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Abstract— Nurse rostering is a difficult search problem with
many constraints. In the literature, a number of approaches
have been investigated including penalty function methods to
tackle these constraints within genetic algorithm frameworks. In
this paper, we investigate an extension of a previously proposed
stochastic ranking method, which has demonstrated superior
performance to other constraint handling techniques when tested
against a set of constrained optimisation benchmark problems.
An initial experiment on nurse rostering problems demonstrates
that the stochastic ranking method is better in finding feasible
solutions but fails to obtain good results with regard to the
objective function. To improve the performance of the algorithm,
we hybridise it with a recently proposed simulated annealing
hyper-heuristic within a local search and genetic algorithm
framework. The hybrid algorithm shows significant improvement
over both the genetic algorithm with stochastic ranking and the
simulated annealing hyper-heuristic alone. The hybrid algorithm

performance over a set of constrained optimisation benchmark
problems. This method is shown to perform well for dealing
with the difficult constraints in nurse rostering problems.
2). Enhance the performance of the evolutionary method by
hybridising it with a simulated annealing hyper-heuristic. It is
well accepted that genetic algorithms are capable of searching
large search spaces but are less effective in identifying local
optima [4]. 3). We utilise a revised version of an emerging
hyper-heuristic technique to enhance the performance of the
algorithm. The hybrid algorithm is, in fact, very flexible and
can be readily adapted to many other constrained optimisation
problems.

The remainder of this paper is structured as follows. Section
2 presents the nurse rostering problem that is addressed in

this paper, followed by a brief overview of the related work
for the problem. Section 3 reviews several constraint han-
dling methods and specifically describes the stochastic ranking
method that will be used in this paper. Section 4 presents the
initial experiments of the stochastic ranking genetic algorithm
for the nurse rostering problem. In section 5, the proposed
algorithm is enhanced by a simple version of a recently
proposed simulated annealing hyper-heuristic [5]. Section 6
Nurse rostering is a difficult and important personnejoncludes the paper.
scheduling problem that is faced by many large hospitals
across the world. The problem involves producing daily sched-
ules for nurses over a given time horizon. The objectives
are to improve the hospitals’ efficiency, to balance the work- We will present a very brief overview of nurse rostering
load among nurses and, more importantly, to satisfy variopgoblems. A more comprehensive view can be found by
hard constraints, and as many soft constraints as possilelensulting [6]-[8]. Research for nurse scheduling problems
such as minimal nurse demands, “day-off” requests, personakes back to the early 1960's [9]-[13] where relatively simple
preferences, etc. Depending on the practical situations andthematical models were proposed to minimise the cost of
requirements in different hospitals, the type and number pfirse recruitment in order to perform various tasks. Although
constraints can be varied. Due to these constraints, the solutiegse approaches are able to solve small sized problems, the
search space of nurse rostering problems is highly constraingginputational time for large sizes problems is usually pro-
with the feasible regions usually being disconnected. Althougiibitive for most practical applications [14].With the advances
considerable research has been carried out in this area viftimodern search and optimisation techniques, a great deal of
many approaches effectively proposed, most standard methasksearch have been carried out, in the last decade in partic-
have difficulties in dealing with these constraints. For examplelar, in the area of heuristic, metaheuristic and evolutionary
as will be discussed in section 2.1, both the genetic algorithmersonnel scheduling and nurse rostering [6]. Dowsland [15]
in [1] and its improved version [2] are not able to consistentlyroposed a multi-stage tabu search algorithm with the aid of
find feasible solutions for some problem instances. several “chain-moves”. Due to the highly constrained search
In this paper, we aim to: 1). Improve the constraint handlingpace, the algorithm repeatedly switches between feasible and
ability of a standard evolutionary approach by utilising #nfeasible regions of the search space so that the search
stochastic ranking method. Stochastic ranking [3] is an effecan transfer between different feasible regions even when
tive constraint handling technique that has shown impressivey are disconnected. Experimental results have shown that
. . _ this algorithm is able to find good quality solutions on the
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also considerably outperforms the methods in the literature which
have the previously best known results.
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I. INTRODUCTION

II. THE NURSEROSTERINGPROBLEM



solve a nurse rostering problem in Belgian hospitals. Apaabout 30 nurses. Each days’ schedule consists of a day shift

from taking account into the common constraints, such asd a night shift, and for each shift a feasible solution has

nurse demands for different categories, shift preferences, day-assign sufficient nurses to cover the actual demands which

offs, etc., they also considered the constraints which arise dare subject to changes throughout the week. Two practical

to the schedule in the previous schedule horizon. To tackle tb@nstraints have made this problem particularly challenging.

highly constrained search space for which tabu search aldfiestly, nurses have three different grades. A higher grade

does not perform well, a hybrid method was proposed whicturse can cover the demand for a lower grade nurse but not

hybridises general tabu search with some heuristic seakdbe versa. Secondly, there are some part-time nurses who can

strategies. In [17], the nurse rostering problem was formulatedly work a certain number of hours each week and may also

into a multi-criteria model so that users have more control amdt be able to work on certain shifts. The schedule should

flexibility in adapting to actual situations in their hospitals. Aalso be able to satisfy “day-off” requests by nurses. It should

new practical model for nurse rostering problems was recendliso spread some unpopular shifts (e.g. night and weekend

proposed in [18] which introduces “time interval” personnedhifts) among nurses for fairness. Dowsland [15] formulated

demands, a more flexible solution representation as opposieid problem as an integer programming model. In her model,

to shifts in most other models. each nurse works on one of a number of predefined “shift
Burke et al. [19] applied a tabu search hyper-heuristfgatterns”, which can be abstracted as a binary vector of length

algorithm for nurse rostering problems. This algorithm is &4 (7 day shifts and 7 night shifts). A value of one in the vector

flexible and generic framework which uses very little domairdenotes a scheduled shift on for this nurse and zero a shift off.

specific information but can adapt to different problems bigach shift pattern of a nurse is associated with a penalty that

strategically choosing appropriate low-level heuristics. Beddoepresents its preferences. For completeness, we present the

and Petrovic [20] developed a case-based reasoning systendel here.

and tested it on a real world nurse rostering problem. The

system keeps a database of “cases” of previous constrainfiven a number ofn, nurses with each nurse having a

violations and the corresponding successful repair operatiofigade among the range [§]. Denote G, the set of nurses

A new problem can be solved by the approach that is retrievédth gradesr or higher, 2, the minimal demand of nurses

by matching the current violation features with cases stor&figrader for shift k and F; the set of feasible shift pattern for

in the database. A genetic algorithm was used to select dhései. Seta;, = 1 if patternk covers shiftj and 0 otherwise.

combine a subset of features in case retrieval. Let p;; be the penalty cost of nurseworking on patternj
Aickelin and Dowsload [1] applied a genetic algorithnfnd the decision variables; be

coupled with some problem-dependent genetic operators and

local search heuristics. An enhanced version of the genetic 1 nursei works on patterry

algorithm was proposed in [2] which utilised a different solu- Tij = { 0 otherwise

tion encoding/decoding scheme and some specialised genetic

operators in an ‘indirect genetic algorithm” framework. In o opiective is to minimise the following cost function

both approaches, a carefully designed penalty function method

was used to resolve the hard constraints. Due to the highly

constrained search space of the nurse rostering problem, both

genetic algorithms struggle to obtain feasible solutions for min f= Z Z DijTij (1)
some of instances, although the second genetic algorithm i1 jcF,

performs slightly better than the genetic algorithm in [1]. st Z v =1 @
Burke et al. [21] compared a memetic algorithm with a o ‘ '”

tabu search algorithm for nurse rostering problems and their ek

computational results show that the memetic algorithm is > ajewi; > Rey kv 3)
able to obtain better quality solutions than both the genetic 1€Gr jEF;

algorithm and a previously proposed tabu search approach in
[16] provided that longer computational times are used. [22], Constraint (2) ensures that each nurse works on exactly
[23] are recent works on the nurse rostering problem whigine specific shift pattern and constraint (3) makes sure that
used Bayesian learning to combine several scheduling rultere are sufficient nurses to cover each shift at each grade.
Better results have been reported when compared with theveral methods have been used to tackle the constraint (3)
genetic algorithms in [1], [2]. which makes the search space highly constrained. Although
a two-stage strategy and a penalty function method have
respectively been used in [15] and [1], [2] in order to tackle
the constraints, the proposed approaches either struggle to
In this paper, we address a real nurse rostering probldimd feasible solutions or have to rely heavily upon problem-
faced by a large UK hospital, originally studied in [15] angpecific information. In this paper, we propose to tackle the
[1]. The formulation employed in those two studies represertsnstraints by using a generic stochastic ranking method which
a typical nurse rostering problem and has been used in severas shown to be very successful when solving 13 constrained
other studies. The problem is to make weekly schedules fmptimisation benchmark problems [3].

A. The problem



I1l. EVOLUTIONARY ALGORITHM AND CONSTRAINT of the 52 test instances that we study in this paper. For
HANDLING USING STOCHASTIC RANKING the two instances, these two genetic algorithms can only
manage feasible solutions twice in twenty attempts. Adaptive
Evolutionary algorithms are search techniques inspired frompproaches, where the value)ofs dynamically altered by the
the natural evolution and selection principle of “survive of thalgorithm itself, are promising. The biggest advantage of these
fittest”. For an optimisation problem, a solution (individual) idaptive approaches is that constraints are handled by making
usually encoded in a specially designed string (chromosome$e of some population information. Little domain-knowledge
A population of individuals is maintained and evolves frons required and there is no manual parameter tuningXfor
one generation to another through some genetic operati¢®8], [29], [31]. Some other constraint handling methods rely
(i.e. crossover, mutation) and a selection method until some multi-objective optimisation techniques [32]-[34] where
stopping criteria are met [24], [25]. Constraint handling isonstraints are treated as one or more objectives. For these
a common issue in many implementations of evolutionamethods, there is a problem of balancing the selection pressure
algorithms. Depending on the problem, several techniqulestween the objectives.
have been proposed in the literature. For example, FalkenauefAnother type of constraint handling method is stochastic
[26] proposed a genetic algorithm with a specialised encodingnking. It was initially proposed by Runarsson and Yao [3]
schema and operators (crossover and mutation) for groupamya technique to tackle constrained optimisation problems in
problems so that the search only operates over the feasigl®lutionary algorithms. The underlying idea is to “fuzzify”
solution space. A disadvantage of this approach is that not élé common ranking criteria by introducing a ranking proba-
the constraints can be handled by carefully designed encodbility P;. The ranking can be obtained by a procedure similar
schemata and/or operators. In addition, the algorithm may riota stochastic version of the bubble-sort algorithm with
be efficient when the feasible regions of the solution spaseeeps. In this method, the ranking is based on an objective
are disconnected. Another method is post-reparation, whithnction only if all the individuals are feasible. Otherwise,
recovers the feasibility of the current solution if a constrainhe ranking is stochastic. Denote I8, the probability of an
is violated after a crossover or mutation operation [27]. individual winning a comparison with an adjacent individual.
Penalty functions are among the most popular techniquésan be calculated by (see [3])
and have been widely used in many applications [1], [19], -
[28]-[30]. The idea is to transform the constrained optimi- Pu = ProPr+ Pow(1 = Py) ()
sation problem into an unconstrained one by introducingvehere P;,, and P,,, are respectively the probability of the
penalty term into the objective function to penalise constraiittdividual winning according to the objective function and
violations. LetX be the vector of decision variables afidX) the penalty function. According to [3], the probability of
be the original objective function. The transformed objectivan individual winning a comparison amorfg individuals is
function ¢(X) is often presented in the form of: dependent on both the number of sweépand P;. By fixing
the number of sweepd and by adjusting the probabilit¥,
A(X) = f(X) + Ap(gx(X); w € II) ) we can balance the dominance of the objective funcﬁmﬁd
where \ is the associated penalty coefficient apty, (X)) the penalty functiorp [3]. In this research, we fix the number
is a function that measures the severity of violations of tH sweepsN = S. When P; < 0.5 the ranking is mainly
following constraints dominated by the objective functioff and whenP; > 0.5,
the ranking favours smaller penalty function valuesSince
9x(X) = 0, w1l the ultimate purpose is to search for the best feasible solution,

In the case of the nurse rostering problem addressed in tAgmally the parameter should be set whéje< 0.5.
paper, the following function can be used to measure the

violation of the covering constraints (3): IV. INITIAL EXPERIMENTS
14 g An initial experiment was carried out to investigate the
o(g-(X)) = Z Z { max{0, Rg, — Z Z ajrzi;}} (6) performance of the stochastic ranking method in comparison
b1 r—1 i€G, jEF, with the penalty function method in [1], [2] in the framework

of a genetic algorithm. The solution is encoded as a vector

For convenience, we use .and v 1o denpte ¢(X) and of lengthn (i.e. number of nurses) with the position of each
‘p(g’T(X)) respectwely..[')esplte the popularity of the penalt‘yallele representing a nurse and its value the shift pattern
funct.|o.n me'thod, demplmg on a proper yalqe for pepalt dex. This representation can automatically handle constraint
coefficient) is challenging. In many cases, finding an optim ). However, the covering constraint (3) will be handled

value for A becomes a difficult optimisation problem itsel using the stochastic ranking method. The parameter settings
and is probably problem dependent [3]. That is, paramete 9 9 ' P 9

tuning is required for different problems (or even differen?fr the genetic algorithm are given in Table 1. In order for

problem instances). For example, in [1], [2], a similar form oF valid and sound comparison, all these parameter settings

o | b are the same as those used in [1] except for the selection
penalty function is used to penalise violations of the coverin

. - ategy which is based on stochastic ranking and elitism
constraint (3). The penalty coefficients are set after care . . :
. 4 ; . . .e. the best solution always survives to the next generation)
experimentation. Even so, both genetic algorithms in [1], [

are struggling to find feasible solutions, especially for two Note that duplicate solutions are not allowed in the population.



TABLE |
PARAMETERS FOR THE GENETIC ALGORITHM

Parameters Settings

Population size ps = 1000

Crossover Simple one point crossover

Mutation Change the shift pattern of a randomly selected nurse to a random but feasible pattern

Crossover rate  0.75
Mutation rate 0.02
Stop criteria gen’ = 30 continuous non-improvement generations or the optimal solution is reached

Py 0.25
Selection Tournament selection with stochastic rankisig7() + elitism
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Fig. 1. Analyses of the population evolution of the stochastic ranking genetic algorithm. (a): dynamics of the percentage of feasible solutions in the population.
(b): Average and best penalty cost of the population over time.

while in [1] the best 10% of solutions are directly copieghenalty cost keeps reducing gradually over time, indicating
to the next generation. In the same way as in [1], singthat the overall solution quality of the population improves
point crossover is used. A mutation operator assigns a nelewly over time. Note that maintaining a proportion of
random feasible shift pattern for a randomly selected nursefeasible solutions in the population is useful for the search
Therefore, we did not tune these parameters when introducingnsferring between different disconnected feasible regions.
the stochastic ranking method into the genetic algorithm.

Figs. 1(a) and 1(b) present typical plots of the population Figs. 2(a) and 2(b) present the results of the stochastic
feasibility level and transformed penalty cost against ﬁmeranking genetic algorithm (SRGA) in comparison with the
Since the initial population is generated randomly, there iisdirect genetic algorithm (IGA)in [2] among 20 independent
rarely a feasible solution at the beginning. As the searglins. Due to space limitation, we do not compare with the
progresses, the feasibility level tends to increase and stabiliggsults in [1] but they are inferior to those in [2] both in terms
at between 20% to 30% of the population. There are st feasibility and objective values. Fig. 2(a) illustrates the
a relatively large percentage of infeasible solutions in thglvantages of the stochastic ranking method over the penalty
population, probably due to the fact that we are dealifgnction method. SRGA is able to find a feasible solution
with a highly constrained search space. A large number igf all 20 runs for each of 52 instances. However, IGA is
genetic operations (crossovers and mutations) would genergi@ggling for six instances, especially for the instances 49
infeasible solutions. However, from Fig. 1(b) it can be seeihd 50 where only 2 out of 20 attempts successfully find a
that although the population feasibility level maintains feasible solution for the problem. Unfortunately, although it
relatively stable value after 150 generations, the averageable to find feasible solutions very quickly, the solution

2The same transformed penalty cost function as in [2] was used for this
analysis only. 3An arbitrary objective value of 200 is assigned to an infeasible solution.
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Fig. 2. A comparison of stochastic ranking genetic algorithm (SRGA) with indirect genetic algorithm (IGA) by [2]: (a) Percentages of feasible solutions
obtained among 20 runs. (b) Average objective value over 20 runs.

quality in terms of penalty costs is not as good as for IG&election strategy to the current problem search scenarios. See

(see Fig. 2(b)). In fact, the better quality solutions by IGA arfs] for more details.

mainly attributed to its specia_lien.coding §chema and maki.”gHowever, it does not make sense to simply implement the

use of some problem specific information. To solve thigntire simulated annealing hyper-heuristic algorithm into the

problem, we hybridise the SRGA with a recently proposegbnetic algorithm. Firstly, it is computationally expensive to

simulated annealing hyper-heuristic algorithm [5]. execute a simulated annealing hyper-heuristic at each local
search phase. Secondly, the main aim of a local search proce-
dure in a memetic algorithm is to quickly identify local optima

V. HYBRIDISATION WITH A SIMULATED ANNEALING which the standard genetic algorithm finds difficult to locate.
HYPER-HEURISTIC Therefore, there is no point in starting every local search with a
high temperature. The pseudo-code for the proposed algorithm
A. The hybrid algorithm is outlined in Fig. 3.

Considerable research has shown that the performance ofhe parameters of the genetic algorithm remain the same
genetic algorithms can be improved by combining them wittxcept that the population size is decreased to 100 for
local search procedures. They are often referred toemetic computational considerations. The parameters with regard to
algorithms[4], [35]. In this paper, we hybridise the genetidthe simulated annealing hyper-heuristics are set as follows.
algorithm with a simulated annealing hyper-heuristic approaéh = 20, ¢, = 10.0, t; = 0.1, 8 = (ts — ty)/(gen’ - ts - t5),
that has demonstrated impressive performance over three diffksed on some preliminary experiments. The temperature
cult optimisation problems [5]. Hyper-heuristics are high-levés decreased nonlinearly according to = ¢/(1 + St)
strategies that “choose heuristics to solve a given problamtil ¢ < ¢y, at which point the temperature is reset to
instance or search scenario” [36], [37]. A two-layer structure. For the purpose of reducing computational time, the
(separated by a domain barrier) can be adopted in ordecal search procedurd,S_SAHH, is a simplified version
to increase the level of algorithmic independence over tloé the simulated annealing hyper-heuristic where the low
problem domain. Two key components in the hyper-heuristievel heuristics are selected uniformly (see Fig. 4). We also
layer are theheuristic selection mechanis@and thesimu- carried out some experiments on a hybridisation of the
lated annealing acceptance criterioifhe heuristic selection genetic algorithm with an improvement-only local search
mechanism strategically chooses between heuristics in ordpproach (i.e. without the simulated annealing acceptance
to adapt to different problem search scenarios. However, ttriterion). However, the results were not competitive with
simulated annealing acceptance criterion component, whakese presented here. Since the aim of the local search in
temperature is systematically changed during the search, @re hybrid algorithm is to efficiently search for feasible local
sures that only heuristic moves that have satisfied the criterioptima, the procedure only accepts feasible solutions, or in
are accepted. Meanwhile, the heuristic selection componéme case of equal infeasibility between the current solution
periodically monitors the performance of each heuristic armhd neighbouring solution, the new solution is accepted
their acceptance ratios as feedback information to adapt d@scording to the simulated annealing acceptance criteria. A



stepl: Initialisation: generate an initial population, set start temperajusiopping temperaturey

and temperature reduction rafet = t,. Set the number of iterations for local searkh

step2: Apply genetic operations (crossover and mutation).

step3: Stochastic ranking and selection.

step4: For each individudl,, call LS_.SAHH(I,, K).

step5: Update temperature: if ¥ ¢;) thent = ¢/(1 + jt), otherwiset = ¢,
step6: Goto step2.

Fig. 3.

Pseudo-code of the hybrid algorithm

Input: I,,, K, low-level heuristicsH;, i=1,.../mn.
for i=1to K

Select a heuristidZ; uniformly.
Sample a new solutiod], from I,, using heuristicH,;
if ((g=(11,)) < ¢(gr(1u))) thenl, — I},

else if (o(gr (1)) = ¢(gx(L.))) then
Calculate the difference in objective functién= f(I)) — f(I,,).

if (0 <0ore®*> Rand(0,1)) thenI, « I..
endif

endfor
Output I,

Fig. 4. Procedurd S.SAHH (I, K)

total

of nine simple low-level heuristics were used, draw(TSHH) [19] 4, the indirect genetic algorithm (IGA) [2], and

from [19]. For completeness, they are described here. a more recently proposed estimation of distribution algorithm

H,y
H,
Hs

Hy
Hs
Hg

Hy

Hyg

Hy

B. Comparison with other approaches

(EDA) [23]
Change the shift-pattern of a random nurse to anotherTabIe Il presents a comparison of the average objective
random feasible shift-pattern. values by the proposed hybrid algorithm and those by TSHH

Similar to H, except the acceptance criteria is 11 [38]. It can be seen that for the majority of instances (33
improving ¢ value'. out of 52), the hybrid algorithm performed better than TSHH.

Same agH; but “1st improvingy and not deteriorating TSHH produced better results for 5 instances only and for
1. the remaining 13 instances both algorithms obtained the same
Same ag{; but ‘ist improving f’. results. ) o
Same asH; but ‘ist improving f and not deteriorating The detailed results of IGA and EDA are presented in Fig. 5
o and Fig. 6 respectively. Comparisons are made in three aspects:
Switch the shift-pattern type (i.e. from day to nigh#i”f' is the number of unsuccessful runs (out of 20 total
independent runs) that have failed to find a feasible solution by

and vice versa) of a random nurse if the solution i ) )
unbalanced. the given algorithm#opt. denotes the number of successful

This heuristic tries to generate a balanced solution FJ€MPtS that have found an optimal solution @nhdithin 3
switching the shift-pattern type (i.e. change a day shift2 the number of runs that found a SO|UtIO!’I within 3 penalty
pattern with a night one if night shift(s) is unbalanceOSts away from the optimum. These splutlons are copS|dered
and vice versa. If both days and nights are not balancdf,°€ of good quality. The optimal solutions were obtained by
swap the shift patterns of two nurses who are workirfg standar_d IP pack(_’;\ge WhICh is impractical due to the high
on different shift-pattern types. computational and financial costs [2]. .
This heuristic tries to find the first move that improves !t can be seen that both the EDA and the proposed hybrid

f by changing the shift pattern of a random nurse arfjgorithms perform better than the IGA in terms of finding
assign the abandoned shift pattern to another nurse. feasible solutions. The IGA has difficulties in finding feasible

Same as H8 but ‘1st improving without worseningy'. solutions_ for six _problem in;tances yvhile botr_l the _EDA and
the hybrid algorithm can find feasible solutions in all 20
runs for all the instances. In general, the performance of
the proposed hybrid algorithm is much better than both IGA
and EDA. Among 20 runs, the hybrid algorithm can solve

The proposed hybrid algorithm was applied to the same 8ft the instances to optimality. For 44 out of 52 instances,
instances as in [1], with each instance being solved 20 timide hybrid algorithm obtained a good quality solution (i.e.

using independent random seeds. The detailed results of thg
hybrid algorithm are presented in tables Ill, IV and Fig. 7. Wg e

Due to the unavailability of the detailed computational results in [19],
ad we drew results from [38] by the same algorithm with the best

now make comparisons with the tabu search hyper-heurisiigameter configuration HH1:4L.



TABLE Il
THE HYBRID ALGORITHM VS THE TABU SEARCH HYPERHEURISTIC

Set 1 2 3 4 5 6 7 8 9 10 11 12 13
TSHH 80 513 500 170 110 20117 160 33 21 20 21 20
Hybrid Algorithm 8.0 499 50.0 170 110 20 110 141 3.026 20 20 20
Set 14 15 16 17 18 19 20 21 22 23 24 25 26
TSHH 33 30 390 133 226 14 92 00 251 0.3 1.0 0.0 481
Hybrid Algorithm 3.2 3.0 384 90 180 13 89 0.0253 0.1 1.0 05 73.0
Set 27 28 29 30 31 32 33 34 35 36 37 38 39
TSHH 3.3 643 150 351 68.3 405 11.0 41.7 38.7 343 5.23.0 5.0
Hybrid Algorithm 3.7 63.1 15.1 35.0 652 400 10.8 380 36.0 321 50 130 5.0
Set 40 41 42 43 44 45 46 a7 48 49 50 51 52
TSHH 86 607 486 264 301 30 65 34 56 298 1089 742 615

Hybrid Algorithm 7.2 58.0 383 220 232 30 40 30 41 270 1073 740 58.0
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Fig. 5. Detailed results by IGA
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Fig. 6. Detail results by EDA with ant-miner

solutions within 3 penalty cost away from optimality) on eaciSHH was run on a PC Pentium [l 2000Mhz with 128MB
of 20 independent runs. RAM with CPU time limit of 60 seconds. Nevertheless, with
In terms of computational time, IGA is very fast, with anextra computational time, the hybrid algorithm can prod_uc_e
average time of 9p3 seconds per instance }cl)n a Pentium Vch better results than both the IGA and the EDA heuristic
PC. EDA takes an average of 30 seconds on a Pentium :wd the TSHH for most of problem instances. Table Il
2.0GHz PC with 512MB RAM. The average computationaﬁresems more detailed results of the proposed hybrid algorithm
time for our hybrid algorithm is 61.2 seconds on a Pentiu compgrison with the simulated annealing hype_r-heuristic
IV 1.8 PC with 2GB RAM. This is mainly due to the localSAHH) in [5]. The performance of the hybrid algorithm and
search phase SAHHS, which is computationally expensive SAHH is similar for several problem instances. However, the
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Fig. 7. Detailed results by the hybrid algorithm

TABLE Il
HYBRID ALGORITHM VS SAHH (CONTINUED ON NEXT PAGE

IP SAHH Hybrid Algorithm
Set best mean worst stdevbest mean worst stdev
1|8 8 8.0 8 0.00| 8 8.0 8 0.00
2 |49 49 50.9 55 2.13 49 49.9 51 0.45
3 | 50| 50 50.0 50 0.00 50 50.0 50 0.00
4 | 17| 17 17.0 17 0.00 17 17.0 17 0.00
5 11| 11 11.0 11 0.00 11 11.0 11 0.00
6 2 2 2.0 2 0.00| 2 2.0 2 0.00
7 |11 11 11.0 11 0.00 11 11.0 11 0.00
8 | 14| 14 14.1 15 0.31 14 14.1 15 0.22
9 | 3 3 3.0 3 0.00| 3 3.0 3 0.00
10| 2 2 2.5 4 0.69| 2 2.6 4 0.68
11| 2 2 2.0 2 0.00| 2 2.0 2 0.00
12 | 2 2 2.0 2 0.00f 2 2.0 2 0.00
13| 2 2 2.0 2 0.00| 2 2.0 2 0.00
14 | 3 3 3.3 4 0.44| 3 3.2 5 0.49
15| 3 3 3.0 3 0.00| 3 3.0 3 0.00
16 | 37| 37 41.4 66 8.66 37 384 44 2.87
17| 9 9 10.1 15 1.67) 9 9.0 9 0.00
18 | 18| 18 18.7 28 2.25 18 18.0 18 0.00
19| 1 1 1.3 4 0.72| 1 1.3 2 0.47
20| 7 7 8.3 21 3.18| 7 8.9 20 4.64
21| 0 0 0.2 1 041 O 0.0 0 0.00
22 | 25| 25 25.3 27 0.57] 25 25.3 27 0.57
23| 0 0 0.2 1 041 O 0.1 1 0.31
24 | 1 1 1.0 1 0.00| 1 1.0 1 0.00
25| 0 0 0.2 1 041 O 0.5 1 0.51

hybrid algorithm seems to be more consistent in producihg instances, the average penalty costs (respectively the worst

good quality solutions. Take instance 16 for example, bofienalty cost and standard deviation) by the hybrid algorithm

the average penalty costs and standard deviation by SAHBve been reduced by 3.9% (respectively 20.1% and 47.7%)

are much larger than the hybrid algorithm'’s. The search spammmpared with SAHH.

of this instance seems to have many disconnected feasible

regions. As a population based approach, the proposed hybridnother advantage of the proposed hybrid approach is its

algorithm is capable of searching in a larger search space tisimplicity of implementation and flexibility to be adapted

SAHH, which is a single point search method. Similar resulte other constrained optimisation problems. Compared with

can be observed for instances 18, 26, 33 and 49. Over the penalty function method and other constraint handling
techniques, stochastic ranking is simpler and more generic.



TABLE IV
HYBRID ALGORITHM VS SAHH (CONTINUED FROM PREVIOUS PAGE

IP SAHH Hybrid Algorithm
Set best mean worst stdevbest mean worst stdev
26 | 48 48 91.1 198 54.04 48 73.0 148 44.43
27 2 2 4.4 13 4494 2 3.7 13 4.03
28 | 63 63 63.3 65 0.55 63 63.1 64 0.22
29 | 15 15 15.3 18 0.72 15 15.1 16 0.31
30 | 35 35 35.7 40 1.42 35 35.0 35 0.00
31| 62 62 64.7 66 1.84 62 65.2 66 1.64
32 | 40 40 40.1 41 0.22 40 40.0 40 0.00
33| 10 10 156 103 20.64 10 10.8 11 0.44
34 | 38 38 38.1 39 0.22 38 38.0 38 0.00
35| 35 35 35.9 39 1.23 35 36.0 39 1.78
36 | 32 32 32.7 33 0.49 32 32.1 33 0.31
37 5 5 5.0 5 0.00| 5 5.0 5 0.00
38 | 13 13 13.1 15 0.45 13 13.0 13 0.00
39 5 5 5.0 5 0.00| 5 5.0 5 0.00
40 7 7 7.5 9 0.69| 7 7.2 8 0.37
41 | 54 54 61.7 83 12.11 54 58.0 82 9.78
42 | 38 38 38.8 40 0.55 38 38.3 40 0.55
43 | 22 22 23.2 32 3.04 22 22.0 22 0.00
44 | 19 19 27.3 34 5.21 19 23.2 30 5.22
45 3 3 3.4 5 0.75] 3 3.0 3 0.00
46 3 3 4.8 6 0.83] 3 4.0 5 0.89
47 3 3 3.0 3 0.00| 3 3.0 3 0.00
48 4 4 4.3 5 0.44| 4 4.1 5 0.31
49 | 27 27 31.9 118 20.28 27 27.0 27 0.00
50 | 107 | 107 107.9 109 0.81 107 107.3 108 0.44
51| 74 74 74.1 75 0.31 74 74.0 74 0.00
52 | 58 58 59.3 73 3.92 58 58.0 58 0.00
Av | 21.1] 211 23.0 313 3.0221.1 221 250 1.58

It is not based on domain-specific structures and hence aamstraint handling approach, the stochastic ranking method
be used for various constraint handling situations within dras demonstrated better performance with regard to feasibility.
evolutionary algorithm framework. Meanwhile, the simulatedo improve the solution quality in terms of the objective
annealing hyper-heuristic could complement the drawbacksfahction, a simulated annealing hyper-heuristic algorithm was
a conventional evolutionary algorithm with its better capabilithybridised with the genetic algorithm. Experimental results on
to capture local optima efficiently. 52 problem instances has demonstrated the high performance
and consistency by this hybrid approach when compared with
other approaches for this problem. The contribution of this
This . i paper is the presentation of a robust and efficient hybrid
paper has considered a real-world nurse rosteri . . . .
a Prlthm for the nurse rostering problem. The algorithm is

grOEf;:hvézlzg\?:i:e?ghrg (;Zgztr%??r(?isse?é%ﬁ]e?\)a\fviiciex%i o simple and flexible and provides significant potential for

pp =€ prop . problem, Yfension to other constrained optimisation problems.
either struggled to find feasible solutions or failed to produce
high quality solutions efficiently in terms of the objective
function. In this paper, we proposed a hybrid algorithm
for this problem which combines a genetic algorithm andi] U. Aickelin and K. A. Dowsland, “Exploiting problem structure in a
a simulated annealing hyper—heuristic. In this algorithm, a 9genetic algorithm approach to a nurse rostering probleloyrnal of
stochastic ranking method was used to improve the constrai
handling capability of the genetic algorithm while a simulated  nurse scheduling problemComputers & Operations Reseayafol. 31,
annealing hyper-heuristic procedure was incorporated in or- N0 5, pp. 761778, 2003. _ _ _

. . ... [3] T. P. Runarsson and X. Yao, “Stochastic ranking for constrained evolu-

der to locate local optima more efficiently. Compared with

” ) ; tionary optimization,"lEEE Transactions on Evolutionary Computatjon
genetic algorithms that use penalty function methods as a vol. 4, no. 3, pp. 284-294, 2000.

VI. CONCLUSION
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