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A Hybrid Evolutionary Approach to the Nurse Rostering Problem
Ruibin Bai, Edmund K. Burke, Graham Kendall, Jingpeng Li, Barry McCollum

Abstract— Nurse rostering is a difficult search problem with
many constraints. In the literature, a number of approaches
have been investigated including penalty function methods to
tackle these constraints within genetic algorithm frameworks. In
this paper, we investigate an extension of a previously proposed
stochastic ranking method, which has demonstrated superior
performance to other constraint handling techniques when tested
against a set of constrained optimisation benchmark problems.
An initial experiment on nurse rostering problems demonstrates
that the stochastic ranking method is better in finding feasible
solutions but fails to obtain good results with regard to the
objective function. To improve the performance of the algorithm,
we hybridise it with a recently proposed simulated annealing
hyper-heuristic within a local search and genetic algorithm
framework. The hybrid algorithm shows significant improvement
over both the genetic algorithm with stochastic ranking and the
simulated annealing hyper-heuristic alone. The hybrid algorithm
also considerably outperforms the methods in the literature which
have the previously best known results.

Index Terms— Nurse rostering, Evolutionary algorithm, Local
search, Simulated annealing hyper-heuristics, Constrained opti-
misation, Constraint handling

I. I NTRODUCTION

Nurse rostering is a difficult and important personnel
scheduling problem that is faced by many large hospitals
across the world. The problem involves producing daily sched-
ules for nurses over a given time horizon. The objectives
are to improve the hospitals’ efficiency, to balance the work-
load among nurses and, more importantly, to satisfy various
hard constraints, and as many soft constraints as possible,
such as minimal nurse demands, “day-off” requests, personal
preferences, etc. Depending on the practical situations and
requirements in different hospitals, the type and number of
constraints can be varied. Due to these constraints, the solution
search space of nurse rostering problems is highly constrained
with the feasible regions usually being disconnected. Although
considerable research has been carried out in this area with
many approaches effectively proposed, most standard methods
have difficulties in dealing with these constraints. For example,
as will be discussed in section 2.1, both the genetic algorithm
in [1] and its improved version [2] are not able to consistently
find feasible solutions for some problem instances.

In this paper, we aim to: 1). Improve the constraint handling
ability of a standard evolutionary approach by utilising a
stochastic ranking method. Stochastic ranking [3] is an effec-
tive constraint handling technique that has shown impressive
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performance over a set of constrained optimisation benchmark
problems. This method is shown to perform well for dealing
with the difficult constraints in nurse rostering problems.
2). Enhance the performance of the evolutionary method by
hybridising it with a simulated annealing hyper-heuristic. It is
well accepted that genetic algorithms are capable of searching
large search spaces but are less effective in identifying local
optima [4]. 3). We utilise a revised version of an emerging
hyper-heuristic technique to enhance the performance of the
algorithm. The hybrid algorithm is, in fact, very flexible and
can be readily adapted to many other constrained optimisation
problems.

The remainder of this paper is structured as follows. Section
2 presents the nurse rostering problem that is addressed in
this paper, followed by a brief overview of the related work
for the problem. Section 3 reviews several constraint han-
dling methods and specifically describes the stochastic ranking
method that will be used in this paper. Section 4 presents the
initial experiments of the stochastic ranking genetic algorithm
for the nurse rostering problem. In section 5, the proposed
algorithm is enhanced by a simple version of a recently
proposed simulated annealing hyper-heuristic [5]. Section 6
concludes the paper.

II. T HE NURSEROSTERINGPROBLEM

We will present a very brief overview of nurse rostering
problems. A more comprehensive view can be found by
consulting [6]–[8]. Research for nurse scheduling problems
dates back to the early 1960’s [9]–[13] where relatively simple
mathematical models were proposed to minimise the cost of
nurse recruitment in order to perform various tasks. Although
these approaches are able to solve small sized problems, the
computational time for large sizes problems is usually pro-
hibitive for most practical applications [14].With the advances
in modern search and optimisation techniques, a great deal of
research have been carried out, in the last decade in partic-
ular, in the area of heuristic, metaheuristic and evolutionary
personnel scheduling and nurse rostering [6]. Dowsland [15]
proposed a multi-stage tabu search algorithm with the aid of
several “chain-moves”. Due to the highly constrained search
space, the algorithm repeatedly switches between feasible and
infeasible regions of the search space so that the search
can transfer between different feasible regions even when
they are disconnected. Experimental results have shown that
this algorithm is able to find good quality solutions on the
test problem instances. However, the tabu search algorithm
relies highly on several specially designed “chain-moves”.
The performance of the algorithm may be not as good when
tackling other problem instances with different search spaces.
Burke et al. [16] employed a hybrid tabu search algorithm to
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solve a nurse rostering problem in Belgian hospitals. Apart
from taking account into the common constraints, such as
nurse demands for different categories, shift preferences, day-
offs, etc., they also considered the constraints which arise due
to the schedule in the previous schedule horizon. To tackle the
highly constrained search space for which tabu search alone
does not perform well, a hybrid method was proposed which
hybridises general tabu search with some heuristic search
strategies. In [17], the nurse rostering problem was formulated
into a multi-criteria model so that users have more control and
flexibility in adapting to actual situations in their hospitals. A
new practical model for nurse rostering problems was recently
proposed in [18] which introduces “time interval” personnel
demands, a more flexible solution representation as opposed
to shifts in most other models.

Burke et al. [19] applied a tabu search hyper-heuristic
algorithm for nurse rostering problems. This algorithm is a
flexible and generic framework which uses very little domain-
specific information but can adapt to different problems by
strategically choosing appropriate low-level heuristics. Beddoe
and Petrovic [20] developed a case-based reasoning system
and tested it on a real world nurse rostering problem. The
system keeps a database of “cases” of previous constraint
violations and the corresponding successful repair operations.
A new problem can be solved by the approach that is retrieved
by matching the current violation features with cases stored
in the database. A genetic algorithm was used to select and
combine a subset of features in case retrieval.

Aickelin and Dowsload [1] applied a genetic algorithm
coupled with some problem-dependent genetic operators and
local search heuristics. An enhanced version of the genetic
algorithm was proposed in [2] which utilised a different solu-
tion encoding/decoding scheme and some specialised genetic
operators in an “indirect genetic algorithm” framework. In
both approaches, a carefully designed penalty function method
was used to resolve the hard constraints. Due to the highly
constrained search space of the nurse rostering problem, both
genetic algorithms struggle to obtain feasible solutions for
some of instances, although the second genetic algorithm
performs slightly better than the genetic algorithm in [1].
Burke et al. [21] compared a memetic algorithm with a
tabu search algorithm for nurse rostering problems and their
computational results show that the memetic algorithm is
able to obtain better quality solutions than both the genetic
algorithm and a previously proposed tabu search approach in
[16] provided that longer computational times are used. [22],
[23] are recent works on the nurse rostering problem which
used Bayesian learning to combine several scheduling rules.
Better results have been reported when compared with the
genetic algorithms in [1], [2].

A. The problem

In this paper, we address a real nurse rostering problem
faced by a large UK hospital, originally studied in [15] and
[1]. The formulation employed in those two studies represents
a typical nurse rostering problem and has been used in several
other studies. The problem is to make weekly schedules for

about 30 nurses. Each days’ schedule consists of a day shift
and a night shift, and for each shift a feasible solution has
to assign sufficient nurses to cover the actual demands which
are subject to changes throughout the week. Two practical
constraints have made this problem particularly challenging.
Firstly, nurses have three different grades. A higher grade
nurse can cover the demand for a lower grade nurse but not
vice versa. Secondly, there are some part-time nurses who can
only work a certain number of hours each week and may also
not be able to work on certain shifts. The schedule should
also be able to satisfy “day-off” requests by nurses. It should
also spread some unpopular shifts (e.g. night and weekend
shifts) among nurses for fairness. Dowsland [15] formulated
this problem as an integer programming model. In her model,
each nurse works on one of a number of predefined “shift
patterns”, which can be abstracted as a binary vector of length
14 (7 day shifts and 7 night shifts). A value of one in the vector
denotes a scheduled shift on for this nurse and zero a shift off.
Each shift pattern of a nurse is associated with a penalty that
represents its preferences. For completeness, we present the
model here.

Given a number of,n, nurses with each nurse having a
grade among the range [1,g]. DenoteGr the set of nurses
with gradesr or higher,Rkr the minimal demand of nurses
of grader for shift k andFi the set of feasible shift pattern for
nursei. Setajk = 1 if patternk covers shiftj and 0 otherwise.
Let pij be the penalty cost of nursei working on patternj
and the decision variablesxij be

xij =
{

1 nursei works on patternj
0 otherwise

The objective is to minimise the following cost function

min f =
n∑
i=1

∑
j∈Fi

pijxij (1)

s.t.
∑
j∈Fi

xij = 1 (2)∑
i∈Gr

∑
j∈Fi

ajkxij ≥ Rkr ∀k, r (3)

Constraint (2) ensures that each nurse works on exactly
one specific shift pattern and constraint (3) makes sure that
there are sufficient nurses to cover each shift at each grade.
Several methods have been used to tackle the constraint (3)
which makes the search space highly constrained. Although
a two-stage strategy and a penalty function method have
respectively been used in [15] and [1], [2] in order to tackle
the constraints, the proposed approaches either struggle to
find feasible solutions or have to rely heavily upon problem-
specific information. In this paper, we propose to tackle the
constraints by using a generic stochastic ranking method which
was shown to be very successful when solving 13 constrained
optimisation benchmark problems [3].
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III. E VOLUTIONARY ALGORITHM AND CONSTRAINT

HANDLING USING STOCHASTIC RANKING

Evolutionary algorithms are search techniques inspired from
the natural evolution and selection principle of “survive of the
fittest”. For an optimisation problem, a solution (individual) is
usually encoded in a specially designed string (chromosome).
A population of individuals is maintained and evolves from
one generation to another through some genetic operations
(i.e. crossover, mutation) and a selection method until some
stopping criteria are met [24], [25]. Constraint handling is
a common issue in many implementations of evolutionary
algorithms. Depending on the problem, several techniques
have been proposed in the literature. For example, Falkenauer
[26] proposed a genetic algorithm with a specialised encoding
schema and operators (crossover and mutation) for grouping
problems so that the search only operates over the feasible
solution space. A disadvantage of this approach is that not all
the constraints can be handled by carefully designed encoding
schemata and/or operators. In addition, the algorithm may not
be efficient when the feasible regions of the solution space
are disconnected. Another method is post-reparation, which
recovers the feasibility of the current solution if a constraint
is violated after a crossover or mutation operation [27].

Penalty functions are among the most popular techniques
and have been widely used in many applications [1], [19],
[28]–[30]. The idea is to transform the constrained optimi-
sation problem into an unconstrained one by introducing a
penalty term into the objective function to penalise constraint
violations. LetX be the vector of decision variables andf(X)
be the original objective function. The transformed objective
function φ(X) is often presented in the form of:

φ(X) = f(X) + λϕ(gπ(X); π ∈ Π) (4)

whereλ is the associated penalty coefficient andϕ(gπ(X))
is a function that measures the severity of violations of the
following constraints

gπ(X) ≥ 0, π ∈ Π (5)

In the case of the nurse rostering problem addressed in this
paper, the following function can be used to measure the
violation of the covering constraints (3):

ϕ(gπ(X)) =
14∑
k=1

g∑
r=1

{
max{0, Rkr−

∑
i∈Gr

∑
j∈Fi

ajkxij}
}

(6)

For convenience, we useφ and ϕ to denoteφ(X) and
ϕ(gπ(X)) respectively. Despite the popularity of the penalty
function method, deciding on a proper value for penalty
coefficientλ is challenging. In many cases, finding an optimal
value for λ becomes a difficult optimisation problem itself
and is probably problem dependent [3]. That is, parameter
tuning is required for different problems (or even different
problem instances). For example, in [1], [2], a similar form of
penalty function is used to penalise violations of the covering
constraint (3). The penalty coefficients are set after careful
experimentation. Even so, both genetic algorithms in [1], [2]
are struggling to find feasible solutions, especially for two

of the 52 test instances that we study in this paper. For
the two instances, these two genetic algorithms can only
manage feasible solutions twice in twenty attempts. Adaptive
approaches, where the value ofλ is dynamically altered by the
algorithm itself, are promising. The biggest advantage of these
adaptive approaches is that constraints are handled by making
use of some population information. Little domain-knowledge
is required and there is no manual parameter tuning forλ
[28], [29], [31]. Some other constraint handling methods rely
on multi-objective optimisation techniques [32]–[34] where
constraints are treated as one or more objectives. For these
methods, there is a problem of balancing the selection pressure
between the objectives.

Another type of constraint handling method is stochastic
ranking. It was initially proposed by Runarsson and Yao [3]
as a technique to tackle constrained optimisation problems in
evolutionary algorithms. The underlying idea is to “fuzzify”
the common ranking criteria by introducing a ranking proba-
bility Pf . The ranking can be obtained by a procedure similar
to a stochastic version of the bubble-sort algorithm withN
sweeps. In this method, the ranking is based on an objective
function only if all the individuals are feasible. Otherwise,
the ranking is stochastic. Denote byPw the probability of an
individual winning a comparison with an adjacent individual.
It can be calculated by (see [3])

Pw = PfwPf + Pϕw(1− Pf ) (7)

wherePfw and Pϕw are respectively the probability of the
individual winning according to the objective function and
the penalty function. According to [3], the probability of
an individual winning a comparison amongS individuals is
dependent on both the number of sweepsN andPf . By fixing
the number of sweepsN and by adjusting the probabilityPf ,
we can balance the dominance of the objective functionf and
the penalty functionϕ [3]. In this research, we fix the number
of sweepsN = S. When Pf < 0.5 the ranking is mainly
dominated by the objective functionf and whenPf > 0.5,
the ranking favours smaller penalty function valuesϕ. Since
the ultimate purpose is to search for the best feasible solution,
normally the parameter should be set wherePf < 0.5.

IV. I NITIAL EXPERIMENTS

An initial experiment was carried out to investigate the
performance of the stochastic ranking method in comparison
with the penalty function method in [1], [2] in the framework
of a genetic algorithm. The solution is encoded as a vector
of lengthn (i.e. number of nurses) with the position of each
allele representing a nurse and its value the shift pattern
index. This representation can automatically handle constraint
(2). However, the covering constraint (3) will be handled
using the stochastic ranking method. The parameter settings
of the genetic algorithm are given in Table I. In order for
a valid and sound comparison, all these parameter settings
are the same as those used in [1] except for the selection
strategy1 which is based on stochastic ranking and elitism
(i.e. the best solution always survives to the next generation)

1Note that duplicate solutions are not allowed in the population.
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TABLE I

PARAMETERS FOR THE GENETIC ALGORITHM

Parameters Settings

Population size ps = 1000
Crossover Simple one point crossover
Mutation Change the shift pattern of a randomly selected nurse to a random but feasible pattern
Crossover rate 0.75
Mutation rate 0.02
Stop criteria gen′ = 30 continuous non-improvement generations or the optimal solution is reached
Pf 0.25
Selection Tournament selection with stochastic ranking (S=7) + elitism
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Fig. 1. Analyses of the population evolution of the stochastic ranking genetic algorithm. (a): dynamics of the percentage of feasible solutions in the population.
(b): Average and best penalty cost of the population over time.

while in [1] the best 10% of solutions are directly copied
to the next generation. In the same way as in [1], single
point crossover is used. A mutation operator assigns a new
random feasible shift pattern for a randomly selected nurse.
Therefore, we did not tune these parameters when introducing
the stochastic ranking method into the genetic algorithm.
Figs. 1(a) and 1(b) present typical plots of the population
feasibility level and transformed penalty cost against time2.
Since the initial population is generated randomly, there is
rarely a feasible solution at the beginning. As the search
progresses, the feasibility level tends to increase and stabilises
at between 20% to 30% of the population. There are still
a relatively large percentage of infeasible solutions in the
population, probably due to the fact that we are dealing
with a highly constrained search space. A large number of
genetic operations (crossovers and mutations) would generate
infeasible solutions. However, from Fig. 1(b) it can be seen
that although the population feasibility level maintains a
relatively stable value after 150 generations, the average

2The same transformed penalty cost function as in [2] was used for this
analysis only.

penalty cost keeps reducing gradually over time, indicating
that the overall solution quality of the population improves
slowly over time. Note that maintaining a proportion of
infeasible solutions in the population is useful for the search
transferring between different disconnected feasible regions.

Figs. 2(a) and 2(b) present the results of the stochastic
ranking genetic algorithm (SRGA) in comparison with the
indirect genetic algorithm (IGA)3 in [2] among 20 independent
runs. Due to space limitation, we do not compare with the
results in [1] but they are inferior to those in [2] both in terms
of feasibility and objective values. Fig. 2(a) illustrates the
advantages of the stochastic ranking method over the penalty
function method. SRGA is able to find a feasible solution
in all 20 runs for each of 52 instances. However, IGA is
struggling for six instances, especially for the instances 49
and 50 where only 2 out of 20 attempts successfully find a
feasible solution for the problem. Unfortunately, although it
is able to find feasible solutions very quickly, the solution

3An arbitrary objective value of 200 is assigned to an infeasible solution.
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Fig. 2. A comparison of stochastic ranking genetic algorithm (SRGA) with indirect genetic algorithm (IGA) by [2]: (a) Percentages of feasible solutions
obtained among 20 runs. (b) Average objective value over 20 runs.

quality in terms of penalty costs is not as good as for IGA
(see Fig. 2(b)). In fact, the better quality solutions by IGA are
mainly attributed to its special encoding schema and making
use of some problem specific information. To solve this
problem, we hybridise the SRGA with a recently proposed
simulated annealing hyper-heuristic algorithm [5].

V. HYBRIDISATION WITH A SIMULATED ANNEALING

HYPER-HEURISTIC

A. The hybrid algorithm

Considerable research has shown that the performance of
genetic algorithms can be improved by combining them with
local search procedures. They are often referred to asmemetic
algorithms [4], [35]. In this paper, we hybridise the genetic
algorithm with a simulated annealing hyper-heuristic approach
that has demonstrated impressive performance over three diffi-
cult optimisation problems [5]. Hyper-heuristics are high-level
strategies that “choose heuristics to solve a given problem
instance or search scenario” [36], [37]. A two-layer structure
(separated by a domain barrier) can be adopted in order
to increase the level of algorithmic independence over the
problem domain. Two key components in the hyper-heuristic
layer are theheuristic selection mechanismand the simu-
lated annealing acceptance criterion. The heuristic selection
mechanism strategically chooses between heuristics in order
to adapt to different problem search scenarios. However, the
simulated annealing acceptance criterion component, whose
temperature is systematically changed during the search, en-
sures that only heuristic moves that have satisfied the criterion
are accepted. Meanwhile, the heuristic selection component
periodically monitors the performance of each heuristic and
their acceptance ratios as feedback information to adapt its

selection strategy to the current problem search scenarios. See
[5] for more details.

However, it does not make sense to simply implement the
entire simulated annealing hyper-heuristic algorithm into the
genetic algorithm. Firstly, it is computationally expensive to
execute a simulated annealing hyper-heuristic at each local
search phase. Secondly, the main aim of a local search proce-
dure in a memetic algorithm is to quickly identify local optima
which the standard genetic algorithm finds difficult to locate.
Therefore, there is no point in starting every local search with a
high temperature. The pseudo-code for the proposed algorithm
is outlined in Fig. 3.

The parameters of the genetic algorithm remain the same
except that the population size is decreased to 100 for
computational considerations. The parameters with regard to
the simulated annealing hyper-heuristics are set as follows.
K = 20, ts = 10.0, tf = 0.1, β = (ts − tf )/(gen′ · ts · tf ),
based on some preliminary experiments. The temperature
is decreased nonlinearly according tot = t/(1 + βt)
until t < tf , at which point the temperature is reset to
ts. For the purpose of reducing computational time, the
local search procedure,LS SAHH, is a simplified version
of the simulated annealing hyper-heuristic where the low
level heuristics are selected uniformly (see Fig. 4). We also
carried out some experiments on a hybridisation of the
genetic algorithm with an improvement-only local search
approach (i.e. without the simulated annealing acceptance
criterion). However, the results were not competitive with
those presented here. Since the aim of the local search in
the hybrid algorithm is to efficiently search for feasible local
optima, the procedure only accepts feasible solutions, or in
the case of equal infeasibility between the current solution
and neighbouring solution, the new solution is accepted
according to the simulated annealing acceptance criteria. A
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step1: Initialisation: generate an initial population, set start temperaturets, stopping temperaturetf
and temperature reduction rateβ, t = ts. Set the number of iterations for local searchK.

step2: Apply genetic operations (crossover and mutation).
step3: Stochastic ranking and selection.
step4: For each individualIu, call LS SAHH(Iu,K).
step5: Update temperature: if (t > tf ) then t = t/(1 + βt), otherwiset = ts
step6: Goto step2.

Fig. 3. Pseudo-code of the hybrid algorithm

Input: Iu,K, low-level heuristicsHi, i=1,...,m.
for i=1 toK

Select a heuristicHi uniformly.
Sample a new solutionI ′u from Iu using heuristicHi

if (ϕ(gπ(I ′u)) < ϕ(gπ(Iu))) thenIu ← I ′u.
else if (ϕ(gπ(I ′u)) = ϕ(gπ(Iu))) then

Calculate the difference in objective functionδ = f(I ′u)− f(Iu).
if (δ ≤ 0 or e−δ/t > Rand(0, 1)) thenIu ← I ′u.

endif
endfor
OutputIu

Fig. 4. ProcedureLS SAHH(Iu,K)

total of nine simple low-level heuristics were used, drawn
from [19]. For completeness, they are described here.

H1 Change the shift-pattern of a random nurse to another
random feasible shift-pattern.

H2 Similar to H1 except the acceptance criteria is ‘1st
improvingϕ value’.

H3 Same asH1 but ‘1st improvingϕ and not deteriorating
f .

H4 Same asH1 but ‘ist improvingf ’.
H5 Same asH1 but ‘ist improvingf and not deteriorating

ϕ’.
H6 Switch the shift-pattern type (i.e. from day to night

and vice versa) of a random nurse if the solution is
unbalanced.

H7 This heuristic tries to generate a balanced solution by
switching the shift-pattern type (i.e. change a day shift-
pattern with a night one if night shift(s) is unbalanced
and vice versa. If both days and nights are not balanced,
swap the shift patterns of two nurses who are working
on different shift-pattern types.

H8 This heuristic tries to find the first move that improves
f by changing the shift pattern of a random nurse and
assign the abandoned shift pattern to another nurse.

H9 Same as H8 but ‘1st improvingf without worseningϕ’.

B. Comparison with other approaches

The proposed hybrid algorithm was applied to the same 52
instances as in [1], with each instance being solved 20 times
using independent random seeds. The detailed results of the
hybrid algorithm are presented in tables III, IV and Fig. 7. We
now make comparisons with the tabu search hyper-heuristic

(TSHH) [19] 4, the indirect genetic algorithm (IGA) [2], and
a more recently proposed estimation of distribution algorithm
(EDA) [23]

Table II presents a comparison of the average objective
values by the proposed hybrid algorithm and those by TSHH
in [38]. It can be seen that for the majority of instances (33
out of 52), the hybrid algorithm performed better than TSHH.
TSHH produced better results for 5 instances only and for
the remaining 13 instances both algorithms obtained the same
results.

The detailed results of IGA and EDA are presented in Fig. 5
and Fig. 6 respectively. Comparisons are made in three aspects:
#inf. is the number of unsuccessful runs (out of 20 total
independent runs) that have failed to find a feasible solution by
the given algorithm.#opt. denotes the number of successful
attempts that have found an optimal solution and# within 3
is the number of runs that found a solution within 3 penalty
costs away from the optimum. These solutions are considered
to be of good quality. The optimal solutions were obtained by
a standard IP package which is impractical due to the high
computational and financial costs [2].

It can be seen that both the EDA and the proposed hybrid
algorithms perform better than the IGA in terms of finding
feasible solutions. The IGA has difficulties in finding feasible
solutions for six problem instances while both the EDA and
the hybrid algorithm can find feasible solutions in all 20
runs for all the instances. In general, the performance of
the proposed hybrid algorithm is much better than both IGA
and EDA. Among 20 runs, the hybrid algorithm can solve
all the instances to optimality. For 44 out of 52 instances,
the hybrid algorithm obtained a good quality solution (i.e.

4Due to the unavailability of the detailed computational results in [19],
instead we drew results from [38] by the same algorithm with the best
parameter configuration HH1:4L.
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TABLE II

THE HYBRID ALGORITHM VS THE TABU SEARCH HYPER-HEURISTIC

Set 1 2 3 4 5 6 7 8 9 10 11 12 13
TSHH 8.0 51.3 50.0 17.0 11.0 2.0 11.7 16.0 3.3 2.1 2.0 2.1 2.0

Hybrid Algorithm 8.0 49.9 50.0 17.0 11.0 2.0 11.0 14.1 3.02.6 2.0 2.0 2.0
Set 14 15 16 17 18 19 20 21 22 23 24 25 26

TSHH 3.3 3.0 39.0 13.3 22.6 1.4 9.2 0.0 25.1 0.3 1.0 0.0 48.1
Hybrid Algorithm 3.2 3.0 38.4 9.0 18.0 1.3 8.9 0.025.3 0.1 1.0 0.5 73.0

Set 27 28 29 30 31 32 33 34 35 36 37 38 39
TSHH 3.3 64.3 15.0 35.1 68.3 40.5 11.0 41.7 38.7 34.3 5.213.0 5.0

Hybrid Algorithm 3.7 63.1 15.1 35.0 65.2 40.0 10.8 38.0 36.0 32.1 5.0 13.0 5.0
Set 40 41 42 43 44 45 46 47 48 49 50 51 52

TSHH 8.6 60.7 48.6 26.4 30.1 3.0 6.5 3.4 5.6 29.8 108.9 74.2 61.5
Hybrid Algorithm 7.2 58.0 38.3 22.0 23.2 3.0 4.0 3.0 4.1 27.0 107.3 74.0 58.0
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Fig. 5. Detailed results by IGA

-5

0

5

10

15

20

1 6 11 16 21 26 31 36 41 46 51

#inf. #opt. # within 3

Fig. 6. Detail results by EDA with ant-miner

solutions within 3 penalty cost away from optimality) on each
of 20 independent runs.

In terms of computational time, IGA is very fast, with an
average time of 9.3 seconds per instance on a Pentium II
PC. EDA takes an average of 30 seconds on a Pentium IV
2.0GHz PC with 512MB RAM. The average computational
time for our hybrid algorithm is 61.2 seconds on a Pentium
IV 1.8 PC with 2GB RAM. This is mainly due to the local
search phase SAHHLS, which is computationally expensive.

TSHH was run on a PC Pentium III 1000Mhz with 128MB
RAM with CPU time limit of 60 seconds. Nevertheless, with
extra computational time, the hybrid algorithm can produce
much better results than both the IGA and the EDA heuristic
and the TSHH for most of problem instances. Table III
presents more detailed results of the proposed hybrid algorithm
in comparison with the simulated annealing hyper-heuristic
(SAHH) in [5]. The performance of the hybrid algorithm and
SAHH is similar for several problem instances. However, the
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Fig. 7. Detailed results by the hybrid algorithm

TABLE III

HYBRID ALGORITHM VS SAHH (CONTINUED ON NEXT PAGE)

IP SAHH Hybrid Algorithm

Set best mean worst stdev best mean worst stdev

1 8 8 8.0 8 0.00 8 8.0 8 0.00
2 49 49 50.9 55 2.13 49 49.9 51 0.45
3 50 50 50.0 50 0.00 50 50.0 50 0.00
4 17 17 17.0 17 0.00 17 17.0 17 0.00
5 11 11 11.0 11 0.00 11 11.0 11 0.00
6 2 2 2.0 2 0.00 2 2.0 2 0.00
7 11 11 11.0 11 0.00 11 11.0 11 0.00
8 14 14 14.1 15 0.31 14 14.1 15 0.22
9 3 3 3.0 3 0.00 3 3.0 3 0.00
10 2 2 2.5 4 0.69 2 2.6 4 0.68
11 2 2 2.0 2 0.00 2 2.0 2 0.00
12 2 2 2.0 2 0.00 2 2.0 2 0.00
13 2 2 2.0 2 0.00 2 2.0 2 0.00
14 3 3 3.3 4 0.44 3 3.2 5 0.49
15 3 3 3.0 3 0.00 3 3.0 3 0.00
16 37 37 41.4 66 8.66 37 38.4 44 2.87
17 9 9 10.1 15 1.67 9 9.0 9 0.00
18 18 18 18.7 28 2.25 18 18.0 18 0.00
19 1 1 1.3 4 0.72 1 1.3 2 0.47
20 7 7 8.3 21 3.18 7 8.9 20 4.64
21 0 0 0.2 1 0.41 0 0.0 0 0.00
22 25 25 25.3 27 0.57 25 25.3 27 0.57
23 0 0 0.2 1 0.41 0 0.1 1 0.31
24 1 1 1.0 1 0.00 1 1.0 1 0.00
25 0 0 0.2 1 0.41 0 0.5 1 0.51

hybrid algorithm seems to be more consistent in producing
good quality solutions. Take instance 16 for example, both
the average penalty costs and standard deviation by SAHH
are much larger than the hybrid algorithm’s. The search space
of this instance seems to have many disconnected feasible
regions. As a population based approach, the proposed hybrid
algorithm is capable of searching in a larger search space than
SAHH, which is a single point search method. Similar results
can be observed for instances 18, 26, 33 and 49. Over the

52 instances, the average penalty costs (respectively the worst
penalty cost and standard deviation) by the hybrid algorithm
have been reduced by 3.9% (respectively 20.1% and 47.7%)
compared with SAHH.

Another advantage of the proposed hybrid approach is its
simplicity of implementation and flexibility to be adapted
to other constrained optimisation problems. Compared with
the penalty function method and other constraint handling
techniques, stochastic ranking is simpler and more generic.
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TABLE IV

HYBRID ALGORITHM VS SAHH (CONTINUED FROM PREVIOUS PAGE)

IP SAHH Hybrid Algorithm

Set best mean worst stdev best mean worst stdev

26 48 48 91.1 198 54.04 48 73.0 148 44.43
27 2 2 4.4 13 4.49 2 3.7 13 4.03
28 63 63 63.3 65 0.55 63 63.1 64 0.22
29 15 15 15.3 18 0.72 15 15.1 16 0.31
30 35 35 35.7 40 1.42 35 35.0 35 0.00
31 62 62 64.7 66 1.84 62 65.2 66 1.64
32 40 40 40.1 41 0.22 40 40.0 40 0.00
33 10 10 15.6 103 20.64 10 10.8 11 0.44
34 38 38 38.1 39 0.22 38 38.0 38 0.00
35 35 35 35.9 39 1.23 35 36.0 39 1.78
36 32 32 32.7 33 0.49 32 32.1 33 0.31
37 5 5 5.0 5 0.00 5 5.0 5 0.00
38 13 13 13.1 15 0.45 13 13.0 13 0.00
39 5 5 5.0 5 0.00 5 5.0 5 0.00
40 7 7 7.5 9 0.69 7 7.2 8 0.37
41 54 54 61.7 83 12.11 54 58.0 82 9.78
42 38 38 38.8 40 0.55 38 38.3 40 0.55
43 22 22 23.2 32 3.04 22 22.0 22 0.00
44 19 19 27.3 34 5.21 19 23.2 30 5.22
45 3 3 3.4 5 0.75 3 3.0 3 0.00
46 3 3 4.8 6 0.83 3 4.0 5 0.89
47 3 3 3.0 3 0.00 3 3.0 3 0.00
48 4 4 4.3 5 0.44 4 4.1 5 0.31
49 27 27 31.9 118 20.28 27 27.0 27 0.00
50 107 107 107.9 109 0.81 107 107.3 108 0.44
51 74 74 74.1 75 0.31 74 74.0 74 0.00
52 58 58 59.3 73 3.92 58 58.0 58 0.00

Av 21.1 21.1 23.0 31.3 3.02 21.1 22.1 25.0 1.58

It is not based on domain-specific structures and hence can
be used for various constraint handling situations within an
evolutionary algorithm framework. Meanwhile, the simulated
annealing hyper-heuristic could complement the drawbacks of
a conventional evolutionary algorithm with its better capability
to capture local optima efficiently.

VI. CONCLUSION

This paper has considered a real-world nurse rostering
problem which has a highly constrained search space. Several
approaches have been proposed for this problem, which have
either struggled to find feasible solutions or failed to produce
high quality solutions efficiently in terms of the objective
function. In this paper, we proposed a hybrid algorithm
for this problem which combines a genetic algorithm and
a simulated annealing hyper-heuristic. In this algorithm, a
stochastic ranking method was used to improve the constraint
handling capability of the genetic algorithm while a simulated
annealing hyper-heuristic procedure was incorporated in or-
der to locate local optima more efficiently. Compared with
genetic algorithms that use penalty function methods as a

constraint handling approach, the stochastic ranking method
has demonstrated better performance with regard to feasibility.
To improve the solution quality in terms of the objective
function, a simulated annealing hyper-heuristic algorithm was
hybridised with the genetic algorithm. Experimental results on
52 problem instances has demonstrated the high performance
and consistency by this hybrid approach when compared with
other approaches for this problem. The contribution of this
paper is the presentation of a robust and efficient hybrid
algorithm for the nurse rostering problem. The algorithm is
also simple and flexible and provides significant potential for
extension to other constrained optimisation problems.
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