can be either deterministic or stochastic. In
both cases, participants must be prepared to show that
those results are reproducible in the given computer time.
In particular, the participants that use stochastic tech-
niques should make their program in such a way that the
exactrun that produced each solution submitted can be re-
peated (by providing the random seed). They can try sev-
eral runs to produce each submitted solution (each with
the allowed computer time), but they must be able to re-
peat the specific run for any solution submitted.

9. Participants should submit for each instance (early and
late ones) the best score found by their algorithm in the
specified computer time, by uploading it onto the compe-
tition web site.

10. Participants should also submit a concise and clear de-
scription of their algorithm, so that in principle others can
reproduce it.

11. Classification will be based on the scores provided. The
actual list will be based on theranks of the solvers on
each single instance. Ranks will be based hierarchically
on hard constraint violations and scores on the soft ones.
The average of the ranks on all instances will produce the
final place-list.

12. Based on the place-list a set of top solvers, thefinalists,
will be asked to provide the executable that will be run and
tested by the organisers. The finalists’ solver will be rerun
by the organisers on all instances (including the hidden
ones).

13. In some circumstances, finalists may be required to show
source code to the organisers. This is simply to check that
they have stuck to the rules.

14. Finalists’ place-list will be again based on the ranks on
each single instance for a set of trials on the hidden in-
stances.

Problem formulation and Instances
The Curriculum-based timetabling problem consists of the
weekly scheduling of the lectures for several university
courses within a given number of rooms and time periods,
where conflicts between courses are set according to the cur-
ricula published by the University and not on the basis of
enrolment data.

This formulation applies to University of Udine (Italy)
and to many Italian and indeed International Universities,
although it is slightly simplified with respect to the real prob-
lem to maintain a certain level of generality.

The problem consists of the following entities:

Days, Timeslots, and Periods.We are given a number of
teaching daysin the week (typically 5 or 6). Each day is
split in a fixed number oftimeslots, which is equal for all
days. Aperiod is a pair composed of a day and a timeslot.
The total number of scheduling periods is the product of
the days times the day timeslots.

Courses and Teachers.Each course consists of a fixed
number of lecturesto be scheduled in distinct periods, it
is attended by givennumber of students, and is taught by
a teacher. For each course there is a minimum number
of days that the lectures of the course should be spread
in, moreover there are some periods in which the course
cannot be scheduled.

Rooms. Eachroom has acapacity, expressed in terms of
number of available seats. All rooms are equally suitable
for all courses (if large enough).

Curricula. A curriculum is a group of courses such that
any pair of courses in the group have students in common.
Based on curricula, we have theconflictsbetween courses
and other soft constraints.

The solution of the problem is an assignment of a period
(day and timeslot) and a room to all lectures of each course.

The hard constraints are the following:

Lectures: All lectures of a course must be scheduled, and
they must be assigned to distinct periods. A violation oc-
curs if a lecture is not scheduled.

RoomOccupancy: Two lectures cannot take place in the
same room in the same period. Two lectures in the same
room at the same period represent one violation . Any
extra lecture in the same period and room counts as one
more violation.

Conflicts: Lectures of courses in the same curriculumor
taught by the same teachermust be all scheduled in dif-
ferent periods. Two conflicting lectures in the same period
represent one violation. Three conflicting lectures count
as 3 violations: one for each pair.

Availabilities: If the teacher of the course is not available
to teach that course at a given period, then no lectures of
the course can be scheduled at that period. Each lecture
in a period unavailable for that course is one violation.



The soft constraints are the following:

RoomCapacity: For each lecture, the number of students
that attend the course must be less or equal than the num-
ber of seats of all the rooms that host its lectures.Each
student above the capacity counts as 1 point of penalty.

MinimumWorkingDays: The lectures of each course must
be spread into the given minimum number of days.Each
day below the minimum counts as 5 points of penalty.

CurriculumCompactness: Lectures belonging to a cur-
riculum should be adjacent to each other (i.e., in consec-
utive periods). For a given curriculum we account for a
violation every time there is one lecture not adjacent to
any other lecture within the same day.Each isolated lec-
ture in a curriculum counts as 2 points of penalty.

RoomStability: All lectures of a course should be given in
the same room.Each distinct room used for the lectures
of a course, but the first, counts as 1 point of penalty.

Instances and File Formats
There will be 21 instances available: 7 for each set (early,
late, and hidden). All instances are real data and come from
the University of Udine. For all instances there exists at least
one feasible solution (no hard constraint violations), but at
present it is not known which is the optimal value for the
soft constraints.

In order to model cases in which the number of timeslots
is not the same for all days (e.g. Saturday afternoon free),
there might be periods unavailable for all courses. Further-
more, for all instances there cannot be two curricula com-
posed by exactly the same courses.

Each instance comes in a single file, containing a file
header and four sections: courses, rooms, curricula, and
constraints. The header provides all scalar values and each
section provides the arrays for that specific aspect of the
problem. The exact format is described in the web site.

The output also must be provided in a single file such
that each line represents the assignment of the room and the
timeslot to one lecture (lines can be in any order).

Solution validation
We provide the C++ source code of a solutionvalidator, so
that the participants can compile it themselves at their ma-
chine and also inspect the code. In case it is necessary, exe-
cutables for various platforms could be provided on request.

The validator takes two command-line arguments: the in-
put file and the output file and it produces on the standard
output the evaluation of the solution along with the detailed
description of all violations (hard and soft). The very same
validator will be used by the organizers for the validation of
the scores of the finalists during their final phase.

If the output file is not formatted correctly, the validator
produces an error message on the standard error and aborts.
Conversely, the input is assumed always correct. A validator
for the input file, in case the participants want to create new
instances for their internal use, is also available and can be
provided upon request.

Discussion
We now discuss the main characteristics of the competition.
We start highlighting the novelties w.r.t. the previous ITC-
2002; then, we discuss the key issues underlying selected
the rules; and, we conclude discussing the motivations for
the definition of the specific formulation of the problem for
our track.

Differences with ITC-2002
The first innovation consists in being subdivided in three
tracks so as to better cover the main formulations of the
field of educational timetabling problems. Specifically, the
tracks will be on:Examination timetabling, Post Enrolment
Course Timetabling(the evolution of the ITC-2002 formu-
lation), andCurriculum-based Course Timetabling.

The second innovation aims at bridging the gap between
research and practice: the competition introduces a signifi-
cant degree of complexity in all tracks so that the new for-
mulations employed are closer (in more aspects, although
not all) to those of ‘real world’ problems (McCollum 2006)
and data is coming from the real world.

The third main innovation regards feasibility of solutions.
In ITC-2002 only feasible solutions were accepted and it
was purposely rather simple to produce a feasible one for
all instances. This time, participants that reach only infea-
sible solutions for some instances can submit their solution,
although all instances are guaranteed to have at least a feasi-
ble one.

In order to compare different solvers in cases of unfeasi-
ble solutions for some instances, we use an evaluation based
on ranking of solutions on each instance, rather than on the
actual scores (which might be incomparable). Due to this
scoring based on rankings, an infeasible solution on one
instance does not necessarily prejudice the overall perfor-
mance. In addition, instances for the competition can be
selected from a larger set of interesting cases, without the
limitation of ‘easy feasibility’.

Finally, in ITC-2002 the ranking was fully based on the
solution provided by the participants. In case of stochas-
tic solvers, this CPU time was to grant the maximum time
for each single trial. Therefore, the participants could take
advantage of what we call theMongolian Hordeapproach
((Schaerf & Di Gaspero 2006)): “Run as many trials as you
can and report only the best of all of them”. In ITC-2007,
the re-running of finalist solvers on organisers machine (with
new seeds) and the use of hidden instances should be able to
provide against this approach. Moreover we believe that, in
the case of stochastic algorithms, this fosters the design of
robustsolvers.

Although they will not be used for the place-list, the or-
ganizers plan to use principled statistical tools to analyse in
more details the performances of the solvers, especially for
the stochastic ones.

It is worth mentioning that in order to provide against the
excessive use of the Mongolian Horde approach, the compe-
tition organisers of ITC-2002 tested the best few algorithms
also on unseen instances, and indeed the results were found
to be broadly in-line with the known instances.



Comments about the running time rules
One of the main issues about the competitions in general is
the running time limits. The reason why it has been decided
to have a fixed running time is mainly to remove one degree
of variability from the scoring system. We hope that future
competitions will take into account in some principled way
the trade-off between solution quality and running times.

For the selection of the fixed amount of running time, the
question is which is a realistically feasible running time for
the actual timetabling. Given that the timetabling is per-
formed usually a few times a year, one might think that a
much longer running time would also be reasonable.

In practical cases however, as many researchers have
pointed out, the solution of a real case is an interactive pro-
cess, during which it is necessary to solve a large number
of instances. In fact, constraints and objectives are usually
manually adjusted between runs of a working session for
one single case (for various reasons: what-if scenarios, last
minute changes, etc.). As a rule of thumb, a running time
longer than a few minutes makes the process very tiresome
and difficult for the human operator.

Comments about the problem formulation
The actual formulation used at the University of Udine, with
respect to the one sued for ITC-2007, has the following extra
features:

• A cost component dealing with the lunch break for stu-
dents: at least one free slot among those around the lunch
time.

• The curriculum compactness feature is more complex,
and specific patterns are more penalized than others.

• There is a maximum daily student load for each curricu-
lum.

• Some specific lectures must be (must not be) in consecu-
tive periods.

• Rooms might not be available in certain periods, and they
must be not suitable for specific lectures.

• If a room is too big for a class, this is also penalized (this
is not only for the unpleasant feeling that an empty room
provoke, but also to same big rooms for unforeseen activ-
ities).

• Weight assigned to soft violations are not complex, and
they depend also on the number of students in the cur-
riculum.

• Teacher preferences on periods and rooms are only in-
cluded as soft constraints.

The only reason for which we have decided to remove all
the above features is to maintain a certain degree of gener-
ality, so as to do not inflict to the participant the burden to
understand all the details of the formulation. The selection
of the features to include in the formulation has been based
on the aim to balance different types of constraint. Need-
less to say, if in the future this formulation will prove to be
too simple, some features could be reintroduced for future
research.

References
Abdullah, S.; Burke, E. K.; and McCollum, B. 2007. Using
a randomised iterative improvement algorithm with com-
posite neighbourhood structures for the university course
timetabling problem. In Doerner, K.; Gendreau, M.; Greis-
torfer, P.; Gutjahr, W.; Hartl, R.; and Reimann, M., eds.,
Metaheuristics - Progress in Complex Systems Optimiza-
tion, Springer Operations Research / Computer Science In-
terfaces Book. To appear.
Chiarandini, M.; Birattari, M.; Socha, K.; and Rossi-Doria,
O. 2006. An effective hybrid approach for the univer-
sity course timetabling problem.Journal of Scheduling
9(5):403–432.
Di Gaspero, L., and Schaerf, A. 2006. Neighborhood port-
folio approach for local search applied to timetabling prob-
lems. Journal of Mathematical Modeling and Algorithms
5(1):65–89. DOI: 10.1007/s10852-005-9032-z.
Kostuch, P. 2005. The university course timetabling prob-
lem with a three-phase approach. In Burke, E., and Trick,
M., eds.,Proc. of the 5th Int. Conf. on the Practice and
Theory of Automated Timetabling (PATAT-2004), selected
papers, volume 3616 ofLecture Notes in Computer Sci-
ence, 109–125. Berlin-Heidelberg: Springer-Verlag.
McCollum, B. 2006. University timetabling: Bridging
the gap between research and practice (invited paper). In
Burke, E., and Rudov́a, H., eds.,Proc. of the 6th Int. Conf.
on the Practice and Theory of Automated Timetabling
(PATAT-2006), 15–35.
Schaerf, A., and Di Gaspero, L. 2006. Measurabil-
ity and reproducibility in timetabling research: State-of-
the-art and discussion (invited paper). In Burke, E., and
Rudov́a, H., eds.,Proc. of the 6th Int. Conf. on the Prac-
tice and Theory of Automated Timetabling (PATAT-2006),
53–62.
Schaerf, A. 1999. A survey of automated timetabling.Ar-
tificial Intelligence Review13(2):87–127.


