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1. Background 
The goal of this paper is to demonstrate the utilisation of artificial intelligence (AI) technology within 
the field of auto-parallelisation. The paper will demonstrate the relevance and value of using AI 
approaches by reviewing three parallelisation environments, The Mathematician's Devil, FortPort and 
KATT. These environments are used as a framework for the discussion on the use of AI in the chosen 
application area. The paper shows the development and increasing sophistication in the deployment of 
AI techniques, as a means of resolving problems within the chosen application area. The application 
area is chosen as it has significant importance in its own right and is one where the utilisation of AI 
techniques can be shown to have valuable impact. 
 
2. Introduction 
Although architectures capable of parallel computation have been available for some time interest in 
this area of computing remains undiminished. From the introduction of vector and array processors, 
through interest in low cost clusters, to the recent introduction of computational grids the area 
continues to present considerable problems for researchers. 
 
While it can be argued that the study of early parallel systems met with considerable success in terms 
of the software systems developed for use with these machines the same cannot be said for multi-
processor systems. The work of Zima et al on vector processing systems yielded high quality 
compilers. However, it is difficult to find comparable systems for use with multi-processor machines. 
Heggarty [1] identifies a number of problems associated with both academic and commercial software 
systems designed for use with multi-processors. In addition, the frequently reported paradigm shift 
associated with the introduction of the computational grid model is associated with a dearth of 
middleware for such a system. 
 
The software problems associated with parallel systems arise from the expectations of the main user 
groups. The principal applications of these machines lie in the area of scientific computation where the 
main programming language is Fortran. While Fortran has evolved with time from the first ANSI 
standard for Fortran 77, through Vienna Fortran, Fortran D, High Performance Fortran, to the current 
Fortran 95, the problems remain largely unchanged. 
 
On the whole, users of multi-processor systems prefer the software to map their programs onto the 
chosen target architecture. Attempts to encourage users to use special libraries of parallelised code, or 
to use special parallel programming languages such as 3L Fortran, Occam, etc., have met with little 
success. Consequently, research has focussed on the development of advanced compilation systems to 
automatically parallelise code and on development environments to support this automation process.  
 
3. Heuristic approaches 
In an attempt to provide the users with valuable autoparallelisation environments attention turned to a 
number of alternative approaches. One such approach centred on the use of pattern or template 
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matching (CSCS [2]). In such systems, attempts are made to identify the functionality of sections of 
sequential code and to replace these with highly parallelised alternatives. Systems using this approach 
appear to have found a use in certain specialised areas but have not been successful in a general sense. 
A more widely adopted approach was the use of performance estimation, e.g. Zima and Faringher [3]. 
In this approach, the execution performance of a program is estimated with the goal of identifying the 
most computationally intensive sections. These sections of code are then parallelised to improve the 
overall performance of the program. An equally promising approach arises from the application of 
artificial intelligence (AI) techniques. For example, genetic algorithms simulated annealing and formal 
mathematical notations [4, 5] have been brought to bear. However, to date few of these approaches 
have been used within an overall parallelisation environment. 
 
The paper reviews three programming environments, The Mathematicians Devil [6], FortPort [7] and 
KATT [8], with the aim of demonstrating how the use of AI techniques has enabled new insights to be 
made into the field of autoparallelisation and a novel approach, based on the use of hyper-heuristics, is 
proposed. 
 
4. The Mathematician’s Devil 
The first use of AI techniques within the autoparallelisation work at Queen's University Belfast 
(QUB), was the employment of an intelligent knowledge based system (IKBS) as part of the 
Mathematician’s Devil. Within this context, the IKBS was defined to be composed of two main 
components: a knowledge base and an inference engine. The goal of the Mathematician's Devil was 
the provision of a set of tools to assist mathematicians with the specification and implementation of 
linear algebra software on multiprocessor architectures. 
 
Programs developed within the Mathematicians Devil were expressed using a high-level Pascal-like 
notation called SIMPL. A significant feature of SIMPL was that it provided access to libraries of 
highly parallelised routines based on the BLAS. The system converted programs expressed in SIMPL 
into a tuple sequence (in effect a graph), where each tuple reflected the type of the source and 
destination data and the nature of the operation/function being used. A graph transformation phase 
then performed a data dependence scan to identify and remove inter-statement dependencies. During 
this scan, each tuple was expanded to contain unique label and dependence list information. In essence 
this stage of the process replaced tuples (as required) with sequences of simpler tuples, involving the 
use of temporary variables, thereby eliminating the dependencies. This expanded graph formed the 
input to the core of the system, the subroutine selection phase. 
 
The selection of appropriate library routines was performed by the IKBS, which in turn produced a 
process-to-processor map containing a specific allocation of library subroutines to machine processors. 
To enable this mapping to be produced correctly the knowledge base component of the IKBS was 
developed to contain three pieces of information: 
• the numerical operations to be distributed (provided by the graph derived from the original user 

program) 
• the numerical algorithms which are available to implement each operation (provided by a system 

maintained library definition) 
• the topology of the target machine (provided by a user supplied abstract topology definition). 
 
The inference engine employed an iterative algorithm, with each iteration producing subroutine 
selections for those tuples whose pre-conditions were satisfied. The engine was constructed from two 
parts: 
• an extractor which separated out those tuples whose pre-condition lists are satisfied, and labelled 

these with a unique level number, and 
• an allocator which selected suitable library subroutines for each tuple within the extracted level 

and employed an adapted curve fitting algorithm to produce a balanced distribution of these tuples 
(processes) over the target architecture (processors). 

 



The balanced distribution was achieved by giving the slowest operation highest priority (allocating it a 
relatively large portion of the available processor topology). Faster operations were restricted to 
smaller portions of the topology. The prototype system was successfully implemented, tested, and 
functioned very well within its intended environment. However, it has limited applicability as it was 
restricted to a specific application area and used a very specialised programming language. To 
capitalise on the advantages promised by this first use of AI a new system was proposed that would 
use a more general programming language (Fortran) and would not be restricted to a specific 
application area. 
 
5. FortPort 
 
5.1 General 
The new system, called FortPort, consisted of a suite of transformation and code-restructuring tools. In 
operation, its basic functionality resembled that of the Mathematician's Devil in that: 
 an input handler accepted a sequential source code and converted this to an intermediate form; a 

hierarchical graph which described the syntactical structure of the code, 
 this graph formed the input to a transformation stage, which restructured the graph in an attempt to 

remove or reduce potential obstacles to the production of a parallel solution while ensuring that 
the semantic meaning of the original code remained consistent throughout all transformations, 

 generation and evaluation stages were then used to convert the transformed graph to a parallel 
form (known as the potentially parallel graph) and to create a set of parallel processes.  

 
At this point two AI techniques were incorporated into the system, one based on hot spot analysis, and 
the other involving a sequence of expert system guidance tools. 
 
5.2 Utilisation of Hotspot Analysis 
Experience has shown that many Fortran programs spend most of their execution time within small 
sections of computationally expensive code. If these code fragments can be identified then this 
information can be used to inform the auto-parallelisation process. In other words, this information can 
be used to form another heuristic that is used to improve the compilation process. 
 
Hotspot analysis was added to the system by developing a new tool that manipulated the graph created 
by the source analyser. This tool had three levels of operation: subroutine level, loop level and library 
routine/function level. The first level allowed a user to identify the subroutine, or subroutines, that 
required the most execution time and then, using the other two levels of analysis, to find the most 
computationally intensive loop or library calls. Within each of these analysis levels, the same basic 
approach was adopted. A version of the original program, enhanced by the addition of profiling 
statements, was executed on one processor of the target multi-processor architecture creating a file of 
timing diagnostics. Subsequently, this file was analysed and the relevant data extracted. 
 
This new information enabled the transformation tool to focus attention on the computationally 
intensive components of the user program rather than wasting time trying to parallelise the entire code. 
 
5.3 Introduction of Expert Systems 
 
A number of knowledge sources are available within the environment, e.g. performance estimation 
data generated by hotspot analysis, the occurrence of obstacles such as data dependence, limiting 
factors derived from the nature of the target architecture, etc.. This information can be gathered to 
form a knowledge pool that can be mined to provide expert guidance to the parallelisation process. 
Such information can be generated automatically, e.g. 
 the information supplied by hotspot analysis 
 the results of executing codes on parallel systems 

or can be provided by system developers, e.g. 



 the descriptions of target architectures, how many processors are there, how much local memory 
do they have, how are they interconnected, what the bandwidth of the system is,  etc. 

 
This information can be exploited by the use of expert systems. The first source used within FortPort 
was the data generated by the hotspot analyser.  This data was used by a partitioning tool (an expert 
system) to compile a list of possible distributions for the sequential code. Although there are a limited 
number of distribution solutions, it is possible that a large list of potential transformation solutions can 
be produced and subsequently require testing to determine the most suitable, i.e. the transformation 
that provides the best performance results when executed on the target parallel platform.  
 
This optimum solution is found by providing an improvement cycle within the system.  Each possible 
transformation is applied to the user code and after execution the results are stored in a database. A 
“best-so-far” process is employed to keep a record of the most effective transformation during the 
improvement cycle. 
 
While the iterative methods applied within the improvement cycle provide a method for finding the 
optimal transformation solution a major disadvantage can be identified. Given a sequential code with a 
large number of possible transformations, the problem lies in finding the most effective transformation 
in a time frame acceptable to the user of the system. The improvement cycle may require a large 
number of iterations in order to ensure that the best performance has been found. The expert system 
provides guidance for the choice of optimisation parameter values. However, it cannot dismiss 
possible solutions in the belief that the performance results will be poor. All potentially performance-
improving techniques must be applied. Testing one solution itself may take some time, therefore 
obtaining parallel performance statistics for many configurations can be considered unfeasible. 
 
A process was required to reduce the potential volume of testing, while retaining the power to find the 
optimum solution for the problem. One method was to use the ‘experience’ gained from a historical 
record of past parallelisation cases. This required a database of optimum transformation solutions for a 
wide range of codes previously parallelised (by hand or using iterative methods). Each problem, and 
the associated most effective solution, are stored in the database along with the performance results 
obtained. It then may be possible to find a matching problem within the database, and use the 
previously recorded transformation. The stored performance results indicate the potential parallel 
execution performance that could be obtained by applying this transformation to the sequential code. 
 
The database effectively becomes a knowledge base to supply satisfactory transformations quickly 
without the need to test for all possibilities. The pattern matching capabilities of modern expert system 
shells make the creation of such a knowledge base within the system relatively straightforward. 
 
This method is effective for problem cases to which an associated solution exists within the 
knowledge base. However, there are further issues to address regarding the operation and effectiveness 
of this method. A knowledge base with a limited amount of cases may not contain any codes similar to 
the code under consideration and make this method unproductive. Furthermore, due to the complexity 
of structural programming languages, codes that are similar may exist in the knowledge base, but may 
not be similar enough to guarantee the effectiveness of the associated solution when applied to the 
sequential code. 
 
If a degree of ‘fuzziness’ could be introduced to the technique then matches could be made based on 
relevance to the original problem. If the current case matches a known case in the knowledge base 
almost exactly, the relevance is high. As the degree of similarity between cases decreases, the measure 
of relevance decreases accordingly. 
 
6. KATT (Knowledge Assisted Transformation Tool) 
The expert systems used in the output handler (Code generator) within KATT has achieved a degree of 
success but to date has taken a rather narrow view of the field of knowledge engineering. By 
themselves, expert systems offer only a limited representation of the full knowledge available to the 



system. A broader knowledge utilisation strategy is proposed in which the top-down model 
exemplified by expert systems is combined with the bottom-up model associated with neural 
networks. Neural networks are useful for fast identification of implicit knowledge by automatically 
analysing cases of historical data. It is believed that the exploitation of an appropriate neural paradigm 
will significantly enhance the effectiveness of the development environment in providing the expertise 
necessary to effectively distribute code. The meta-heuristic approach provides an environment within 
which the strengths of the expert system and neural network can be used in a complementary manner 
to provide problem solving with the likelihood of a high degree of success. To date, no such 
combination of approaches has been applied to the problem of data distribution. 
 
Neural networks have a unique set of characteristics. They can learn from experience, generalise from 
examples and abstract essential information from noisy data. The ability of neural networks to 
generalise and extract patterns from a corpus of data, allied with their capacity to learn an appropriate 
mapping between an input and an output, has ensured that they have found application in many 
diverse disciplines.  
 
The features stated above, together with the fact that neural networks have been successfully applied 
within the KATT environment for the identification of sequences of program transformations or the 
reduction or elimination of data dependencies, make their use attractive in this research. 
 
Neural networks have achieved notable success in other areas where heuristic solutions are sought. 
Rather than the neural network actually trying to solve the combinatorial optimisation problem of data 
distribution, the output of the neural network will be classified into a number of groups based on the 
characteristics of the original program. This grouping will represent inherent features in the code, 
which it is proposed will indicate which data partitioning is more appropriate. This approach of 
applying pattern matching techniques to the problem of data distribution to date has shown promising 
results.  
 
The use of neural technology will complement the existing expert system within the KATT 
environment in advising on appropriate partitioning strategies through exploitation of relevant 
knowledge implicit in the code itself. It is therefore critical that the essential information pertinent to 
data partitioning is captured as input to the network.  
 
The neural network tool is responsible for the choice of a data partitioning strategy. The knowledge 
required to decide on this is code specific knowledge, i.e. facts about code, and programmer specific 
knowledge (parallelisation knowledge). Given an input of essential information about a code and an 
output of the most appropriate data partitioning to apply to that code, the learned mapping held by the 
network effectively encapsulates knowledge which may be brought to bear on the process.  
The expert system is responsible for mapping the chosen partition onto the target architecture. The 
knowledge required to decide on this is code specific knowledge (loop bounds), problem specific 
knowledge (speed-up required) and architecture specific knowledge (architecture characteristics). 
 
Given the suggested partitioning, architecture specific knowledge is required before the system can 
determine an actual distribution on the target architecture. This is best represented explicitly within an 
expert system but currently held implicitly, hard coded for a particular target, within the current KATT 
system. The expert system together with the neural model advise on a suitable distribution strategy. 
Combining these approaches within a coherent framework has improved the ability of KATT to offer 
strategic intelligent guidance to the user through broader and deeper access to the knowledge pool. 
 
7.0 KATT+: A Hyper-Heuristic Model 
Heuristics (derived from the Greek for discovery) are criteria, methods, or principles for deciding 
among several alternative courses of action. Computerised techniques which attempt to incorporate 
such “rules of thumb” are termed heuristic techniques. The hyper-heuristics approach differs from 
meta-heuristic approaches, which refer to heuristics which control simpler heuristics for a narrow 
range of problems, rather than of choosing between a range of heuristic approaches to solve a wide 



range of problems. This is a term coined to describe the idea of using a number of different heuristics 
together, so that the actual heuristic applied may differ at each decision point. In essence, hyper-
heuristics are heuristics to choose heuristics. The hyper-heuristics provides a method for managing 
these simple heuristics, which are poor at producing effective solutions when considered simply, to 
yield a good solution overall. An example of the use of this concept is given in [9], in which a genetic 
algorithm (GA) is applied to open-shop scheduling problems, to evolve the choice of heuristic to apply 
whenever a task is to be added to the schedule under construction.  
 
The hyper-heuristic approach represents a novel and exciting area of research and was been developed 
and successfully applied to scheduling problems by the Automated Scheduling and Planning Group at 
the University of Nottingham. The KATT environment, as presented, provides an overview of the 
development of an automated/semi-automated parallelisation environment and details the approaches 
at Queen’s University to incorporate several heuristic based techniques into a common hyper-heuristic 
framework. 
 
8. Conclusions 
It has been accepted that the production of a fully automated parallelisation environment that will 
deliver fully optimised code, for a range of target architectures, within an acceptable time frame must 
remain an unattainable dream. The work reported here has demonstrated that the utilisation of AI 
technologies can enable parallelisation environments to be developed that will produce acceptable 
solutions within reasonable time frames by offering expert guidance to system users. The deployment 
of a range of AI techniques, expert systems and neural networks, and their combination via the use of 
a meta-heuristic model has enabled significant advances to be made.  
 
The planned introduction of further AI techniques (case based reasoning and genetic algorithms), and 
the use of the novel hyper-heuristic model will enable further advances to be achieved. 
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