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Abstract 

This paper presents an investigation of a simple generic hyper-heuristic approach upon a set of 

widely used constructive heuristics (graph coloring heuristics) in timetabling. Within the hyper-

heuristic framework, a Tabu Search approach is employed to search for permutations of graph 

heuristics which are used for constructing timetables in exam and course timetabling problems. This 

underpins a multi-stage hyper-heuristic where the Tabu Search employs permutations upon a 

different number of graph heuristics in two stages. We study this graph-based hyper-heuristic 

approach within the context of exploring fundamental issues concerning the search space of the 

hyper-heuristic (the heuristic space) and the solution space. Such issues have not been addressed in 

other hyper-heuristic research. These approaches are tested on both exam and course benchmark 

timetabling problems and are compared with the fine-tuned bespoke state-of-the-art approaches. The 

results are within the range of the best results reported in the literature. The approach described here 

represents a significantly more generally applicable approach than the current state of the art in the 

literature. Future work will extend this hyper-heuristic framework by employing methodologies 

which are applicable on a wider range of timetabling and scheduling problems. 
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1. Introduction 

1.1 Timetabling Problems 

Timetabling has attracted the attention of the Operational Research and Artificial Intelligence 

research communities for more than 40 years. The general timetabling problem comes in 

many different guises including nurse rostering (e.g. Cheang et al, 2003, Burke et al. 2004), 

sports timetabling (e.g. Easton, Nemhauser and Trick, 2004), transportation timetabling (e.g. 

Kwan, 2004) and university timetabling (Schaerf, 1999, Burke and Petrovic, 2002, Petrovic 

and Burke, 2004), etc. Further examples of papers dealing with these kinds of problems can 

be found in (Burke and Ross, 1996, Burke and Carter, 1998, Burke and Erben, 2000, Burke 

and De Causmaecker, 2002, Burke and Trick, 2004). Perhaps the most widely studied class of 

timetabling problem is that of educational timetabling. A wide variety of papers describing a 

broad spectrum of educational timetabling methodologies has appeared in the literature over 

the years. Overviews of the literature can be found in the following papers (Carter and 

Laporte, 1996&1998, Bardadym, 1996; Burke, Jackson et al, 1997, Schaerf, 1999, Burke and 

Petrovic, 2002, Petrovic and Burke, 2004). 

In a general educational timetabling problem, a set of events (e.g. courses and exams, etc) 

need to be assigned into a certain number of timeslots (time periods) subject to a set of 

constraints, which often makes the problem very hard to solve in real-world circumstances. 

Constraints can usually be divided into two types: 

•  Hard constraints have to be satisfied under any circumstances. For example, in exam 

timetabling, two exams with common students involved cannot be scheduled into the 

same timeslot. Timetables with no violations of hard constraints are called feasible 

solutions. 

•  Soft constraints need to be satisfied as much as possible. For example, in exam 

timetabling, exams taken by common students often need to be spread out over the 

timeslots so that students do not have to sit in two exams that are too close to each 

other. Due to the complexity of the real-world timetabling problem, the soft constraints 
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may need to be relaxed since it is not usually possible to generate solutions without 

violating some of them. Soft constraints are usually within the cost evaluation function 

to evaluate how good the solutions are. 

1.2 Approaches and Techniques in Timetabling Problems 

The early days of research in educational timetabling investigated such approaches as graph 

heuristics (see de Werra, 1985, Burke, Kingston and de Werra, 2003) and integer linear 

programming (see Carter, 1986). Some of the early techniques are either impractical or too 

simple to solve complex or large timetabling problems. Constraint based techniques have 

been employed over the years to address timetabling problems (e.g. Deris et al, 1997, Banks, 

Beek and Meisels, 1998, Nonobe and Ibaraki, 1998). Recently, meta-heuristic search 

techniques (see Glover and Kochenberger, 2003) have been investigated and seem to have 

been very successful in solving a variety of timetabling problems. These include Tabu Search 

(e.g. Costa, 1994, Di Gaspero and Schaerf, 2000), Simulated Annealing (e.g. Dowsland, 1998, 

Abramson, Krishnamoorthy and Dang, 1999) and Evolutionary Algorithms (e.g. Burke, 

Newall and Weare, 1996&1998, Burke and Newall, 1999, Erben, 2000, Lewis and Paechter, 

2004, Côté, Wong and Sabourin, 2005). Other new approaches and methodologies for 

timetabling problems have also been studied as more problem solving experience is collected 

and new technologies provide new breakthroughs. These include Case-Based Reasoning 

(Leake, 1996) on educational timetabling (Burke, MacCarthy et al. 2000, 2001, 2003&2005, 

Burke, Petrovic and Qu, 2006) and on nurse rostering (Beddoe and Petrovic, 2005), fuzzy 

methodology on exam timetabling (Asmuni, Burke and Garibaldi, 2004), and hyper-heuristics 

on timetabling (Burke, Kendall and Soubeiga, 2003, Gaw, Rattadilok and Kwan, 2004, Burke, 

Dror et al, 2005, Burke, Petrovic and Qu, 2006, Qu and Burke, 2005). 

The present work concerns educational timetabling including both exam and course 

timetabling problems (Carter and Laporte, 1996, Carter and Laporte, 1998). The state-of-the-

art approaches in educational timetabling usually employ specially tailored heuristic/meta-

heuristic approaches (e.g. Carter, Laporte and Lee, 1996, Di Gaspero and Schaerf, 2000, 
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Caramia, Dell’Olmo, and Italiano, 2001, Burke and Newall, 2002, Merlot et al, 2002, Socha, 

Knowles and Sampels, 2002, Asmuni, Burke and Garibaldi, 2004, Abdullah et al, 2004, 

Burke, Bykov et al, 2004). These approaches invest a significant amount of development 

effort in the production of “fine tuned” techniques that are specially built for the particular 

problems in hand. The objective of the present paper is to develop an approach which is more 

widely applicable and fundamentally more general than the approaches mentioned above. Our 

goal is not to “beat” them but to obtain comparable results by only employing general and 

simple techniques which can be applied to a wider range of scheduling problems. 

1.3 Hyper-heuristics on Scheduling and Timetabling Problems 

The development of hyper-heuristics is motivated by the goal of aiming at an increased level 

of generality for automatically solving a range of problems (see Burke, Kendall et al. 2003). 

A hyper-heuristic can be seen as an algorithm (on a higher level) which “picks” appropriate 

heuristics (at a lower level) to be applied to the problems in hand. A hyper-heuristic is 

concerned with the exploration of a search space of heuristics instead of dealing directly with 

solutions to the problem. In hyper-heuristic research on timetabling and scheduling, different 

techniques have been investigated as the low level and high level search strategies in solving 

the problems. We can categorize the work in hyper-heuristics (in terms of the “low level” 

heuristics employed) into two groups: improvement techniques and constructive techniques. 

1.3.1 Improvement Techniques within Hyper-heuristics 

In a hyper-heuristic, move strategies are usually employed as the low level heuristics to search 

for solutions to timetabling and scheduling problems. Kendall, Cowling and Soubeiga (2002) 

employed choice functions by which appropriate low level heuristics (moving strategies) can 

be chosen and combined adaptively to search the solutions. Good results on project 

presentation problems were presented compared with the solutions generated by a random 

hyper-heuristic. A distributed choice function method was proposed by Gaw, Rattadilok and 

Kwan (2004) within a hyper-heuristic for timetabling and scheduling problems. 
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Burke, Kendall and Soubeiga (2003) employed a Tabu Search as the high level heuristic to 

search through a space of moving strategies for university course timetabling and nurse 

rostering problems. Good results on both of the problems tested indicated the generality and 

efficiency of the hyper-heuristic approach. This approach is adopted and extended in (Burke, 

Landa Silva and Soubeiga 2005) with the aim of investigating the learning of low level 

heuristics that are suitable and effective for individual objectives in multiple-objective space 

allocation and course timetabling problems. Promising results are obtained compared with the 

state-of-the-art approaches. A genetic algorithm methodology was employed as the high level 

approach by Han and Kendall (2003) and was tested on simulated course scheduling and 

student project presentation problems. Dowsland, Soubeiga and Burke (2005) introduced the 

Tabu Search hyper-heuristic, which was investigated in (Burke, Kendall and Soubeiga 2003), 

within a Simulated Annealing in search of a set of low level heuristics (both neighborhood 

structures and sampling policies within the solution space) to determine the shipper sizes in 

transportation problems. 

Burke, Petrovic and Qu (2006) employed a Case-Based Reasoning methodology as a 

heuristic selector for solving course timetabling problems. Problem information is modeled 

with the corresponding good meta-heuristics and stored in the Case-Based Reasoning system. 

The new problems are solved by using the suggested meta-heuristics which worked well on 

solving previous similar problems. 

1.3.2 Constructive Techniques within Hyper-heuristics 

There are only a few papers which employ constructive techniques as low level heuristics 

within hyper-heuristics for timetabling and scheduling problems. Terashima-Marin, Ross and 

Valenzuela-Rendon (1999) investigated employing Genetic Algorithms to evolve the 

configurations of constraint satisfaction methods on constructing problem solutions. The non-

direct representations were suggested for Genetic Algorithms to solve large and complex 

exam timetabling problems. 

Ross et al (2003) investigated a genetic-based hyper-heuristic employing 4 basic 
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constructive heuristics on one dimensional bin packing problems. Optimal or near optimal 

results have been found and potential research issues were also discussed. 

Another technique was studied by Asmuni, Burke and Garibaldi (2004) who employed 

fuzzy rules to combine graph heuristics to construct exam timetables. 

Burke, Petrovic and Qu (2006) employed Case-Based Reasoning as a heuristic selector for 

solving exam timetabling problems. Problem solving situations and the corresponding 

constructive heuristics were stored in the Case-Based Reasoning system. Solutions for new 

problems were constructed by repeatedly using the constructive heuristics suggested by the 

system. Benchmark exam timetabling problems were tested and the results were within the 

range of those generated by using the state-of-the-art approaches. 

 

The graph based hyper-heuristic (GHH) described in this paper is a constructive approach that 

employs different graph heuristics during the process of constructing the solution according to 

the different problem solving situations that might occur at particular times. The next section 

presents the GHH approach upon graph heuristics and a random ordering method. Some 

fundamental issues concerning the search space and solution space are also addressed. The 

investigation and experimental study of GHH and of a multi-stage GHH that are developed 

for both exam and course timetabling problems are presented in section 3. Our conclusions 

and potential extensions of this work are presented in the final section. 

2. The Graph Based Hyper-heuristic (GHH) Approach  

2.1 Graph Heuristics 

Graph heuristics are widely studied methods which were developed during the early days of 

research on timetabling problems (e.g. Welsh and Powell, 1967, Brelaz, 1979). For an 

introduction to such approaches see (Burke, Kingston and de Werra 2004). They are used in 

sequential (or constructive) solution methods to order the events that are not yet scheduled 

according to the difficulties of scheduling them into a feasible timeslot (without violating any 
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hard constraints). The difficulties are represented by the degrees of the vertices in the graph, 

which model the timetabling problem by representing the events as vertices and conflicts by 

edges. We say two events in timetabling problems have a conflict if they involve the same 

students. The difficulty of an event is represented by the number of conflicts it has with the 

others. The objective is to construct a timetable by scheduling the most conflicting events one 

by one into feasible timeslots, satisfying as many of the soft constraints as possible. 

Within our graph-based hyper-heuristic, we employ graph heuristics to schedule a number 

of events at each step during the construction of the solution. The work presented in this paper 

investigates the following 5 low level heuristics, with and without randomness (introduced by 

a random ordering method): 

•  least Saturation Degree first (SD). Events are ordered (in an increasing order) in terms 

of the number of feasible timeslots available in the partial solution at that time. The 

priorities (degrees) of events to be ordered and scheduled are changed dynamically as 

the solution is constructed. 

•  largest Color Degree first (CD). Events are ordered (in a decreasing order) in terms of 

the number of conflicts (events with common students involved) that they have with 

those already scheduled in the timetable. The degrees of the events not yet scheduled 

are changed according to the situations encountered at each step of the solution 

construction. 

•  Largest Degree first (LD). Events are ordered decreasingly by the number of conflicts 

they have with other events. This heuristic aims to schedule first those events which 

have the most conflicts. 

•  Largest Enrollment first (LE). Events are ordered (in a decreasing order) by the number 

of students enrolled. This heuristic schedules first those events with the largest numbers 

of students. 

•  Largest Weighted Degree first (LWD). Events are ordered (in a decreasing order) by 

the number of conflicts, each of which is weighted by the number of students involved. 
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Among events with the same degree, this heuristic gives higher priority to those with a 

larger number of students involved. 

•  Random Ordering (RO). Events that are not yet scheduled are ordered randomly. This 

basic heuristic brings some randomness into the scheduling, which sometimes produces 

better results in timetabling problems as it increases the exploration of the search space. 

2.2 The Graph Based Hyper-heuristic Framework 

In the hyper-heuristic framework that we present in this paper, Tabu Search is employed to 

search for the list of low level heuristics (permutations of graph heuristics and a random 

ordering method), which are used to construct the complete solutions for timetabling 

problems. Tabu Search has been widely employed for solving complex scheduling and 

optimization problems (Glover and Kochenberger, 2003). The basic approach searches the 

search space of the solutions by iteratively moving to the best neighborhoods of the current 

solution, whilst keeping a record of recently visited solutions which it cannot re-visit again for 

a certain number of steps (known as the tabu tenure). 

Figure 1 presents the pseudo-code of the Tabu Search within the hyper-heuristic approach 

we have developed. The search space of the Tabu Search (as the high level heuristic) consists 

of all of the possible permutations of the low level heuristics described in section 2.1. A move 

in Tabu Search is to pick a new heuristic list that is obtained by randomly changing two of the 

heuristics in the previous heuristic list. The newly visited heuristic lists are added into the tabu 

list (which has a length of 9. i.e. the tabu tenure is 9). The determination of this value is based 

on our experiments and upon the value recommended from the literature (Reeves, 1996). of 

course, what this means is that when the Tabu Search selects a heuristic list, that list cannot be 

re-visited within 9 steps of the search. The objective of the Tabu Search is to find the heuristic 

list that generates the best quality solution for the timetabling problem under consideration. 

The search process of Tabu Search within the hyper-heuristic approach stops after a pre-

defined number of iterations (i in Figure 1), which we adapt according to the problem size. 

We set it as 5 times the number of events to keep the computational time low. Of course it is 
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possible to perform more iterations if computational time is not a key issue in the problem 

being solved. 

Each heuristic list selected by a move of the Tabu Search is used to construct a complete 

solution, whose penalty is fed back to the Tabu Search as a guide to the search in the 

following stages. As each heuristic in the heuristic list is employed to schedule a number (e in 

Figure 1) of events into the timetable (the reason for doing this is explained below), the length 

of the heuristic list (k in Figure 1) is then set as (number of events)/e. 

 

INSERT FIGURE 1 SOMEWHERE HERE.  

 

To reduce the size of the search space of the hyper-heuristic and thus reduce its computational 

time, we added three mechanisms: 

1) As the low level heuristics are graph heuristics which are used to construct the 

solutions, a list of them may not guarantee to generate a feasible solution (see more 

detail in Section 2.3). To reduce the time spent on implementing heuristic lists that 

generate unfeasible solutions, we construct a ‘failed list’, which represents a flat 

memory, to store the parts of heuristic lists that generate unfeasible schedules during the 

solution construction (in the hyper-heuristic approach). The initial “failed list” is set as 

empty and is updated after each step of the Tabu Search to store any new heuristic lists 

that cannot generate feasible solutions. When a new heuristic list is selected by a move 

of Tabu Search in the hyper-heuristic, it will be checked (before it is applied to 

construct the solution) to see if it matches those stored in the ‘failed list’ that led to 

unfeasible schedules. For example, if a part of the heuristic list ‘h1h2h3..’ (where h1, 

h2 and h3 are low level heuristics) is stored in the ‘failed list’ because h3 cannot 

generate a feasible schedule at that step, all of the heuristic lists selected later such as 

‘h1h2h3h4 ..’ or ‘h1h2h3h5..’ can be ignored before being applied to construct a 

solution. This mechanism cuts away a large section of the search space by ignoring the 
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non-valid heuristic lists before applying them to solve the problems and reduces 

significantly the computational time of the hyper-heuristic. 

2) At each step of the solution construction employing a list of heuristics, a number of 

events (set to 2 in our experiments because our initial testing indicated that this was an 

appropriate value) are scheduled by the current heuristic in the list (rather than 

scheduling just one event with the heuristic). This is motivated by the observation by 

Burke, Petrovic and Qu (2006) that, when scheduling one event by a heuristic at each 

step of the solution construction, the heuristics in the best heuristic list found by the 

hyper-heuristic stay the same after a certain number of steps of scheduling. That is, the 

best heuristic lists found tend to appear in the form of ‘h2h2h2…h2h1h1… h1…’. 

Scheduling a number of events at each step reduces the size of the search space of the 

hyper-heuristic without losing much quality in the solutions generated. 

3) The initial heuristic list of the hyper-heuristic approach contains only the Saturation 

Degree heuristic, in order to have a good starting point in the hyper-heuristic. This is 

because the Saturation Degree heuristic orders the events not yet scheduled according 

to the number of available timeslots, which changes dynamically during the search. It is 

potentially (and experimentally tested to be) more effective (more often) than the other 

heuristics that order the events in static lists. It is expected that the density of the 

appearance of Saturation Degree in the best heuristic list will be higher than that of the 

other low level heuristics. 

2.3 Fundamental Issues within the Hyper-heuristic Approach 

Hyper-heuristics have been attracting recent attention in timetabling research (see Burke and 

Petrovic, 2002, Burke, Kendall et al. 2003, Petrovic and Burke, 2004). However, some 

fundamental underlying issues have not been addressed in depth in the literature. Before 

presenting the analysis of our experiments, we would like to discuss some of these issues. 

As mentioned before, hyper-heuristics operate at a higher level than most meta-heuristic 

approaches in the literature. They operate on heuristics rather than directly on the solutions by 
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indirectly choosing a certain low level heuristic which then operates on the events (which 

either moves the events in the timetable if the low level heuristics are moving strategies, or 

assigns the events chosen to timeslots if the low level heuristics are constructive heuristics – 

which is the approach studied here). Thus, it is necessary to distinguish between the search 

space of the hyper-heuristic and the solution space of the problem. 

Figure 2 presents the relationship between the search space of hyper-heuristics and the 

solution space of the problem. Note that the search space of the hyper-heuristic (on the left 

side of Figure 2) represents a space of heuristics and the solution space of the problem (on the 

right side of Figure 2) represents a space of potential actual solutions (timetables). The 

heuristics in the search space of the hyper-heuristic correspond to certain solutions of the 

problem. Of course, the heuristics (which are constructive heuristics studied here) selected by 

a move in the high level searching method may not guarantee the construction of a feasible 

solution. This is because the moves in the hyper-heuristic search concern the change of 

heuristics and not the actual assignment of the events. For example, in Figure 2 we can see 

that heuristic A moves to heuristic B, or heuristic A moves to heuristic C (within the search 

space of hyper-heuristic). The corresponding solutions (b or c in the solution space that are 

constructed by B or C) in the solution space are not guaranteed to be feasible. The search 

space of the hyper-heuristic (which consists of permutations of heuristics) is very large, with a 

large number of heuristics that generate unfeasible solutions in the solution space of the 

problem. In the figure, A and C generate feasible solutions, while B generates an infeasible 

solution. 

 

INSERT FIGURE 2 SOMEWHERE HERE. 

 

In Figure 2 solutions a and b (which correspond to heuristics A and B that are in the same 

neighborhood in the search space of the heuristics), may not be in the same neighborhoods in 

the search space of solutions. This gives the hyper-heuristic the ability of jumping (not 

moving) within the problem solution space by moving among the neighborhoods defined at a 
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higher level of search in the heuristic search space. In Figure 2, neighborhood moves are 

represented as solid arrows and jumping moves are represented as dashed arrows. The 

correspondences between the heuristics and actual solutions are represented by dotted lines. 

Also note that in Figure 2, the solution space of the problem consists of all of the possible 

solutions that may be obtained by neighborhoods moves, while they may not correspond to 

any heuristic list in the search space of the hyper-heuristic. For example solution d may be 

within the neighborhood of solution a in the search space of solutions. However d may not 

have a corresponding heuristic in the search space of heuristics. Based upon the above 

observations, we propose a hypothesis here: the hyper-heuristic (which operates at a higher 

level of problem solving - solving the problems indirectly) may not be able to reach all of the 

solutions in the solution space of the problem. 

A deepest descent local search method is employed within the hyper-heuristic after each 

move in the high level search. The deepest descent search tries to move the events to other 

timeslots in the timetable that is generated by a heuristic (searched for by the high level 

heuristic), aiming at improving the quality of the timetable as quickly as possible. This 

process terminates as soon as no events can be moved to improve the timetable. The high 

level heuristic will then make a move to another heuristic, which is used to construct another 

timetable. An illustrative example is presented in Figure 3 in conjunction with the example 

shown in Figure 2, where solution d in the search space of actual solutions might not 

corresponds to any heuristic in the search space of heuristic lists, while it might be in a 

neighborhood of solution a and thus may be visited by the deepest descent local search. 

 

INSERT FIGURE 3 SOMEWHERE HERE. 

 

The deepest descent local search method is a simple but robust method, which does not 

introduce extra domain knowledge within the hyper-heuristic framework. The motivation for 

this is twofold: Firstly, the deepest descent in the search space of solutions tries to exploit the 
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local areas (bringing the solutions obtained to their local optimum quickly), whilst the high 

level heuristic in the hyper-heuristic tries to explore the search space; Secondly, the GHH thus 

is potentially able to explore more of the possible solutions for the problem.  

3. GHH on Exam and Course Timetabling Problems 

3.1 Real-World Exam Timetabling Problems 

We investigate our hyper-heuristic approach upon a set of graph heuristics by applying it to 

the benchmark exam timetabling problems that are presented in (Carter, Laporte and Lee, 

1996). These are real-world problems that have been tested by many state-of-the-art 

approaches. The size of the problems ranges from 81 to 682 exams and from 611 to 18419 

students. The density of the conflict matrix, which gives the ratio of the number of conflicting 

exams over the overall number of exams, ranges from 0.06 to 0.42. The characteristics of the 

problems are presented in Table 1. 

 

INSERT TABLE 1 SOMEWHERE HERE. 

 

The hard constraints considered in these problems are represented by the “conflicts” of 

scheduling two exams with common students into the same timeslot. The soft constraint is 

concerned with spreading out the students’ exams over the timetable so that students will not 

have to sit exams that are too close to each other. The objective, which is the same as that 

presented in (Carter, Laporte and Lee, 1996), is to schedule all of the exams into the timeslots, 

while minimizing the cost on the violations of the soft constraint per student. The objective 

function of GHH which calculates the cost of violations C(t) within solution t is presented in 

formula (1) below: 

C (t) = ( ∑
=

4

0s
sw × Ns) / S       (1) 

where 
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ws = 2s, s = 0, 1, 2, 3, 4, is the weight that represents the importance of scheduling exams with 

common students either 4, 3, 2, 1, or 0 timeslots away in timetable t. 

Ns, s = 0, 1, 2, 3, 4, is the number of students involved in the violation of the soft constraint. 

S is the number of students in the problem. 

The lower the cost, C(t), the better the timetable is. We do not consider any infeasible 

solutions (i.e. those with violations of hard constraints). 

3.1.1  A Graph Based Hyper-heuristic upon a Different Number of Low Level Heuristics 

We investigate here the effect of different low level heuristics on the behavior of the GHH for 

exam timetabling problems. This helps us to gain a deeper understanding about general 

hyper-heuristics which are applicable for a wider range of problems. The combinations of low 

level heuristics employed are based on the Saturation Degree heuristic with a different 

number of other heuristics with and without randomness. For all of the 11 problems presented 

in (Carter, Laporte and Lee, 1996), 3 runs with distinct seeds are carried out and the costs of 

the best solutions are presented in Table 2. 

 

INSERT TABLE 2 SOMEWHERE HERE. 

 

The values shown under the column “SL” and “SLR”, “SCL” and “SCLR”, and “SCLx” and 

“SCLxR” in Table 2 are the costs of solutions obtained by GHH upon two, three and all graph 

heuristics, with and without Random Ordering. 

We assume that the larger the number of low level heuristics employed in the GHH, the 

larger the size of the search space (of the GHH) will be. This implies that it is possible to 

indirectly explore a larger part of the solution space of the problem (possibly containing more 

and better results). For example, the search space of GHH upon SCLxR should include the 

search space of GHH upon SCLR. This is apparent from Table 2, where the best results (in 

bold) are mostly obtained by GHH with a larger number of low level heuristics. 

Although employing a larger number of low level heuristics in GHH tends to obtain a 
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better performance, this is not always the case. For example, GHH upon “SCLx” outperforms 

“SCLxR”, which employs a larger number of low level heuristics, on 10 out of 11 problems. 

The reason that GHH, when employing a smaller number of low level heuristics, sometimes 

outperforms the approach with a larger number of low level heuristics is precisely because the 

latter has a much larger search space. Some parts of the larger search space may not be 

explored within the same search time (i.e. number of iterations). To clarify this issue we 

carried out another set of experiments on “SCLxR” with a higher number of iterations (10 * 

number of events). The results obtained are presented in the last column entitled 

“SCLxR(*10)” in Table 2. We can observe that GHH upon “SCLxR” obtained better results 

(on 5 out of 11 problems than that of “SCLx”) by being given more searching time. As the 

search space of GHH upon “SCLx” is a subset of that of GHH upon “SCLxR”, it is possible 

to say that, given enough search time, the results obtained by GHH upon “SCLxR” will be at 

least not worse than that of GHH upon “SCLx”. 

We can also see that GHH upon “SL” and “SCL” with random ordering outperforms the 

same GHH without randomness, which is not the case for GHH upon “SCLx”. When more 

searching time is given, GHH upon “SCLxR” performs much better, meaning that GHH 

employing heuristics with random ordering performs better than without randomness. We 

may then conclude, from the above observations, that the larger the number of low level 

heuristics in GHH, the better it may perform, provided a large enough amount of search time 

is given (but this is an important proviso). 

3.1.2 Multi-stage GHH 

The observations above provide the motivation for proposing a multi-stage GHH which 

employs a different number of heuristics in two stages. The multi-stage GHH employs 

“SCLR” in the first stage and “SCLxR” in the second stage to explore its search space as 

much as possible (based on the heuristic list obtained in the first stage). The reason for 

employing “SCLR” in the first stage of GHH is not only because it performs best, but also 

because it employs the four distinct low level heuristics (while the LE, LD and LWD are 
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based on the same heuristic and may contribute similarly to LD). 

The results obtained for the multi-stage GHH are presented in Table 3, together with the 

best results of the single-stage GHH in the last sub-section. We also present the state-of-the-

art approaches reported in the literature (Carter, Laporte and Lee, 1996, Di Gaspero and 

Schaerf, 2000, Caramia, Dell’Olmo, and Italiano, 2001, Burke and Newall, 2002, Merlot et al, 

2002, Asmuni, Abdullah et al, 2004, Burke and Garibaldi, 2004). They are reported as the 

best results obtained by the corresponding approaches. We have not included an entry for the 

corresponding computational time because they are not reported in several of these papers. 

 

INSERT TABLE 3 SOMEWHERE HERE. 

 

We can observe that the multi-stage GHH does not outperform the single-stage hyper-

heuristic presented in the last sub-section, although it obtains results that are not worse than 

that of GHH upon “SCLR”. The reason may be that it starts from a smaller search space and 

this may limit the search towards a certain region of the search space. 

3.1.3 Summarizing Comments Concerning GHH for Exam Timetabling Problems 

For all of the problems tested, GHH upon graph heuristics and random ordering obtained very 

good results that are within the range of the best results reported in the literature. By 

searching (on a higher level) the heuristic space, the GHH is capable of jumping (not moving) 

among the solution space of the problem by moving among the heuristic lists in its search 

space. We believe that this makes it a very efficient approach on difficult problems that have 

complex, especially disjointed, solution spaces. 

Also note that except for (Carter, Laporte and Lee, 1996) where a number of different 

constructive methods with backtracking were employed, and (Asmuni, Burke and Garibaldi, 

2004) where constructing, un-scheduling and rescheduling are performed, all of the other 

approaches operate by improving on the initial complete solutions obtained beforehand. For 
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the complex problems tested here, it is observed that no feasible solutions can be obtained by 

the use of pure constructive graph heuristics. In contrast, the proposed hyper-heuristic method 

is constructive, starting from an empty solution. It is not dependent on initial solutions, which 

may sometimes affect the behavior of the other approaches. Most importantly, it is also 

effective for course timetabling problems (see below). Yet, the proposed method obtained 

competitive results with all state-of-the-art approaches for exam timetabling problems. 

We have found that deepest descent local search after each move of the Tabu Search 

within the GHH approach often improves the solutions obtained and occasionally obtains a 

better final solution than that obtained by the Tabu Search alone. This may indicate that, 

during the problem solving, GHH sometimes reaches a point in the solution space (such as 

solution a in Figure 2 and Figure 3) and cannot go further to its local optimal (such as solution 

d in Figure 2 and Figure 3) unless moves upon the actual solutions are made. However, it is 

difficult to check this hypothesis thoroughly, due to the size of the search space for the 

solutions of complex timetabling problems. This is because the hypothesis concerns the 

coverage of the solution space by the search space of the hyper-heuristic (see Section 2.2). 

3.2 University Course Timetabling Problems 

The proposed GHH method was also tested on eleven benchmark course timetabling 

problems, proposed by the Metaheuristic Network1. This problem description is taken from 

(Socha, Knowles and Sampels, 2002). The problems2 need to assign 100-400 courses into a 

timetable of 5 days, 9 timeslots a day, while satisfying room features and capacity constraints. 

They are grouped into small, medium and large problems. The hard constraints that must be 

satisfied are: 

1. no students can be scheduled to more than one event at a time 

2. the room meets all features required by the event 

                                                 
1 http://www.metaheuristics.net/ 
2 http://iridia.ulb.ac.be/~msampels/ttmn.data/ 
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3. room capacity is respected 

4. no more than one event is allowed per room and per timeslot 

Soft constraint violations are equally weighted and summed up within the cost function. They 

are presented below: 

1. a student has a class in the last timeslot of the day 

2. a student has more than two classes in a row 

3. a student has only one class on a day 

3.2.1 GHH upon All  Low Level Heuristics 

We employ exactly the same GHH approach with the same low level heuristics tested on the 

exam timetabling problems. The only changes made, in order to deal with these different 

problems, are the cost function which also evaluates the room constraints. The best results by 

5 runs of GHH with distinct seeds upon all of the low level heuristics are presented in Table 

4, which also presents the results of 3 approaches (Socha, Knowles and Sampels, 2002, and 

Burke, Kendall and Soubeiga, 2003) reported in the literature for comparison. For the “Hyper-

heuristic” the best results out of 5 runs obtained are presented, for the “Local Search” and 

“Ant Algorithm” the average results out of 50 runs on small problems, 40 runs on medium 

problems and 10 runs on large problems are reported. We test our approach with the same 

number of runs as that of the “Hyper-heuristic” from (Burke, Kendall and Soubeiga, 2003) to 

make a more fair comparison. The term “x% Inf” in Table 4 indicates the percentage of runs 

which failed to obtain feasible solutions. 

From Table 4 we can observe that our GHH approach obtains competitive results with the 

other 3 approaches on these course timetabling problems. For problem “Medium5”, it 

obtained the best results among all approaches. It outperforms the “Local Search” method on 

all of the problems except “Medium1”, “Medium2” and “Medium4”. And for all of the 

problems tested it finds feasible solutions with all the 5 distinct seeds tested, which the “Tabu 
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Search Hyper-heuristic” and “Local Search” approaches failed to obtain. 

 

INSERT TABLE 4 SOMEWHERE HERE. 

 

3.2.2 Summarizing Comments Concerning GHH on Course Timetabling Problems 

The experimental results on GHH for course timetabling problems demonstrate its ability to 

work well on hard problems. We can observe that for problems “Medium5” and “Large”, 

which are the hardest (highest costs obtained by the other approaches), GHH obtained the best 

and second-best results. The reason may be that the GHH is capable of jumping (while not 

moving) within the solution space by the moves within the search space of heuristic lists. This 

enables it to deal well with a broad range of hard problems (with a complex, and probably 

disjoint, solution space). 

The deepest descent local search after each move of the Tabu Search improves the solution 

in most cases during the search of GHH. The best final results are sometimes from the 

improvement made by deepest descent local search on the solutions obtained by Tabu Search. 

This may strengthen our hypothesis about the coverage of the solution space vs. search space 

within our GHH approach. 

For all the other approaches compared, initial solutions are required before the algorithms 

are performed. Our GHH solves the problem by starting from an empty solution in each move 

of Tabu Search. For the course timetabling problems tested here, the violations of soft 

constraints 2 (more than 2 consecutive courses) and 3 (single course assigned in one day) 

cannot be evaluated accurately until a complete solution is obtained. This is not true for the 

other approaches compared here, since complete solutions exist. In our GHH approach the 

evaluation can only be made approximately during the construction of the solution. This may 

limit the search of GHH when searching for globally optimal solutions, although the deepest 

descent local search method upon the complete solution after each step of Tabu Search can 
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improve the timetables concerning these soft constraints.  

4. Conclusions 

The overall goal of this paper was to investigate a hyper-heuristic which operates at a higher 

level of generality than most of the current approaches studied in timetabling. Current state-

of-the-art approaches are the result of a significant investment of effort in developing 

sophisticated and elaborate heuristics, which are “tailor made” for their particular problems. 

In our hyper-heuristic framework both the Tabu Search and graph heuristics are general 

methods that are widely applicable. We have presented a general constructive approach which 

is not dependent on the initial solution that the other approaches need to generate. 

By employing simple and general heuristics in an intelligent way, the hyper-heuristic is 

capable of generating comparable results to those of special purpose approaches. The hyper-

heuristic has the ability of selecting general heuristics, picking up the events that are most 

difficult to schedule (by different heuristics), in any given solution construction state. 

Although the goal of the present study is not to beat the specific approaches in the literature, 

the GHH works well on all of the problems and for one of the benchmark course timetabling 

problems, the hyper-heuristic we developed actually obtained the best result among all those 

reported in the literature. It is a simple, robust and very effective general approach that does 

not use any domain knowledge except in the cost function that deals with different constraints 

in different problems. 

Experimental results indicate that the hyper-heuristic works more efficiently when using a 

larger number of low level heuristics. However, the size of the search space of GHH increases 

as well, which also increases the computational time. The multi-stage GHH was studied with 

the aim of getting good results in the first stage of GHH employing less low level heuristics 

and improving the results in the second stage employing more low level heuristics based on 

the heuristic lists obtained from the first stage. However the experimental results presented 

were worse than the single stage GHH due to the limitation of the starting points for the 

search of GHH. 
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Our hypothesis on the coverage of the solution space of the problem by searching within 

the search space of the hyper-heuristic is experimentally strengthened for both the exam and 

course timetabling problems. This hypothesis needs to be tested on a larger range of 

timetabling and scheduling problems. 

5. Future Work 

Future work could use other simple heuristics or approaches, instead of Tabu Search, in 

exploring the search space of heuristics. A larger number of low level general heuristics can 

also be added to the hyper-heuristic framework to explore a larger section of the solution 

space of the problems. It might also be interesting to consider more than one low level 

heuristic when choosing the events to be scheduled at each step of the solution construction. 

Combining different low level heuristics at a single step of the solution construction may find 

more appropriate events to be scheduled. Due to the large search space of the hyper-heuristic, 

future work will also need to investigate the impact of additional low level heuristics on 

computational time. 

The hyper-heuristic approach described here represents a general and simple framework 

equipped with little domain knowledge, and may be easily applied to many other timetabling 

and scheduling problems with little effort. Future work should extend the same framework to 

other problems. 
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Figure 1 Pseudo-code of Tabu Search within the graph based hyper-heuristic 

initial heuristic list hl = {h1 h2 h3 … hk} 

//Begin of Tabu Search 

for i = 0 to i = (5 * the number of events) //number of iterations 

 h = change two heuristics in hl //a move in Tabu Search 

   if h does not match a heuristic list in ‘failed list’ 

      if h is not in the tabu list //h is not recently visited 

  for j = 0 to j = k //h is used to construct a complete solution 

       schedule the first 2 events in the event list ordered using hj 

       if no feasible solution can be obtained 

   store h into the ‘failed list’ //update “failed list” 

       else if cost of solution c < the best cost cg obtained 

   save the best solution, cg = c //keep the best solution 

   add h into the tabu list 

   remove the first item from the tabu list if its length > 9 

   hl = h 

 //end if 

 Deepest descent on the complete solution obtained 

//end of Tabu Search 

output the best solution with cost of cg 
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Figure 2 The relation between the search space of the hyper-heuristic and solution space of the problem 
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Figure 3 An illustration of how the deepest descent local search could lead to solutions that are not represented by 

the heuristic lists (searched by the high level search) 
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Table 1 Characteristics of Benchmark Exam Timetabling Problems 

 car91 car92 ear83 hec92 kfu93 lse91 sta83 tre92 ute92 uta93 york83 
exams 682 543 190 81 461 381 139 261 184 622 181 

students 16925 18419 1125 2823 5349 2726 611 4360 2750 21266 941 
timeslots 35 32 24 18 20 18 13 23 10 35 21 

matrix density 0.13 0.14 0.27 0.42 0.6 0.6 0.14 0.18 0.8 0.13 0.29 
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Table 2 Costs of solutions obtained by GHH upon a different number of heuristics (S: saturation degree, 

L: largest degree, C: color degree; R: random ordering, Lx: largest weighted, largest enrollment and 

largest degree) 

Problem SL SLR SCL SCLR SCLx SCLxR SCLxR(10*) 
car91 5.78 5.67 5.52 5.36 5.65 5.43 5.39 
car92 4.76 4.68 4.21 4.14 4.53 4.78 4.63 
ear83 38.8 38.57 38.68 38.5 37.92 38.22 38.03 
hec92 12.35 12.27 12.30 12.81 12.39 12.25 12.11 
kfu93 16.21 15.79 15.37 15.23 15.67 15.2 15.12 
lse91 12.17 11.36 12.09 11.93 11.56 11.33 11.33 
sta83 164.01 163.5 164.06 163.31 158.19 160.19 159.32 
tre92 9.15 9.13 8.87 9.08 8.75 9.03 8.97 
ute92 29.49 29.17 28.27 28.19 28.01 28.21 28.11 
uta93 4.12 4.03 4.05 3.98 3.88 3.95 3.78 

york83 44.54 42.67 42.44 42.37 41.37 42.01 41.52 
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Table 3 Results from the GHH, multi-stage GHH and the best results reported in literature on benchmark exam 

timetabling problems 

 car91 car92 ear83 hec92 kfu93 lse91 sta83 tre92 ute92 uta93 york83 
GHH (best) 5.36 4.53 37.92 12.25 15.2 11.33 158.19 8.92 28.01 3.88 41.37 
Multi-stage 

GHH 
5.4 4.74 38.84 13.11 15.99 12.43 159.9 9.02 30.65 3.88 43.51 

Abdullah et al 5.21 4.36 34.87 10.28 13.46 10.24 150.28 8.13 24.21 3.63 36.11 
Asmuni et al 5.20 4.52 37.02 11.78 15.81 12.09 160.42 8.67 27.78 3.57 40.66 

Burke 
&Newall 2002 

4.6 4.0 37.05 11.54 13.9 10.82 168.73 8.35 25.83 3.2 36.8 

Burke,Bykov 
et al 2004 

4.8 4.2 35.4 10.8 13.7 10.4 159.1 8.3 25.7 3.4 36.7 

Caramia et al 6.6 6.0 29.3 9.2 13.8 9.6 158.2 9.4 24.4 3.5 36.2 
Casey & 

Thompson 
7.1 6.2 36.4 10.8 14.0 10.5 161.5 9.6 25.8 3.5 41.7 

Carter et al 6.2 5.2 45.7 12.4 18.0 15.5 160.8 10.0 29.0 4.2 41.0 
Di Gapero 
& Schaerf 

5.1 4.3 35.1 10.6 13.5 10.5 157.3 8.4 25.1 3.5 37.4 

Merlot et al 5.36 4.53 37.92 12.25 15.2 11.33 158.19 8.92 28.01 2.88 41.37 
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Table 4 Results of the GHH, multi-stage GHH and the other 3 approaches in literature on benchmark course 

timetabling problems 

 
GHH 

upon 6 
heuristics 

Tabu Search Hyper-Heuristic 
Burke, Kendall 

&Soubeiga 2003 

Local Search 
Socha, Knowles 
& Sampels 2002 

Ant Algorithm 
Socha, Knowles 
& Sampels 2002 

Small1 6 1 8 1 
Small2 7 2 11 3 
Small3 3 0 8 1 
Small4 3 1 7 1 
Small5 4 0 5 0 

Medium1 372 146 199 195 
Medium2 419 173 202.5 184 
Medium3 359 267 77.5% Inf 248 
Medium4 348 169 177.5 164.5 
Medium5 171 303 100% Inf 219.5 

Large 1068 80% Inf 1166 100% Inf 851.5 

 
 


