
USING A RANDOMISED ITERATIVE IMPROVEMENT
ALGORITHM WITH COMPOSITE NEIGHBOURHOOD
STRUCTURES FOR THE UNIVERSITY COURSE
TIMETABLING PROBLEM

Salwani Abdullah* Edmund K. Burke* Barry McCollum†

*Automated Scheduling, Optimisation and Planning Research Group, School of
Computer Science & Information Technology, University of Nottingham, Jubilee
Campus, Wollaton Road, Nottingham NG8 1BB, United Kingdom
{sqa,ekb}@cs.nott.ac.uk
†Department of Computer Science, Queen’s University Belfast, Belfast BT7 1NN
United Kingdom
b.mccollum@qub.ac.uk

Abstract: The course timetabling problem deals with the assignment

of a set of courses to specific timeslots and rooms within a
working week subject to a variety of hard and soft
constraints. Solutions which satisfy the hard constraints are
called feasible. The goal is to satisfy as many of the soft
constraints as possible whilst constructing a feasible
schedule. In this paper, we present a composite
neighbourhood structure with a randomised iterative
improvement algorithm. This algorithm always accepts an
improved solution and a worse solution is accepted with a
certain probability. The algorithm is tested over eleven
benchmark datasets (representing one large, five medium
and five small problems). The results demonstrate that our
approach is able to produce solutions that have lower
penalty on all the small problems and two of the medium
problems when compared against other techniques from the
literature. However, in the case of the medium problems,
this is at the expense of significantly increased
computational time.

1. INTRODUCTION

In this paper, a randomised iterative improvement algorithm with

composite neighbourhood structures for university course timetabling is
presented. The approach is tested over eleven benchmark datasets that were
introduced by Socha et al. (2002). The results demonstrate that our approach
is capable of producing high quality solutions against others that appear in
the literature. An extended abstract that describes this work was published in
Abdullah et al. (2005b). The paper is organised as follows. The next section
describes the university course timetabling problem in general and very
briefly discusses the relevant timetabling literature. Section 3 presents a
discussion of the literature on composite neighbourhood structures with a
particular emphasis upon the employment of such structures in a variety of
applications. Section 4 describes, in some detail, our randomised iterative
improvement algorithm. The pseudo code of the implemented algorithm is
also presented in this section. Experiments and results to evaluate the

 1

performance of the heuristic are discussed in Section 5. Section 6 presents a
brief summary of the paper.

2. THE UNIVERSITY COURSE TIMETABLING

PROBLEM

Carter and Laporte (1998) defined course timetabling as:

“a multi-dimensional assignment problem in
which students, teachers (or faculty members)

are assigned to courses, course sections or
classes; events (individual meetings between

students and teachers) are assigned to
classrooms and times”

In university course timetabling, a set of courses is scheduled into a

given number of rooms and timeslots within a week and, at the same time,
students and teachers are assigned to courses so that the meetings can take
place.

The course timetabling problem is subject to a variety of hard and soft
constraints. Hard constraints need to be satisfied in order to produce a
feasible solution. In this paper, we test our approach on the problem
instances introduced by Socha et al. (2002) who present the following hard
constraints:

• No student can be assigned to more than one course at the same
time.

• The room should satisfy the features required by the course.
• The number of students attending the course should be less than or

equal to the capacity of the room.
• No more than one course is allowed to be assigned to a timeslot in

each room.
Socha et al. also present the following soft constraints that are equally
penalised:

• A student has a course scheduled in the last timeslot of the day.
• A student has more than 2 consecutive courses.
• A student has a single course on a day.

The problem has
• A set of N courses, e = {e1,…,eN}.
• 45 timeslots.
• A set of R rooms.
• A set of F room features.
• A set of M students.
The objective of this problem is to satisfy the hard constraints and to

minimise the violation of the soft constraints.
In the last few years, several university course timetabling papers have

appeared in the literature. Socha et al. (2002) presented a local search
technique and an ant based methodology. They tested their approach on
eleven test problems. These eleven problems were produced by Paechter’s1
course timetabling test instance generator and are the instances used to
evaluate the method described in this paper. Since then, several papers have
appeared which have tested their results on the same instances. Burke et al.

1 http://www.dcs.napier.ac.uk/~benp/

 2

(2003a) introduced a tabu-search hyperheuristic where a set of low level
heuristics compete with each other. The goal was to raise the level of
generality of search systems and the method was tested on a nurse rostering
problem in addition to course timetabling. A graph hyper-heuristic was
presented by Burke et al. (2006) where, within a generic hyper-heuristic
framework, a tabu search approach is employed to search for permutations
of constructive heuristics (graph colouring heuristics). Abdullah et al.
(2005a) employed a variable neighbourhood search with a fixed tabu list
which is used to penalise the unperformed neighbourhood structures. Other
papers which test against these instances can be seen in Socha et al. (2003)
who discuss ant algorithm methodologies at length and Rossi-Doria et al.
(2003) who compare several metaheuristic methods.

In addition to the problem instances introduced by Socha et al (2002),
Paechter’s generator was also used to produce the problem sets for a
timetabling competition held in 2002 (see http://www.idsia.ch/Files/
ttcomp2002). They generated twenty instances for the competition itself and
another three unseen instances to further check the performance of the
algorithms. Some papers have recently appeared which test their
methodologies on these competition problems. Kostuch (2005) presented a
three phase approach which employs Simulated Annealing. This approach
won the competition mentioned above and had 13 best results of the 20
instances in the competition. Burke et al. (2003b) employed a Great Deluge
method which generated 7 best results out of the 20 competition problems
mentioned above. This method also produced some poor results on some
problems which is why it came 3rd in the competition (because the
competition used an average measure). The hybrid local search methodology
which came 4th in the competition is described in Di Gaspero and Schaerf
(2006). Arntzen and Løkketangen (2004) developed a tabu search method
which came 5th in the competition. Lewis and Paechter (2004) designed
several crossover operators and tested them against the competition datasets.
They concluded that their results were not “state of the art”. A hybrid
metaheurstic approach has recently appeared in the literature which is tested
on these competition problems and which produces improved results to those
generated by the competition (Chiarandini et al. 2006). Also, Kostuch and
Socha (2004) investigated the possibility of using a statistical model to
predict the difficulty of timetabling problems and they employed the
competition instances.

In 2005, Lewis and Paechter used the same instance generator to create
another sixty “hard” test instances (Lewis and Paechter 2005). They tested
their grouping genetic algorithm on these sixty instances but were concerned
only with feasibility.

In addition to the university course timetabling papers which have used
problems produced by Paechter’s generator, several other articles have
recently appeared which represent case studies on real university timetabling
instances. Examples include Avella and Vasil’Ev (2005), Daskalaki et al.
(2004), Dimopoulou and Miliotis (2004) and Santiago-Mozos et al. (2005).

Other aspects of university course timetabling have been widely
discussed in the literature over the last thirty years or so. A survey of
practical approaches to the problem, up to 1998, can be seen in Carter and
Laporte (1998). The following papers represent a comprehensive list of
surveys and overviews of educational timetabling (which include issues
related to University course timetabling) i.e. Bardadym (1996), Burke et al.
(1997), Burke and Petrovic (2002), Burke et al. (2004), Carter (2001),

 3

Petrovic and Burke (2004), Schaerf (1999), de Werra (1985) and Wren
(1996).

3. COMPOSITE NEIGHBOURHOOD STRUCTURES:

RESEARCH AND DEVELOPMENTS

 A composite neighbourhood structure subsumes two or more
neighbourhood structures. The advantage of combining several
neighbourhood structures is that it helps to compensate against the
ineffectiveness of using each type of structure in isolation (Grabowski and
Pempera, 2000 and Liaw 2003). For example, a solution space that is easily
accessible by insertion moves may be difficult to reach using swap moves.
Some examples of composite neighbourhood structures that are available in
the literature are discussed here.
 Grabowski and Pempera (2000) applied a composite neighbourhood
structure for sequencing jobs in a production system that consists of
exchanges and the insertion of elements. Gopalakrishnan et al. (2001) used
three moves (swap, add and drop) in a tabu search heuristic for preventive
maintenance scheduling. The decision on which move to use depends on the
current state of the search. The interaction of the moves makes it possible to
carry out a strategic search. The computational results show that the
approach can improve the solution quality when compared to the local
heuristics employed by Gopalakrishnan et al. (1997).

Liaw (2003) also used a composite neighbourhood structure in the tabu
search approach for the two-machine preemptive open shop scheduling
problem. The tabu search switches to the other neighbourhood structures
(between an insertion move that shifts one job from its current position to a
new position and a swap move that exchanges the position of two jobs) after
a number of iterations without any improvements. Computational
experiments have shown that this scheme significantly improves the
performance of tabu search in terms of solution quality. The neighbourhood
used in Ouelhadj (2003) has a composite structure where the tabu search
approach, applied to the dynamic scheduling of a hot strip mill agent,
employed three neighbourhood schemes (swap, shift and inversion)
alternately. Computational experiments showed that the composite structure
improves the solution quality compared with tabu search using a single
neighbourhood. Another example of a composite neighbourhood structure
was presented by Landa Silva (2003). He employed several neighbourhood
structures (relocate, swap and interchange) in different metaheuristics
(iterative improvement, simulated annealing and tabu search) and applied
this to a space allocation problem in an academic institution.

Bilge et al. (2004) used a “hybrid” neighbourhood structure in a tabu
search algorithm for the parallel machine total tardiness problem. The
“hybrid” structure consists of the complete “insert neighbourhood” with the
addition of a partial “swap neighbourhood”. In an insert move operation, two
jobs are identified and the first job is placed in the location that precedes the
location of the second job. Then, a swap move places each job in the location
that was previously occupied by the other job.

 4

4. THE RANDOMISED ITERATIVE IMPROVEMENT

ALGORITHM

This algorithm presented here always accepts an improved solution and
a worse solution is accepted with a certain probability.

4.1 The Neighbourhood Structures

The different neighbourhood structures and their explanation can be
outlined as follows:
N1: Select two courses at random and swap timeslots.
N2: Choose a single course at random and move to a new random

feasible timeslot.
N3: Select two timeslots at random and simply swap all the courses in

one timeslot with all the courses in the other timeslot.
N4: Take 2 timeslots (selected at random), say ti and tj (where j>i) where

the timeslots are ordered t1, t2, …, t45. Take all the exams in ti and
allocate them to tj. Now take the exams that were in tj and allocate
them to tj-1. Then allocate those that were in tj-1 to tj-2 and so on until
we allocate those that were in ti+1 to ti and terminate the process.

N5: Move the highest penalty course from a random 10% selection of the
courses to a random feasible timeslot.

N6: Carry out the same process as in N5 but with 20% of the courses.
N7: Move the highest penalty course from a random 10% selection of the

courses to a new feasible timeslot which can generate the lowest
penalty cost.

N8: Carry out the same process as in N7 but with 20% of the courses.
N9: Select one course at random, select a timeslot at random (distinct

from the one that was assigned to the selected course) and then
apply the kempe chain from Thompson and Dowsland (1996).

N10: This is the same as N9 except the highest penalty course from 5%
selection of the courses is selected at random.

N11: Carry out the same process as in N9 but with 20% of the courses.

4.2 The Algorithm

In the approach presented in this paper, a set of the neighbourhood
structures outlined in subsection 4.1 is applied. The hard constraints are
never violated during the timetabling process.

The pseudo code for the algorithm implemented in this paper is given in
Figure 1. The algorithm starts with a feasible initial solution which is
generated by a constructive heuristic as discussed in Abdullah et al. (2005a).
Let K be the total number of neighbourhood structures to be used in the
search (K is set to be 11 in this implementation) and f(Sol) is the quality
measure of the solution Sol. At the start, the best solution, Solbest is set to be
Sol. In a do-while loop, each neighbourhood i where i ∈ {1,…,K} is applied
to Sol to obtain TempSoli. The best solution among TempSoli is identified,
and is set to be the new solution Sol*. If Sol* is better than the best solution
in hand, Solbest, then Sol* is accepted. Otherwise, the exponential Monte
Carlo acceptance criterion is applied. This accepts a worse solution with a

 5

certain probability. The criterion is discussed in Ayob and Kendall (2003).
The new solution Sol* is accepted if the generated random number in [0,1],
RandNum, is less than the probability which is computed by e-δ where δ is
the difference between the cost of the old and new solutions (i.e. δ = f(Sol*)
– f(Sol)). The Monte Carlo method will exponentially increase the
acceptance probability if δ is small. The process is repeated and stops when
the termination criteria is met (in this work the termination criteria is set as
the number of evaluations i.e. 200000 evaluations or when the penalty cost is
zero).

Set the initial solution Sol by employing a
constructive heuristic;
Calculate initial cost function f(Sol);
Set best solution Sol ← Sol; best

do while (not termination criteria)
for i = 1 to K where K is the total number of
neighbourhood structures
Apply neighbourhood structure i on Sol, TempSoli;
Calculate cost function f(TempSoli);

end for
Find the best solution among TempSoli where i ∈
{1,…,K} call new solution Sol*;

 if (f(Sol*) < f(Solbest))
Sol ← Sol*;
Solbest ← Sol*;

else
Apply an exponential Monte Carlo where:
δ = f(Sol*) - f(Sol));
Generate RandNum, a random number in [0,1];
if (RandNum < e-δ)

Sol ← Sol*;
end if

end do

Figure 1. The pseudo code for the randomised iterative improvement algorithm

5. EXPERIMENTS AND RESULTS

The approaches are coded in Microsoft Visual C++ version 6 under
Windows. All experiments were run on an Athlon machine with a 1.2GHz
processor and 256 MB RAM running under Microsoft Windows 2000
version 5. We evaluate our results on the instances taken from Socha et al
(2002) and which are available at http://iridia.ulb.ac.be/~msampels/tt.data/.
We employed the same initial solutions as in Abdullah et al. (2005a). The
experiments were run for 200000 iterations which takes approximately eight
hours for each of the medium datasets and at most 50 seconds for the small
datasets. Note that course timetabling is a problem that is usually tackled
several months before the schedule is required. An eight hours run for course
timetabling is perfectly acceptable in a real world environment. This is a
scheduling problem where the time taken to solve the problem is not critical.
The emphasis in this paper is on generating good quality solutions and the
price to pay for this can be taken as being a large amount of computational
time.

The experiments for the course timetabling problem discussed in this
paper were tested on the benchmark course timetabling problems proposed

 6

by the Metaheuristics Network that need to schedule 100-400 courses into a
timetable with 45 timeslots corresponding to 5 days of 9 hours each, whilst
satisfying room features and room capacity constraints. They are divided
into three categories: small, medium and large. We deal with 11 instances: 5
small, 5 medium and 1 large. The parameter values defining the categories
are given in Table 1.

Table 1. The parameter values for the course timetabling problem categories

Category small medium large
Number of courses 100 400 400
Number of rooms 5 10 10
Number of features 5 5 10
Number of students 80 200 400
Maximum courses per student 20 20 20
Maximum student per courses 20 50 100
Approximation features per room 3 3 5
Percentage feature use 70 80 90

The best results out of 5 runs obtained are presented. Table 2 shows the

comparison of the approach in this paper with other available approaches in
the literature on the five small problems. Table 3 illustrates our comparison
on the medium/large problems. The term “x%Inf.” in Table 3 indicates a
percentage of runs that failed to obtain feasible solutions.
 The best results are presented in bold in both tables. Note that the only
methods that were able to obtain feasible solutions for the large problem
were the ant method (Socha et al, 2002) and the graph based hyper-heuristic
(Burke et al, 2006) with the ant method being better.

It can be seen that the randomised iterative improvement algorithm has
better results than Abdullah et al. (2005a) on all five medium datasets with
the same (best result) penalty cost for the small instances. Our approach has
better results than the local search method (Socha et al, 2002) on three of the
medium instances and on all five of the small datasets. Our method has
higher quality results when compared against the ant approach (Socha et al,
2002) on four of the small problems, with both approaches being able to
obtain zero penalty on the other. Our algorithm gets better results than the
ant technique on two of the medium instances. The iterative improvement
approach is has better penalty values than the tabu search hyper-heuristic
(Burke et al. 2003a) on three of the small datasets and both methods get zero
penalty on the other two. It was better values on just two of the medium
sets. The iterative approach obtained better results than the graph based
hyper-heuristic (Burke et al. 2006) on all datasets except the large one.

Note that our approach has the very best results across seven of the
eleven datsets (although it does perform very poorly on the large one). It is
particularly effective on the small problems, taking approximately 50
seconds to obtain zero penalties as opposed to, for example, the algorithms
of (Socha et al) which take 90 seconds. It is quite effective on the medium
problems but at the expense of a high level of computational time. It takes
our algorithm about 8 hours to produce these solutions for the medium
problems whereas, for example, it takes the (Socha et al, 2002) methods 900
seconds (15 minutes). The need for the long run time is probably due to
some neighbourhood structures in our method being less effective on this
type of problem.

 7

Table 2. Comparison of results on the small datasets
Randomised

Iterative
Improvement

Algorithm

Data
Set

Initial

Solution

Best

Median

VNS
with
tabu

(Abdull
ah et al.
2005a)
(Best)

Local
search
(Socha
 et al.
2002)

(Median)

Ant
Algorithm

(Socha
 et al.
2002)

(Median)

Tabu-
based
hyper-

heuristic
(Burke et
al. 2003a)

(Best)

Graph
hyper-

heuristic
(Burke
et al.
2006)
(Best)

s1 261 0 0 0 8 1 1 6
s2 245 0 0 0 11 3 2 7
s3 232 0 0 0 8 1 0 3
s4 158 0 0 0 7 1 1 3
s5 421 0 0 0 5 0 0 4

Table 3. Comparison of results on the medium/large datasets
Randomised

Iterative
Improvement

Algorithm

Data
Set

Initial

Solution

Best

Median

VNS
with
tabu

(Abdull
ah et al.
2005a)
(Best)

Local
search
(Socha
 et al.
2002)

(Median)

Ant
Algorithm

(Socha
 et al.
2002)

(Median)

Tabu-
based
hyper-

heuristic
(Burke et
al. 2003a)

(Best)

Graph
hyper-

heuristic
(Burke
et al.
2006)
(Best)

m1 914 242 245 317 199 195 146 372
m2 878 161 162.6 313 202.5 184 173 419
m3 941 265 267.8 357 77.5% Inf. 248 267 359
m4 865 181 183.6 247 177.5 164.5 169 348
m5 780 151 152.6 292 100% Inf. 219.5 303 171
l 100%

Inf
- - 100%

Inf.
100%
Inf.

851.5 80% Inf.
1166

1068

Data Set Key: l = large, m1 = medium1, m2 = medium 2 and so on.

 Figures 2 and 3 show the behaviour of the randomised iterative
improvement algorithm applied to the small1 and medium5 datasets,
respectively. In all the figures, the x-axis represents the number of
evaluations whilst the y-axis represents the penalty cost. The graphs
illustrate the exploration of the search space. The curves move up and down
because worse solutions are accepted with a certain probability in order to
escape from local optima. The penalty cost can be quickly reduced at the
beginning of the search where there is (possibly) a lot of room for
improvement. It is believed that better solutions can be obtained in these
experiments (particularly on the smaller problems) because the composite
neighbourhood structures offer flexibility for the search algorithm to explore
different regions of the solution space. The graphs for the small datasets
show that our algorithm is able to obtain zero penalties in less than 1500
evaluations which is an improvement upon Burke et al. (2003a) which set
the number of evaluations at 12000 for small datasets.

small1

0
50

100
150
200
250
300

0 100 200 300 400 500 600 700 800

Iterations

Pe
na

lty
 C

os
t

Figure 2. The behaviour of the randomised iterative improvement algorithm on the

small1 dataset

 8

medium5

0

200

400

600

800

1000

0 500 1000 1500 2000

Iterations (x102)

Pe
na

lty
 C

os
t

Figure 3. The behaviour of the randomised iterative improvement algorithm on the

medium5 dataset

 Figures 4 and 5 show the frequency charts of the neighbourhood
structures that have been selected to be used by the randomised iterative
improvement algorithm for the small and medium datasets, respectively. The
x-axis represents the datasets while the y-axis represents the frequency of the
neighbourhood structures being employed throughout the search.

Frequency chart of the neighbourhood structures for the small
datasets

0

50

100

150

200

250

300

350

small1 small2 small3 small4 small5

Datasets

Fr
eq

ue
nc

y

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11

Figure 4. Frequency of the neighbourhood structures used for the small datasets

Frequency chart of the neighbourhood structures for the
medium datasets

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

medium1 medium2 medium3 medium4 medium5

Datasets

Fr
eq

ue
nc

y

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11

Figure 5. Frequency of the neighbourhood structures used for the medium datasets

 9

It can be seen, from Figure 4, that the neighbourhood structures “N1”,
“N2”, “N7” and “N8” are the most popular structures used in the algorithm
for small datasets. The popular structures for the medium datasets are “N1”,
“N2”, “N5”, “N6”, “N7” and “N8” as shown in Figure 5. This illustrates that
the most popular neighbourhood structures that are being supplied to the
randomised iterative improvement algorithm are almost the same between
the small and medium datasets (i.e. “N1”, “N2”, “N7” and “N8”). However,
as the problem gets larger, there may be fewer and more sparsely distributed
solution points (feasible solutions) in the solution space since too many
courses are conflicting with each other. Thus, the approach may need extra
neighbourhood structures (i.e. “N5” and “N6” in this case) to force the
search algorithm to diversify its exploration of the solution space by moving
from one neighbourhood structure to another. Further investigation was
carried out to support the claim that the composite neighbourhood structure
performs better than the single neighbourhood structure by employing
selected neighbourhood structures separately i.e. “N1”, “N2”, “N5”, “N6”,
N7” and “N8” (which are the most popular neighbourhood structures used
for the small and medium datasets). The small datasets are able to obtain
zero penalty in less than 1500 evaluations. Thus, for the experiments carried
out here, the number of evaluations for the small datasets is set as equal to
the number of evaluations where the best solutions are obtained (i.e. 873,
707, 413, 1012 and 1329 evaluations for small1, small2, small3, small4 and
small5, respectively). The number of evaluations for the medium datasets
remains the same. Table 4 gives the comparison of the performance of
variants of the randomised iterative improvement algorithm in terms of
penalty cost (objective function value). The results demonstrate that the
algorithm with composite neighbourhood structures is uniformly the best in
terms of penalty cost compared to other randomised iterative improvement
algorithm variants.

Table 4. Comparison of the performance of the randomised iterative improvement

algorithm on single and composite neighbourhood structures
Randomised iterative improvement algorithm

neighbourhoods

Dataset

Initial
solution

N1 N2 N5 N6 N7 N8 Composite
small1 261 76 21 26 54 5 8 0
small2 245 64 27 47 59 9 6 0
small3 232 68 45 69 33 6 18 0
small4 158 63 39 44 18 5 9 0
small5 421 112 33 49 64 7 12 0
medium1 914 381 345 548 713 539 701 242
medium2 878 364 337 556 675 555 643 161
medium3 941 420 401 731 773 764 774 265
medium4 865 332 317 549 615 546 603 181
medium5 780 414 355 650 685 702 699 151
large 100%Inf. - - - - - - -

Figures 6 and 7 illustrate the behaviour of the randomised iterative

improvement algorithm using a single neighbourhood structure compared to
the composite neighbourhood structure applied on the small1 and medium5
datasets, respectively.

 10

small1

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700 800 900 1000 1100
Iterations

Pe
na

lty
 C

os
t

N1 N2 N5 N6 N7 N8 Composite

Figure 6. The behaviour of the randomised iterative improvement algorithm using
single and composite neighbourhood structures applied on the small1 dataset

medium5

0

100

200

300

400

500

600

700

800

900

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Iterations (x102)

Pe
na

lty
 C

os
t

N1 N2 N5 N6 N7 N8 Composite

Figure 7. The behaviour of the randomised iterative improvement algorithm using
single and composite neighbourhood structures applied on the medium5 dataset

The diagrams show the convergence of the penalty cost of the algorithm

for small1 and medium5 for a number of evaluations for which the best
solution is found. It can be seen that the randomised iterative improvement
algorithm with the composite neighbourhood is significantly better than
other variants with single neighbourhood in terms of solution quality given
the same number of evaluations. All the other problems of the family have
the same behaviour as in Figures 6 and 7.

6. CONCLUSION AND FUTURE WORK

This paper has focused on investigating a composite neighbourhood
structure with a randomised iterative improvement algorithm for the
university course timetabling problem. Preliminary comparisons indicate
that this algorithm is competitive with other approaches in the literature.
Indeed, it produced seven solutions that were better than or equal to the

 11

published penalty values on these eleven instances although it did require
significant computational time for the medium/large problems. It is an
approach that is particularly effective on smaller problems. Further
experiments were carried out to demonstrate that it is more effective to
employ composite neighbourhood structures rather than a single
neighbourhood structure because of the different ways of search that are
represented by various neighbourhood structures.

Future research will be aimed at exploring how the algorithm could
intelligently select the most suitable neighbourhood structures according to
the characteristics of the problems. Another direction of future research will
investigate the integration of a population-based approach with a local
search method.

Acknowledgement

 This work has been supported by the Public Services Department of
Malaysia (JPA) and the University Kebangsaan Malaysia (UKM).

REFERENCES
[1] Abdullah S, Burke EK and McCollum B (2005a) An investigation of variable

neighbourhood search for university course timetabling. In: Proceedings of
The 2nd Multidisciplinary International Conference on Scheduling: Theory
and Applications (MISTA 2005), New York, USA, July 18th-21st, pp 413-427.

[2] Abdullah S, Burke EK and McCollum B (2005b). Using a Randomised
Iterative Improvement Algorithm with Composite Neighbourhood Structures
for University Course Timetabling. In: Proceedings of the 6th Metaheuristics
International Conference (MIC 05), Vienna, Austria, August 22nd-26th, in CD-
ROM, 2005.

[3] Avella P and Vasil'Ev I (2005) A Computational Study of a Cutting Plane
Algorithm for University Course Timetabling. Journal of Scheduling 8(6), pp
497-514.

[4] Ayob M and Kendall G (2003) A monte carlo hyper-heuristic to optimise
component placement sequencing for multi head placement machine.
Proceedings of the International Conference on Intelligent Technologies,
InTech’03, Thailand, Dec 17th-19th, pp 132-141.

[5] Bardadym VA (1996) Computer-aided school and university timetabling: A
new wave. Practice and Theory of Automated Timetabling V (eds. Burke and
Ross), Springer Lecture Notes in Computer Science Volume 1153, pp 22-45.

[6] Bilge Ü, Kiraç F, Kurtulan M and Pekgün P (2004) A tabu search algorithm
for the parallel machine total tardiness problem. Computers & Operations
Research 31(3), pp 397-414.

[7] Burke EK, Jackson KS, Kingston JH and Weare RF (1997) Automated
timetabling: The state of the art, The Computer Journal 40(9), pp 565-571.

[8] Burke EK and Petrovic S (2002) Recent research direction in automated
timetabling. European Journal of Operational Research 140, pp 266-280.

 [9] Burke EK, Kendall G and Soubeiga E (2003a) A tabu search hyperheuristic
for timetabling and rostering. Journal of Heuristics 9(6), pp 451-470.

[10] Burke EK, Bykov Y, Newall J and Petrovic S (2003b) A Time-Predefined
Approach to Course Timetabling, Yugoslav Journal of Operational Research
(YUJOR), Vol 13, No. 2, pp 139-151.

 12

[11] Burke, EK, Kingston J and De Werra D (2004) Applications to Timetabling,
in the Handbook of Graph Theory, (eds. Gross J and Yellen J), Chapman
Hall/CRC Press, pp 445-474,

[12] Burke, E.K., McCollum, B., Meisels, A., Petrovic, S. and Qu, R., A Graph-
Based Hyper Heuristic for Educational Timetabling Problems, European
Journal of Operational Research 176(1), 1 January 2007, pp 177-192.

[13] Carter MW (2001) Timetabling, encyclopedia of operations research and
management science (eds Gass and Harris), Kluwer, pp 833-836.

[14] Carter MW and Laporte G (1998) Recent developments in practical course
timetabling. Practice and Theory of Automated Timetabling V (eds. Burke
and Carter), Springer Lecture Notes in Computer Science Volume 1408, pp 3-
19.

[15] Chiarandini M, Birattari M, Socha K and Rossi-Doria O (2006) An effective
hybrid algorithm for university course timetabling. Journal of Scheduling
9(5), pp 403-432.

[16] Daskalaki S, Birbas T and Housos H (2004) An integer programming
formulation for a case study in university timetabling. European Journal of
Operational Research 153(1), pp 117-135.

[17] Dimopoulou M and Miliotis P (2004) An automated university course
timetabling system developed in a distributed environment: A case study.
European Journal of Operational Research 153(1), pp 136-147.

[18] de Werra D (1985) An introduction to timetabling. European Journal of
Operational Research 19, pp 151-162.

[19] Di Gaspero L and Schaerf A (2006) Neighborhood portfolio approach for
local search applied to timetabling problems. Journal of Mathematical
Modeling and Algorithms, 5(1), pp 65-89.

[20] Gopalakrishnan M, Ahire SL and Miller DM (1997) Maximising the
effectiveness of a preventive maintenance system: An adaptive modeling
approach. Management Science, 43(6), pp 827-840.

[21] Gopalakrishnan M, Mohan S and He Z. (2001). A tabu search heuristic for
preventive maintenance scheduling. Computers & Industrial Engineering, 40,
pp 149-160.

[22] Grabowski J and Pempera J (2000) Sequencing of jobs in some production
system: Theory and methodology. European Journal of Operational
Research, 125, pp 535-550.

 [23] Kostuch P (2005) The university course timetabling problem with a three-
phase approach. Practice and Theory of Automated Timetabling V (eds.
Burke and Trick), Springer Lecture Notes in Computer Science Volume
3616, pp 109-125.

[24] Kostuch P and Socha K (2004), Hardness Prediction for the University
Course Timetabling Problem, Proceedings of the Evolutionary Computation
in Combinatorial Optimization (EvoCOP 2004), Coimbra, Portugal, April 5-
7, 2004, Springer Lecture Notes in Computer Science Volume 3004, pp 135-
144.

[25] Landa Silva JD (2003) Metaheuristic and Multiobjective Approaches for
Space Allocation. PhD Thesis, Department of Computer Science, University
of Nottingham, United Kingdom.

[26] Lewis R and Paechter B (2004) New crossover operators for timetabling with
evolutionary algorithms. Proceedings of the 5th International Conference on
Recent Advances in Soft Computing (ed. Lotfi), UK, December 16th-18th, pp
189-194.

[27] Lewis R and Paechter B (2005) Application of the groping genetic algorithm
to university course timetabling. Evolutionary Computation in Combinatorial
Optimisation (eds. Raidl and Gottlieb), Springer Lecture Notes in Computer
Science Volume 3448, pp 144-153.

[28] Liaw CF (2003) An efficient tabu search approach for the two-machine
preemptive open shop scheduling problem. Computers & Operations
Research 30(14), pp 2081-2095.

[29] Ouelhadj D (2003) A multi-agent system for the integrated dynamic

 13

scheduling of steel production. PhD Thesis, Department of Computer
Science, University of Nottingham, United Kingdom.

[30] Petrovic S and Burke EK (2004) University timetabling, Ch. 45 in the
Handbook of Scheduling: Algorithms, Models, and Performance Analysis
(eds. J. Leung), Chapman Hall/CRC Press.

[31] Rossi-Doria O, Samples M, Birattari M, Chiarandini M, Dorigo M,
Gambardella LM, Knowles J, Manfrin M, Mastrolilli M, Paechter B, Paquete
L and Stützle T (2003). A comparison of the performance of different meta-
heuristics on the timetabling problem. Practice and Theory of Automated
Timetabling V (eds. Burke and De Causmaecker), Springer Lecture Notes in
Computer Science Volume 2740, pp 329-354.

[32] Santiago-Mozos R, Salcedo-Sanz S, DePrado-Cumplido M, Carlos Bousoalz
C. A two-phase heuristic evolutionary algorithm for personalising course
timetables: A case study in a Spanish university. Computers and Operations
Research 32, pp 1761-1776.

[33] Schaerf A (1999) A survey of automated timetabling. Artificial Intelligence
Review 13(2), pp 87-127.

[34] Socha K, Knowles J and Samples M (2002) A max-min ant system for the
university course timetabling problem. Proceedings of the 3rd International
Workshop on Ant Algorithms (ANTS 2002), Springer Lecture Notes in
Computer Science Volume 2463, pp 1-13.

[35] Socha K, Sampels M and Manfrin M (2003) Ant algorithms for the university
course timetabling problem with regard to the state-of-the-art. Proceedings of
3rd European Workshop on Evolutionary Computation in Combinatorial
Optimization (EvoCOP'2003), UK, April 14th-16th, Springer Lecture Notes
in Computer Science Volume 2611, pp 335-345.

[36] Thompson J and Dowsland K (1996) Various of simulated annealing for the
examination timetabling problem. Annals of Operational Research 63, pp
105-128.

[37] Wren A (1996) Scheduling, timetabling and rostering – A special
relationship? Practice and Theory of Automated Timetabling V (eds. Burke
and Ross), Springer Lecture Notes in Computer Science Volume 1153, pp 46-
75.

 14

