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Abstract—In this paper, we combine graph coloring heuristics, 
namely largest degree and saturation degree with the concept of a 
heuristic modifier under the framework of squeaky wheel 
optimization for solving a set of examination timetabling 
problems. Both heuristics interact intelligently and adaptively 
determine the ordering of examinations to be processed during 
each of iteration. A variety of approaches based on different 
heuristics and their combinations are investigated. Experimental 
results on a set of benchmark problems show that the proposed 
approaches can produce high quality solutions comparable to the 
other constructive methods. For one problem instance, the best 
results based on constructive heuristics provided in the literature 
are improved by one of the proposed methods. We conclude that 
our approach is simple, yet effective.  

Keywords-Examination timetabling; constructive heuristic; 
priority 

I.  INTRODUCTION  

Examination timetabling is an NP hard real world problem 
[1]. The complexity of the problem arises due to several 
reasons e.g. the introduction of flexible course structures, 
increasing student enrolments etc… Further research work is 
required to enhance the quality of the timetable in such a 
manner as to satisfy both the institutional and personal 
preferences.  Research in the area of Artificial Intelligence [2] 
and Operation Research [3] have been implemented using 
various approaches in order to solve this difficult timetabling 
problem with the aim to find a more generic and effective 
approaches. Generally, the goal in timetabling is to find a 
solution that optimizes some desired objective function based 
on a set of given constraints. There are two types of constraints 
i.e. hard constraints and soft constraints. In creating a feasible 
solution, the hard constraints must not be disobeyed or 
‘broken’ in any circumstances. The soft constraints, on the 
other hand, can be broken and the extents of these breaches 
determine the quality of the obtained solutions. 

A number of research papers formulate examination 
timetabling as a graph coloring problem [3] where the vertices 
represent the examination, the edges represent the conflict 
(students taking both corresponding examinations at one time) 
occurring between two examinations and the colors for the 
vertices represent the time slots for the examination. The 

incorporation of graph theory is known as one of the earliest 
approach applied in examination timetabling [4]. In general, 
using this approach a timetable is constructed by using some 
sequential strategies which attempts to place the examinations 
into time-slots with the aim of providing a feasible solution. 
The placement of the examinations is usually related to the 
difficulty of examinations to be scheduled, where the most 
difficult examination scheduled the first.  Reference [5] list the 
most commonly used sequential strategies for examination 
timetabling, i.e., largest degree, largest weighted degree, color 
degree and saturation degree. 

Much research in the area of timetabling has utilized meta-
heuristic approaches with great success. These methods begin 
with one or more initial solutions and employ search strategies 
for the purpose of improvement [6]. Various search strategies 
are designed to escape from local minima e.g. tabu search, 
simulated annealing, genetic algorithm and ant colony 
optimization. Hybrid, meta-heuristics approaches have shown 
to be particularly effective. An overview of meta-heuristic 
approaches can be found in [7], [6] and [3]. 

Other methods, based on local search technique have been 
introduced recently. These methods try to escape from local 
optima by navigating the search space and exploring the 
neighborhood structure that is different from that deployed by 
meta-heuristics. Several studies have been implemented using 
this idea i.e. large neighborhood search [8], variable 
neighborhood search [9] and iterated local search [10]. One 
disadvantage of the approaches described is that there is often a 
reliance on parameter tuning in the production of solutions in 
particular circumstances. This has motivated the introduction 
of hyper-heuristics [11], memetic algorithms using hyper-
heuristics to choose from multiple hill climbers [12], case-
based reasoning [13], fuzzy approaches [14] and constraint-
based reasoning [15] within the timetabling arena. 

The early approach of sequential heuristics during the 
construction phase continues to have great success [16]. These 
sequential heuristics are proven to be very effective when a 
backtracking procedure is employed [17]. The backtracking 
procedure is useful in order to ensure that solutions are 
feasible. Often some already placed examinations are 
unscheduled in order to place more difficult examinations. 



Various heuristics are implemented as part of backtracking 
procedures [3]. The current examination is then fixed to the 
available time-slot while the recent unscheduled examination 
will be scheduled in other available time-slot. It is found that 
this procedure can reduce the length of the examination session 
by half compared to sequential techniques without 
backtracking. In particular, it has been shown that saturation 
degree is a dynamic ordering and it can produce a good 
sequence in ordering the examinations. 

Reference [18] introduced fuzzy methodologies for 
examination timetabling by combining two heuristics to order 
the examinations based on the difficulty of scheduling them. 
Three heuristics were used in the experiment i.e. largest degree, 
saturation degree and largest enrolment with three 
combinations of two heuristics. A fuzzy approach is used to 
represent the knowledge from the heuristics (named as input 
variables), evaluate them and construct an examination weight 
as an input variable. The examinations are then ordered based 
on the examination weight values and are scheduled in the 
timetable without violating any of the hard constraints. The 
‘bumped back’ strategy is employed only if the examination 
cannot be scheduled in the timetable. This approach has shown 
to produce a competitive result when tested on the Toronto data 
sets even though it doesn’t employ any improvement method in 
the algorithm. The work shows that tuning procedure is needed 
for different combination of heuristics in order to obtain good 
result. 

In the recent application of examination timetabling, 
interest in adaptive approaches has prompted development of 
more general techniques that would allow finding the best 
initial solution without necessitating a backtracking strategy. In 
[19], the adaptive heuristic orderings technique can adapt to 
any given problem by adding a heuristic modifier to the basic 
heuristic technique (e.g. largest degree first). It works by 
promoting difficult examinations to be schedule first at each of 
iteration based on its order. Different consideration of hard 
constraints and soft constraints are taken into account in order 
to test the application of heuristic modifier. This technique has 
introduced a good initialization strategy for examination 
timetabling problems. The results have shown that adaptive 
approach could improve the quality of the obtained solution 
compared to basic heuristic approach alone and it is faster and 
easier to implement. They have proved that this method is 
capable of turning poor initial ordering into a good one and at 
the same time supplying more independence on the choice of 
heuristic ordering. In other recent study, [20] has also 
implemented adaptive approach to examination timetabling by 
hybridizing the graph heuristics. 

In this study, we investigate the use of adaptive strategies 
that order (prioritize) the examinations to be scheduled within a 
constructive approach. These approaches differ from the 
previously proposed approaches where we have incorporated a 
strategy to choose examination differently from its original 
ordering. Additionally, we have incorporated a stochastic 
component into the process of assigning a selected examination 
to a time-slot. In Section 2, we present the proposed intelligent 
heuristics algorithm which is inspired from the Squeaky wheel 
optimization [21]. Section 3 describes the experimental data 
and discusses the results. Finally, the conclusion is provided in 

Section 4. Adaptive Heuristics Ordering the Examinations 
Based on Priorities 

The adaptive approaches we propose are based on the 
concept of squeaky wheel optimization (SWO) [21]. A squeaky 
wheel optimization is an iterative greedy approach that cycles 
around three successive processes: Constructer, Analyzer and 
Prioritizer. A candidate solution to a problem at hand is 
assumed to consist of elements. Hence, a solution is 
constructed element by element using an initial priority 
ordering of the elements at each step. For example, in the 
context of examination timetabling, an examination is an 
element. Using graph coloring heuristics, an initial ordering 
can be obtained for the examinations. Once the constructor 
makes an assignment to an element, it goes under an analysis 
process to see whether such an assignment generates a problem 
or not. For example, an available time-slot might not be found 
for a given examination. If a problem occurs, a strategy is used 
to increase the priority of the element so that it would be ahead 
of the other elements with lower priorities in the next iteration. 
In a way, modifying the priorities might change the previous 
ordering of elements causing construction of a new candidate 
solution in the next iteration. The iterations continue until 
certain criteria are met. Finally, the best solution found so far is 
returned. 

• Constructor. The constructor generates a solution 
iteratively by going over each unscheduled 
examination one by one in the provided order. This 
order is based on a graph coloring heuristic. At each 
step, a given unscheduled examination is assigned to a 
time-slot with the least penalty.  Eventually, it is 
possible that some of the examinations will be still 
unscheduled at the end. 

• Analyzer. A certain value is added to the difficulty for 
the unscheduled examination in order to show that the 
examination is more difficult to schedule than 
expected. This value is allowed to increase at each of 
iteration, if the examination cannot be scheduled. 

• Prioritizer. The new order of examinations is obtained 
based on the difficulty values updated by the Analyzer. 

Our approaches adapt the examination orderings based on 
two heuristics in order to schedule them. Each examination has 
a priority determined by the chosen graph coloring heuristic. 
Such a value can be considered as a default difficulty level of 
scheduling for a given examination. If an assignment cannot be 
found for a certain examination, then it can be considered to be 
more difficult to schedule then expected. This unscheduled 
examination is given more priority in the next iteration. Its 
difficulty level is modified using a heuristic value added on top 
of the value provided by the graph coloring heuristic. This 
adaptive approach requires no backtracking strategy, if there 
are unscheduled examinations. 

We have considered only hard constraint to this problem 
i.e. to avoid any conflicts among examinations. A common 
objective function for examination timetabling is the proximity 
cost penalty function which describes the average penalty per 
student. It was introduced by [22] in 1996 in conjunction with 
the first acquaintance of benchmark data sets for examination 



timetabling problem. This objective function is used in this 
study to measure the quality of the obtained solution. Formally, 
this cost function represents the spread of students in 
examination schedule and it has been formulated as the 
minimization of: 
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where N is the number of examinations, cij is the number of 
students entitled for both examination i and j, ti is the assigned 
time-slot for examination i, w|tj - ti| is the weight whenever a 
student who is entitled for two examinations are scheduled |tj - 
ti| apart and M is the number of students. The penalty weight, 
w| tj - ti | is calculated as 25 - |tj - ti| where, |tj - ti| ε {1, 2, 3, 4, 5}. 

This study extends the previous work provided in [19]. We 
used the idea of difficulty and heuristic modifier within the 
Analyzer.   

           difficultyi(t) = heuristici(t) + heurmodi(t)          (2) 

The heurmodi(t) for examinations i at iteration t gives 
priority to examination if only there exist unscheduled 
examinations and is added to chosen heuristici(t) at each of 
iteration. The difficultyi(t) is a discrete variable and will 
estimate the priority of the examination after completing the 
iteration. 

A. Graph Coloring Heuristics 

In this study, we used two types of heuristics ordering:  

• Largest Degree. The ordering is based on the largest 
number of conflicting examinations and the 
heuristici(t) holds the number of conflicting 
examinations for examination i. The difficultyi(t) will 
be increased at each of iteration t if the examinations 
are unscheduled. At this stage, the heuristici(t) remains 
unchanged and the heurmodi(t) will increased during 
the iteration. Priority is given to the highest value of 
difficulty.  

• Saturation Degree. The ordering is based on the 
number of time-slots in conflict where the 
examinations with the fewest conflicts will be 
scheduled first. Specifically, once we have done an 
assignment, if the next examinations are conflicting 
with the current examination and the assigned 
examinations, so the number of slots for the next 
examinations will be reduced by one at each of 
assignment. We have initialized the difficultyi(t) for 
this heuristic with 1. This value will keep increasing if 
examination cannot be scheduled during the iteration 
until the maximum number of time-slot. The higher 
priority of choosing the examination is given to the 
higher value of difficulty. 

B. Graph Coloring Heuristics 

Different heuristic modifiers are used in order to stress the 
priority to the difficult examinations. Equation (3), (4), (5) and 

(6) show the description of each characteristic, where c is a 
constant and give different value to the difficulty.  

• Custom (C). This is a conventional heuristic. We made 
the heuristic as an adaptive approach and vary the 
choice of examinations. If there are several 
examinations to choose with the same heuristic value, 
we will choose the examination randomly. 

 heurmodi(t) = heurmodi (t-1), heurmodi(0)= 0          (3) 

• Additive (AD). The modifier is incrementing by 1 at 
each of iteration if unscheduled examination occurred. 
This approach does not make much improvement to 
the difficulty if the heuristic value is small and it takes 
longer time or need more iteration to show that the 
examination is very difficult. In other way, this 
approach has a modest effect on the problem. 

    heurmodi(t) = heurmodi(t-1) + 1, heurmodi(0) = 0        (4) 

• Multiplicative (MP).  We have multiplied the modifier 
by 2 to show the higher priority for the problematic 
examinations. 

heurmodi(t) = heurmodi(t-1) + c, heurmodi(0) = 0, c = 2  (5) 

• Exponential (EX).  This modifier will upgrade 
significantly the priority if the examination is difficult 
since the priority is increased by 2n, where n is the 
total number of times the examinations cannot be 
scheduled. 

heurmodi(t) = c· heurmodi(t-1), heurmodi(0) = 1, c = 2    (6) 

C. Shuffling the Ordering of Examinations 

In order to choose the examination to be scheduled, we 
have ordered the examinations based on the difficulty 
(priority). Previous results indicate that the measures used for 
the difficulty are approximate measures. Making use of such 
measures in our approaches, the ordering that we generate 
might not be indicating the exact ordering that should be. 
Instead of using the ordering of examinations directly, they can 
be shuffled and an unscheduled examination can be chosen 
based on a shuffling strategy. 

As a novel strategy, we have partitioned all ordered 
examinations into fixed size of blocks and shuffled all 
examinations within each block randomly before making an 
assignment. This strategy uses a block size parameter. As an 
example, if the block size is fixed as 2, then all examinations 
are sorted first with respect to their difficulty of scheduling 
using the chosen measure(s) and each 2 consecutive 
examinations are either swapped or remain in the same position 
based on a coin flip. The examinations are scheduled based on 
this new ordering. The technique has also been tested with a 
block size of 0, indicating that the measure(s) used directly 
determines the difficulty of scheduling an examination for 
comparison purposes.  The experiments are performed using 
different block sizes in order to observe the affect of this 
parameter on the performance of the approach. This approach 
will be referred to as Block. 



For the saturation degree graph colouring heuristic, it is not 
possible to rearrange the examinations using the block 
approach due to its dynamic nature. In a previous study [23], it 
is suggested that a random examination can be chosen from a 
fixed number of top examinations. Notice that, this strategy can 
be used with both saturation and largest degree heuristics. An 
examination is chosen randomly from a given number of top 
examinations, referred to as top window size. After the selected 
examination is scheduled, the difficulties are updated and no 
rearrangement takes place. For example, if the top window size 
is 2, one examination to be scheduled is chosen randomly from 
the first 2 unscheduled examinations based on their difficulties. 
The difference between this strategy from the previous one is 
that in this strategy, there is a chance that (even though this is a 
slim chance) the most difficult examination might be scheduled 
at last. This strategy will be referred to as Top Window.  We 
have experimented with Block and Top Window with different 
sizes in {none, 2, 3, 4, 5, 6, 7, 8, 9, 10}. 

D. Time-slot Choice 

After an unscheduled examination is chosen, it is assigned 
to the most suitable time-slot. This assignment decision is 
based on the least penalty value obtained considering all time-
slots. In the previous studies, it seems that the first time-slot 
that generates the least penalty is chosen for assignment. It is 
possible that there might be several time-slots that generate the 
same least penalty value; hence, we have included an element 
of randomness in making this choice. In such a situation, we 
introduce the possibility of an examination to be assigned to a 
different time-slot during another iteration even though the 
order of examinations does not change. 

II. EXPERIMENTS 

Pentium IV 1.86 GHz. Windows machines having 1.97 Gb 
memories were used during the experiments. All runs were 
repeated fifty times to generate solution for each combination 
of graph coloring heuristic, heuristic modifier, shuffling 
strategy and the relevant parameter due to the stochastic nature 
of the proposed approaches.  A run terminated whenever the 
maximum number of iterations was reached. Two different 
values, {2000, 4000} were used for the maximum number of 
iterations during the experiments. 

A. Experimental Data 

The characteristics of the experimental data sets are 
summarized in Table I. It was introduced by [22] from various 
universities with different characteristics and various density of 
examinations conflict. These benchmarks are very well known 
in the timetabling community. Unfortunately, there are 
different versions of these data sets. We adapt the notation used 
in [7] to specify the data sets used during our experiments.   

B. Experimental Results 

The experimental results are provided in Table II for the 
largest degree and the saturation degree graph colouring 
heuristics using different combination of algorithmic choices, 
respectively. The tables report the best penalty values obtained 
out of 50 runs for two graph colouring heuristics (bestLD and 

bestSD) for each combination and for each problem instance. 
The best result for each problem instances is highlighted in 
bold font.  

TABLE I.  THE CHARACTERISTICS OF THE EXPERIMENTAL DATA SET 

Problem Number of 
time-slots 

Number of 
examinations 

Number of 
Students 

Conflict 
Density 

car92 I 
car91 I 
ears83 I 
hec92 I 
kfu93 
lse91 
rye92 
sta83 I 
tre92 
uta92 I 
ute92 
yor83 I 

32 
35 
24 
18 
20 
18 
23 
13 
23 
35 
10 
21 

543 
682 
190 
  81 
461 
381 
486 
139 
261 
622 
184 
181 

18 419 
16 925  
  1 125 
  2 823 
  5 349 
  2 726 
11 483 
     611 
  4 360 
21 266 
  2 750 
     941 

0.14 
0.13 
0.27 
0.42 
0.06 
0.06 
0.08 
0.14 
0.18 
0.13 
0.08 
0.29 

TABLE II.  COMPARISON FOR DIFFERENT HEURISTICS WITH DIFFERENT 
COMBINATION OF ALGORITHMIC CHOICES 

Problem 

Combination of Algorithmic Choices 
{number of iterations, heuristic type, modifier type,  

Block/Top Window size} 

bestLD bestSD 

car92 I 
car91 I 
ears83 I 
hec92 I 
kfu93 
lse91 
rye92 
sta83 I 
tre92 
uta92 I 
ute92 
yor83 I 

4.56 {4000, LD, EX, 3} 
5.36 {4000, LD, EX, 9} 

40.00 {4000, LD, MP, 3} 
11.84 {2000, LD, MP, 6} 

15.54 {4000, LD, EX, none} 
11.78 {4000, LD, EX, 3} 
9.69 {4000, LD, EX, 4} 

157.85 {4000, LD, EX, 9} 
8.88 {4000, LD, EX, 2} 
3.66 {4000, LD, EX, 2} 
26.82 {4000, LD, EX, 7} 
41.59 {4000, LD, EX, 6} 

4.38 {2000, SD, EX, none} 
5.08 {4000, SD, EX, 5} 

38.44 {4000, SD, MP, 2} 
11.61 {2000, SD, C, 5} 

14.67 {4000, SD, EX, 2} 
11.69 {2000, SD, MP, 6} 
9.49 {4000, SD, AD, 5} 

157.72 {4000, SD, C, none} 
8.78 {4000, SD, C, 9} 

3.55 {4000, SD, EX, 3} 
26.63 {2000, SD, EX, 7} 
40.45 {4000, SD, C, 5} 

 
A comparison in Table II shows that a saturation degree 

based approaches provides a better performance as compared 
to the largest degree based approaches in all problem 
instances. In considering number for iterations, saturation 
degree with 4000 iterations has performed better than the 2000 
iterations by producing eight best results out of twelve. This is 
of course by giving more processing time it will give more 
chance for the algorithm to search and find good solution. 

 From Table II, the best results for saturation degree are 
mostly obtained by using the exponential modifier with five 
best results and from this result it shows that by upgrading the 
modifier in large amount of values it can significantly give 
more priority to the difficult examinations and at the same 
time give a better new ordering for examinations. It is then 
followed by custom modifier approach with four best results 
where it does not make use of any heuristic modifier. The 
difference of custom approach from previous implementations 
is that, we have still utilised the idea of assigning a random 
time-slot in case of equal quality possibilities for a given 
unscheduled examination. The multiplicative and additive 
modifier has obtained two and one respectively, for saturation 



degree. The top window size affects the performance of the 
approach. 

In considering largest degree graph colouring heuristic, 
Table II shows that the exponential heuristic modifier is the 
best choice in combination with the largest degree graph 
colouring heuristic for changing the order of examinations 
based on difficulty. The exponential heuristic modifier 
provided 10 best results for 12 problems, followed by the 
multiplicative heuristic modifier with two best results. The 
additive heuristic modifier has not delivered a good 
performance since it makes small changes in updating the 
difficulty value and longer time are needed to show big 
changes to the examinations ordering. The block size choice 
affects the performance. Considering the average penalty 
values, the block size of 6 is the best, but this performance 
variation is not significant. The conventional heuristic (with 
no block size) in this experiment has shown comparable result 
too. It has produced one best result for largest degree using 
exponential approach. 

TABLE III.  COMPARISON FOR DIFFERENT APPROACHES FOR (A) 
CONSTRUCTIVE HEURISTICS AND (B) OTHER IMPROVEMENT APPROACHES 

Problem [19] [22] [24] [18] bestLD bestSD 

car92 I 
car91 I 
ears83 I 
hec92 I 
kfu93 
lse91 
rye92 
sta83 I 
tre92 
uta92 I 
ute92 
yor83 I 

4.32 
4.97 
36.16 
11.61 
15.02 
10.96 

 - 
161.9 
8.38 
3.36 
27.41 
40.77 

6.2 
7.1 
36.4 
10.8 
14.0 
10.5 
7.3 

161.5 
9.6 
3.5 
25.8 
41.7 

4.53 
5.36 
37.92 
12.25 
15.2 
11.33 

 - 
158.2 
8.92 
3.88 
28.01 
41.37 

4.54 
5.29 
37.02 
11.78 
15.8 
12.09 
10.38 
160.4 
8.67 
3.57 
28.07 
39.8 

4.56 
5.36 
40.00 
11.84 
15.54 
11.78 
9.69 

157.85 
8.88 
3.66 
26.82 
41.59 

4.38 
5.08 
38.44 
11.61 
14.67 
11.69 
9.49 

157.72 
8.78 
3.55 
26.63 
40.45 

(A) 
 

Problem [25] [26] [13] [10] 

car92 I 
car91 I 
ears83 I 
hec92 I 
kfu93 
lse91 
rye92 
sta83 I 
tre92 
uta92 I 
ute92 
yor83 I 

4.5 
3.93 
33.7 
10.83 
13.82 
10.35 
8.53 

158.35 
7.92 
3.14 
25.39 
36.35 

5.2 
4.2 
34.2 
10.2 
14.2 
11.2 
8.8 

157.2 
8.2 
3.2 
25.2 
36.2 

4.6 
4.0 
32.8 
10.0 
13.0 
10.0 

- 
159.9 

7.9 
3.2 
24.8 
37.3 

6.0 
6.6 

29.3 
9.2 
13.8 
9.6 
6.8 

158.2 
9.4 
3.5 

24.4 
36.2 

(B) 
The bold entries indicate the best results for given approaches only, while the bold and italic ones 

indicate the best results found so far for the given problem instance 

 
As can be seen in Table II, increasing the block or top 

window size does not seem to improve the performance much. 
This might be because the arrangement of examinations in 
bigger chunks reduces the effectiveness of the approach by 
increasing the chance of a move towards a more random 
ordering of examinations. As another approach using a graph 
colouring heuristic can be considered to execute for different 

parametric choices, i.e., for largest degree and saturation 
degree using a number of block and top window sizes, 
respectively. Since, the parametric choices in both cases is a 
constant factor (2 to 10), it does not affect the overall running 
time. 

Table III reports the best results obtained for each data set 
in the literature using both constructive and improvement 
approaches. A comparison to previously proposed constructive 
approaches reveals that our constructive approach using the 
saturation degree heuristic provides new best result for sta83. 
For the rest of the problems, the results obtained are still 
comparable. Except for ears83 I, the adaptive approach using 
saturation degree performs better than at least one approach 
for each problem instance. Our approach generates better 
results as compared to the approach presented in [24] and [18] 
almost for all problem instances, except for ears83 I. 
Reference [18] also performs slightly better than our approach 
for car91 I and yor83 I. One of the best previously approaches 
is described in [22] which generates a better performance in 5 
out of 12 problems. A comparison to the constructive 
approach proposed in [19] shows that ours generates better 
results for kfu93, sta83 I and ute92 and a tie for hec92 I. 
Additionally, their approach can not even generate a feasible 
solution for rye92, while we obtain a good solution. The best 
results obtained using improvement approaches can not be 
improved further in any case but we have obtained one best 
result for car92 I within the improvement approaches. For 
only sta83 I, the proposed approaches generate a comparable 
result. 

 

III.  CONCLUSION 

In this paper we investigate the use of adaptive strategies 
that order (prioritize) the examinations to be scheduled within a 
constructive approach. These approaches differ from the 
previously proposed approaches where we have incorporated a 
strategy to choose examination differently from its original 
ordering. In this study, we have also incorporated a stochastic 
component into the process of assigning a selected examination 
to a time-slot. Our adaptive approaches can produce 
comparable solutions to the other approaches. The difficulty 
levels generated by combining a graph coloring heuristic and a 
heuristic modifier are used in ordering the examinations for the 
timetabling process. We have observed that by increasing the 
difficulty in certain ways, we can obtain good approximate 
solutions.  As a dynamic graph coloring heuristic, saturation 
degree has produced most of the best results as compared to the 
largest degree heuristic. In considering the appropriate heuristic 
modifier, exponential approach is the best for largest degree 
and saturation. The block and top window size approach in this 
study have varied in certain ways since the incorporation of 
stochastic element in our approach. We have identified that the 
best block and top window size to use is nine and below.  Still, 
this approach is simple, very affective and requires less 
computational time, hence it has potential for practical use. In 
future work, we intend studying the datasets introduced in 
Track on of the 2nd International Timetabling Competition 
[27]. This datasets represent real-life data instances with richer 
problems and several new requirements and limitations that 



satisfy the real world implementations in examination 
timetabling. 
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