
Construction of Course Timetables Based on Great
Deluge and Tabu Search

Salwani Abdullah1, Khalid Shaker1, Barry McCollum2, Paul McMullan2

1Center for Artificial Intelligence Technology,
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

{salwani, khalid}@ftsm.ukm.my
2Department of Computer Science, Queen’s University Belfast, Belfast BT7 1NN United

Kingdom,
{b.mccollum,p.p.mcmullan}@qub.ac.uk

Abstract. The course timetabling problem deals with the assignment of a set of
courses to specific timeslots and rooms within a working week subject to a
variety of hard and soft constraints. Solutions are called feasible if all the hard
constraints are satisfied. The goal is to satisfy as many of the soft constraints as
possible whilst constructing a feasible schedule. In this paper, we present a
combination of two metaheuristics i.e. great deluge and tabu search approaches.
The algorithm is tested over eleven benchmark datasets (representing one large,
five medium and five small problems). The results demonstrate that our
approach is able to produce solutions that have lower penalty on all the small
and medium problems when compared against other techniques from the
literature.

Keywords: Great deluge, tabu search, course timetabling.

1 Introduction

In the timetabling literature, significant attention has been paid to the problem of
constructing university course timetables. Various techniques have been applied to
this complex and difficult problem. Exact solutions, where the optimum solution is
guaranteed, can be only possible for problems of a limited size [38]. On the other
hand, algorithms employing heuristic based techniques have shown to be highly
effective. Examples include simulated annealing (e.g. [1, 2]), tabu search (e.g. [3,4])
and genetic algorithms (e.g. [5,6]). In this paper, a combination of two metaheuristic
based techniques i.e. great deluge and tabu search are applied to the university course
timetabling problem. The approach is tested over eleven benchmark datasets that were
introduced by Socha et al. [7]. The results demonstrate that our approach is capable of
producing high quality solutions when compared to other techniques in the literature.
The paper is organised as follows: The next section describes the course timetabling
problem and provides a brief overview of the relevant timetabling literature. Section 3
describes our algorithm and its application to the course timetabling problem.
Experimental results are presented in Section 4. A comparison between state-of-the-

art techniques from the literature and some brief concluding comments are presented
in Section 5.

2 The University Course Timetabling Problem

In university course timetabling, a set of courses are scheduled into a given number of
rooms and timeslots across a period of time. This usually takes place within a week
and the resultant timetable replicated for as many weeks as the courses run. Also,
students and teachers are assigned to courses so that the teaching delivery activities
can take place. The course timetabling problem is subject to a variety of hard and soft
constraints. Hard constraints need to be satisfied in order to produce a feasible
solution. In this paper, we test our approach on the problem instances introduced by
Socha et al. [7] who present the following hard constraints:

• No student can be assigned to more than one course at the same time.
• The room should satisfy the features required by the course.
• The number of students attending the course should be less than or equal to

the capacity of the room.
• No more than one course is allowed to be assigned to a timeslot in each

room.
Socha et al. [7] also present the following soft constraints that are equally penalised:

• A student has a course scheduled in the last timeslot of the day.
• A student has more than 2 consecutive courses.
• A student has a single course on a day.

The problem has
• A set of N courses, e = {e1,…,eN}.
• 45 timeslots.
• A set of R rooms.
• A set of F room features.
• A set of M students.

The objective of this problem is to satisfy the hard constraints and to minimise the
violation of the soft constraints.

Several university course timetabling papers have appeared in the literature in the last
few years which tackle various benchmark course timetabling problems which have
been introduced [39]. The following provides an overview of techniques which have
been used to find solutions to various formulations of the course timetabling problem
in the past. Socha et al. [7] employed a local search and ant based algorithms and

tested on eleven problems that were produced by Paechter’s
1
 course timetabling test

instance generator (note that these instances are used to evaluate the method described
in this paper). In 2003, Burke et al. [9] introduced a tabu-search hyperheuristic which
was also tested on a nurse rostering problem. The Great deluge algorithm was
employed by Burke et al. [10]. Di Gaspero and Schaerf [11] applied a multi
neighbourhood search approach and tested on the same instances. In 2004, Lewis and

1 http://www.dcs.napier.ac.uk/~benp/

Paechter [12] designed several crossover operators and tested on twenty instances
generated by Paechter’s generator which was used in the competition in 2002 (see
http://www.idsia.ch/Files/ttcomp2002). Kostuch and Socha [13] investigated a
statistical model in predicting the difficulty of timetabling problems particularly on the
competition datasets. In 2005, Kostuch [14] presented a three phase approach which
employs simulated annealing and had 13 best results of the 20 competition instances.
A variable neighbourhood search with a fixed tabu list has been employed by
Abdullah et al. [15]. Asmuni et al. [16] applied a fuzzy multiple heuristic ordering on
the eleven standard benchmark datasets. In 2007, Abdullah et al. [17] developed an
iterative improvement algorithm with composite neighbourhood structures and later
combining this algorithm with a mutation operator (see Abdullah et al. [18]).
McMullan [19] applied a two phased approach utilizing an adaptive construction
heuristic and an extended version of the Great Deluge Algorithm. In 2008, Abdullah
and Turabieh [20] employed a genetic and local search approach on 11 benchmark
course. Landa-Silva and Obit employed a non linear great and deluge on the same
instances [21]. Müller [22] applied a constraint-based solver applied to the curriculum-
based course timetabling problems in the 2nd International Timetabling Competition
(Track 1 and Track 3) as introduced by Di Gaspero et al. [23] and achieved the first
place in this competition. Lu and Hao [24] applied a hybrid heuristic algorithm called
adaptive tabu search to the same instances. Other papers that tackle curriculum-based
course timetabling problems can be found in Clark et al. [25], De Cesco et al. [26],
Geiger [27] and Lach and Lubbecke [28]. Interested readers are referred to Lewis [29]
for a comprehensive survey of the university timetabling approaches in recent years, a
gap between theory and practice in university timetabling area by McCollum [30] and
other related papers on course timetabling in [31,32,33,34,35].

3 The Algorithm

The algorithm presented here is divided into two parts i.e. construction and
improvement algorithms. Within the latter stage, four neighbourhood structures have
been employed.

3.1 Neighbourhood Structure

The different neighbourhood structures and their explanation are outlined as follows:

N1: Choose a single course at random and move to a feasible timeslot that can

generate the lowest penalty cost.
N2: Select two courses at random from the same room (the room is randomly

selected) and swap timeslots.
N3: Move the highest penalty course from a random 10% selection of the courses to

a new feasible timeslot which can generate the lowest penalty cost.
N4: Move the highest penalty course to a random feasible timeslot (both courses are

in the same room).

3.2 Constructive Heuristic

A least saturation degree is used to generate initial solutions which start with an
empty timetable [19]. The events with less rooms available and more likely to be
difficult to schedule will be attempted first without taking into consideration the
violation of any soft constraints. This process is carried out in the first phase. If a
feasible solution is found, the algorithm terminates. Otherwise, phase 2 is executed. In
the second phase, neighbourhood moves (N1 and/or N2) are applied with the goal of
achieving feasibility. N1 is applied for a certain number of iterations. If a feasible
solution is met, then the algorithm stops. Otherwise the algorithm continues by
applying a N2 neighbourhood structure for a certain number of iterations. Across all
instances tested, solutions were made feasible before the improvement algorithm was
applied.

3.3 Improvement Algorithm

During the improvement stage a set of the neighbourhood structures outlined in
subsection 3.1 are applied. The hard constraints are never violated during the
timetabling process. The pseudo code for the algorithm implemented in this paper is
given in Fig. 1.

Fig 1. The pseudo code for the improvement algorithm

There are 3 steps involved in the improvement algorithm. In Step 1, the great deluge
(see [36]) algorithm is employed followed by a tabu search (see [37]) in Step 2. Step 3
involves accepting a solution to be used in the search process in the next iteration
where the best solutions from Step 1 and Step 2 are chosen (called Sol*) and
compared with the best solution so far (called Solbest). If the quality of the Sol* is less
then the quality of the Solbest, then the current solution will be updated and Sol* will
be assigned as Solbest. The pseudo code for Step 1 and Step 2 are outlined in Figures 2
and 3. Note that, the process is repeated and stops when the termination criterion is

Set the initial solution Sol by employing a constru ctive heuristic;
Calculate initial cost function f(Sol);
Set best solution Sol best ← Sol;
do while (not termination criteria)

 Step 1: Great Deluge
 Step 2: Tabu Search
 Step 3: Accepting Solution

 Choose the best between SolbestGD* and Solbe stTS*, called
 Sol*
 if (f(Sol*) < f(Sol best))
 Sol ← Sol*;
 Sol best ← Sol*;
 end if

end do

met (in this work the termination criteria is set as the number of evaluations i.e.
100,000 and 200000 evaluations or when the penalty cost is zero).

Step 1: Great Deluge
Fig. 2 shows the pseudo code for the algorithm in Step 1.

SolGD ← Sol;
SolbestGD ← Sol
f(SolGD) ← f(Sol);
f(SolbestGD) ← f(Sol)
Set optimal rate of final solution, Optimalrate;
Set number of iterations, NumOfIteGD;
Set initial level: level ← f(SolGD);
Set decreasing rate ∆B = ((f(SolGD)–Optimalrate)/(NumOfIteGD);
Set iteration ← 0;
Set not_improving_counter ← 0, not_improving_ length_GDA;
do while (iteration < NumOfIteGD)
 Apply neighbourhood structure N i where i ∈ {1,…,K} on
 SolGD,TempSolGD i ;
 Calculate cost function f(TempSolGD i);
 Find the best solution among TempSolGD i where i ∈ {1,…,K} call new
 solution SolGD*;
 if (f(SolGD*) < f(SolbestGD))
 SolGD ← SolGD*;
 SolbestGD ← SolGD*;
 not_improving_counter ← 0;
 level = level - ∆B;
 else
 if (f(SolGD*) ≤ level)
 SolGD ← SolGD*;
 not_improving_counter ← 0;
 else
 not_improving_counter++;
 if (not_improving_counter == not_improvi ng_length_GDA)
 level= level + random(0,3);
 Increase iteration by 1;
end do;
return SolbestGD;

Fig 2. The pseudo code for the great deluge (Step 1 in Fig. 1)

Let K be the total number of neighbourhood structures to be used in the search (K is
set to be 4 (applied in the preliminary experiments, see subsection 4.2) and 2 (applied
in subsection 4.3)) and f(SolGD) is the quality measure of the solution Sol. At the
start, the best solution, SolbestGD is set to be Sol. In a do-while loop, a set of
neighbourhoods i where i ∈ {1,…,K} is applied to SolGD to obtain TempSolGDi. The
best solution among TempSolGDi is identified, called, SolGD*. The f(SolGD*) is
compared to the f(SolbestGD). If it is better, then the current and best solutions are
updated. Otherwise f(SolGD*) will be compared against the level. If the quality of
SolGD* is less than the level, the current solution, SolGD will be updated as SolGD*.
Otherwise, the level will be increased with a certain number (between 1 and 3 in this
experiment) in order to allow some flexibility in accepting a worse solution. The
process is repeated until the termination criterion is met.

Step 2: Tabu Search
Fig. 3 shows the pseudo code for the algorithm in Step 2.

SolTS ← Sol;
SolbestTS ← Sol
f(SolTS) ← f(Sol);
f(SolbestTS) ← f(Sol)
Set tabu list = 10, called TL;
Set number of iterations, NumOfIteTS which is equal to the number TL;
Set iteration ← 0;
Set OptimalValue = 0/50/500(for small/medium/large instances);
do while (iteration < NumOfIteTS or Converge == Opt imalValue)
 Apply neighbourhood structure N i where i ∈ {1,2} on SolTS,called
 TempSolTS i ;
 Calculate cost function f(TempSolTS i);
 Find the best solution among TempSolTS i where i ∈ {1,2} call new
 solution SolTS*;
 Keep neighbourhood structure that generate SolT S*, called N TS;
 Moved = False;
 while !Moved
 if (f(SolTS*) < f(SolbestTS))
 SolTS ← SolTS*;
 SolbestTS ← SolTS*
 Converge = f(SolTS);
 Moved = True;
 endif
 if (N TS is not tabu)
 Push N TS into tabu list, TL;
 end while
end do;
return SolbestTS;

Fig 3. The pseudo code for the tabu search (Step 2 in Fig. 1)

In Step 2, a similar process as in Step 1 is applied where a tabu search approach is
employed on a different set of neighbourhood structures. In this experiment two
neighbourhood structures are used to obtain TempSolTSi where i ∈ {1,2}. The best
solution among TempSolTSi is identified, called SolTS*. The f(SolTS*) is compared to
the f(SolbestTS). If it is better, then the current and best solutions are updated. Our
tabu search algorithm uses only a short term memory. We add any moves that
generate SolTS* to the tabu list (if currently not in the tabu list) denoted as TL. These
moves are not allowed to be part of any search process for a certain number of
iterations (the tabu tenure). The tabu tenure is decreased after each iteration until it
reaches zero. All tabu moves will change to non tabu status when the tabu tenure is
zero. In these experiments, we set the tabu tenure to be 10. The determination of these
values was based upon a series of experiments. The process is repeated until the
termination criterion is met.

4 Experimental Results

4.1 Problem instances and experimental protocol

The algorithm is coded using Matlab under Windows XP. We ran the experiments
over the weekend for medium and large datasets. For the small datasets, the algorithm
is able to produce an optimal solution in less than a minute. We note that course
timetabling is a problem that is usually tackled several months before the schedule is
required. This is a scheduling problem where the time taken to solve the problem is
often not critical. We evaluate our results on the instances taken from Socha et al.
(2002) and which are available at http://iridia.ulb.ac.be/~msampels/tt.data/. The
experiments for the course timetabling problem discussed in this paper were tested on
the benchmark course timetabling problems proposed by the Metaheuristics Network
that need to schedule 100-400 courses into a timetable with 45 timeslots
corresponding to 5 days of 9 hours each, whilst satisfying room features and room
capacity constraints. They are divided into three categories: small, medium and large.
We deal with 11 instances: 5 small, 5 medium and 1 large. The parameter values
defining the categories are given in Table 1.

Table 1. The parameter values for the course timetabling problem categories

Category small medium large
Number of courses 100 400 400
Number of rooms 5 10 10
Number of features 5 5 10
Number of students 80 200 400

4.2 Results under preliminary experiments

The aim of this preliminary experiment is to measure the effectiveness of the
neighbourhood structures used. We tested four neighbourhood structures as discussed
in subsection 3.1 on all instances using the great deluge algorithm (as described in
Fig. 2).

Fig 4. Frequency of the neighbourhood structures used for the small, medium and large datasets

Fig. 4 shows the frequency charts of the neighbourhood structures that have been used
by the great deluge algorithm for all datasets. The x-axis represents the datasets while
the y-axis represents the frequency of the neighbourhood structures being employed
throughout the search. It can be seen, from Figure 4, in most of the small and medium
instances, neighbourhood structures move2 (N2) and move3 (N3) are the most popular
structures used. The popular structures for the large dataset are move1 (N1) and
move2 (N2). This shows that different size or complexity of the problem might need
different neighbourhood structures in order to help the search algorithm to explore the
search space. It is also evident that some neighbourhood structures do not contribute
to a good quality solution. Further preliminary experiment is carried out to test the
effect of using a set of different neighbourhood structures on different instances; for
the small and medium instances, N2 and N3 are used while the large instance uses N1
and N3 neighbourhood structures. Table 2 shows the comparison results on different
neighbourhood structures when applied to great deluge algorithm for 100000
iterations.

Table 2. Comparison on different moves

The preliminary results demonstrate that good moves (regardless of the number of
moves) will help the algorithm to find better solutions. This shows the advantage of
combining several good neighbourhood structures against the type of structure alone
in order to help compensate against the ineffectiveness of the other neighbourhood
structures.

4.3 Results under more computational resources

In this experiment, we evaluate the search potential of our algorithm with a relaxed
stop condition. For this purpose, we run our algorithm for 200000 iterations (which
takes approximately twelve hours) with different set of moves as presented in our
preliminary experiment. The best results out of 5 runs obtained are presented. Table 3
shows the comparison of the approach in this paper with other available approaches in

Data set Initial solution Great Deluge with 4 moves Great Deluge with a set of 2 moves

Small1 266 0 0

Small2 225 0 0

Small3 289 0 0

Small4 209 0 0

Small5 382 0 0

Medium1 957 186 182

Medium2 896 225 202

Medium3 957 223 226

Medium4 835 170 178

Medium5 711 167 135

Large 1613 980 845

the literature on all instances i.e. genetic algorithm and local search by Abdullah and
Turabieh (2008), randomised iterative improvement algorithm by Abdullah et
al.(2007a), graph hyper heuristic by Burke et al. (2007), variable neighbourhood
search with tabu by Abdullah et al. (2007b), hybrid evolutionary approach by
Abdullah et al. (2007c), extended great deluge by McMullan (2007), and non linear
great deluge by Landa-Silva and Obit (2008). Note that the best results are presented
in bold. The best results out of 5 runs obtained are presented. It can be seen our
approach has better results on all datasets except large.

Table 3. Best results and comparison with other algorithms under relaxed stop condition

Note:
M1: Genetic algorithm and local search by Abdullah and Turabieh (2008)
M2: Randomised iterative improvement algorithm by Abdullah et al. (2007a)
M3: Graph hyper heuristic by Burke et al. (2007).
M4: Variable neighbourhood search with tabu by Abdullah et al. (2007b)
M5: Hybrid evolutionary approach by Abdullah et al. (2007c)
M6: Extended great deluge by McMullan (2007).
M7: Non linear great deluge by Linda-Silva and Obit (2008)

Fig. 5(a), (b) and (c) show the box plots of the cost when solving small, medium and
large instances, respectively. The results for the large dataset is less dispersed
compared to medium and small (worse dispersed case in these experiments). We
believe that the neighbourhood structures (N1 and N2) applied to the large datasets
are able to force the search algorithm to diversify its exploration of the solution space
by moving from one neighbourhood structure to another even though there may be
fewer and more sparsely distributed solution points in the solutions space since too
many courses are conflicting with each other. When comparing between small and
medium datasets, Figure 5 (b) shows less dispersion of solution points compared to
Figure 5 (a). Again, applying the same neighbourhood structures (N2 and N3) for
both instances most likely does not result in similar behaviour of the search algorithm.
This can be supported by Figure 5 (a) where the dispersion of solution points for

Dataset Our method M1 M2 M3 M4 M5 M6 M7

 Min Max Ave.

Small1 0 2 0.8 0 0 6 0 0 0 3

Small2 0 4 2 0 0 7 0 0 0 4

Small3 0 3 1.4 0 0 3 0 0 0 6

Small4 0 1 1 0 0 3 0 0 0 6

Small5 0 1 0.6 0 0 4 0 0 0 0

Medium1 78 143 132.2 175 242 372 317 221 80 140

Medium2 92 186 124.6 197 161 419 313 147 105 130

Medium3 135 180 162.0 216 265 359 357 246 139 189

Medium4 75 160 111.2 149 181 348 247 165 88 112

Medium5 68 151 113.1 190 151 171 292 130 88 141

Large 556 835 738.6 912 - 1068 - 529 730 876

small datasets is not consistent from one to another. For example small2 in Figure 5
(a) shows worse dispersion compared to small4. From these experiments, we believe
that the size of the search space may not be dependent on the problem size due to the
fact that the dispersion of solution points are significantly different from one to
another, even though the problems are from the same group of datasets with the same
parameter values.

Fig. 5(a), (b) and (c). Box plots of the penalty costs for small, medium and large datasets,
respectively

5 Conclusion and Future Work

This paper has focused on investigating the application of a combination of a great
deluge and tabu search algorithms with a set of neighbourhood structures. Preliminary
comparisons indicate that this algorithm is competitive with other approaches in the
literature. Indeed, it produced seven solutions that were better than or equal to the
published penalty values on these eleven instances although it did require significant
computational time for the medium/large problems. Future research will be aimed to
test this algorithm on the International Timetabling Competition datasets (ITC-2007)
introduced by the University of Udine.

References

1. R Bai, EK. Burke, G Kendall and B McCollum. “A Simulated Annealing Hyper-heuristic
for University Course Timetabling Problem”. (Abstract) PATAT '06, Proceedings of the 6th
International Conference on the Practice and Theory of Automated Timetabling, ISBN 80-
210-3726-1, pp345-350 (2006).

2. MAS. Elmohamed, P Coddington, and G Fox. A comparison of annealing techniques for
academic course scheduling. The Practice and Theory of Automated Timetabling II:

Selected Papers from 2nd International Conference on the Practice and Theory of
Automated Timetabling (PATAT II), Toronto, Canada, Lecture Notes in Computer Science
1408, Springer-Verlag. (Editors: E.K. Burke and M. Carter), pp 92-112 (1998).

3. EK Burke, G Kendall and E Soubeiga, A tabu search hyperheuristic for timetabling and
rostering. Journal of Heuristics 9(6), 451-470 (2003).

4. R Alvarez-Valdes, E Crespo and JM Tamarit. Design and implementation of a course
scheduling systems using tabu search: Production, manufacturing and logistics. European
Journal of Operational Research, 137, pp 512-523 (2002).

5. R Lewis and B Paechter. New crossover operators for timetabling with evolutionary
algorithms. Proceedings of the 5th International Conference on Recent Advances in Soft
Computing (ed. Lotfi), UK, December 16th-18th, pp 189-194 (2004).

6. R Lewis and B Paechter. Application of the groping genetic algorithm to university course
timetabling. Evolutionary Computation in Combinatorial Optimisation (eds. Raidl and
Gottlieb), Springer Lecture Notes in Computer Science Volume 3448, pp 144-153 (2005).

7. K Socha, J Knowles and M Samples, A max-min ant system for the university course
timetabling problem. Proceedings of the 3rd International Workshop on Ant Algorithms
(ANTS 2002), Springer Lecture Notes in Computer Science Volume 2463, 1-13 (2002).

8. B McCollum, A Schaerf, B Paechter, P McMullan, R Lewis, A Parkes, L Di Gaspero, R
Qu, EK Burke. Setting the research agenda in automated timetabling: The second
international timetabling competition, Accepted for publication to INFORMS Journal of
Computing (to appear 2009).

9. EK Burke, G Kendall and E Soubeiga, A tabu search hyperheuristic for timetabling and
rostering. Journal of Heuristics 9(6), 451-470 (2003).

10. EK Burke, Y Bykov, J Newall and S Petrovic, A Time-Predefined Approach to Course
Timetabling, Yugoslav Journal of Operational Research (YUJOR), Vol 13, No. 2, 139-151
(2003).

11. L Di Gaspero and A Schaerf. Multi-neighbourhood local search with application to course
timetabling. In Emund Burke and Patrick De Causmaecker, editors, Proc. Of the 4th Int.
Conf. on the Practice and Theory of Automated Timetabling (PATAT-2002), selected papers,
volume 2740 of Lecture Notes in Computer Science, Springer, 262–275 (2003).

12. R Lewis and B Paechter, New crossover operators for timetabling with evolutionary
algorithms. Proceedings of the 5th International Conference on Recent Advances in Soft
Computing (ed. Lotfi), 189-194 (2004).

13. P Kostuch and K Socha, Hardness Prediction for the University Course Timetabling
Problem, Proceedings of the Evolutionary Computation in Combinatorial Optimization
(EvoCOP 2004), Coimbra, Portugal, April 5-7, 2004, Springer Lecture Notes in Computer
Science Volume 3004, 135-144 (2004).

14. P Kostuch, The university course timetabling problem with a three-phase approach. Practice
and Theory of Automated Timetabling V (eds. Burke and Trick), Springer Lecture Notes in
Computer Science Volume 3616, 109-125 (2005).

15. S Abdullah, EK Burke and B McCollum, An investigation of variable neighbourhood search
for university course timetabling. The 2nd Multidisciplinary International Conference on
Scheduling: Theory and Applications (MISTA 2005), 413-427 (2005).

16. H Asmuni, EK Burke and JM Garibaldi, Fuzzy multiple heuristic ordering for course
timetabling. The Proceedings of the 5th United Kingdom Workshop on Computational
Intelligence (UKCI05), 302-309 (2005).

17. S Abdullah, EK Burke and B McCollum, Using a Randomised Iterative Improvement
Algorithm with Composite Neighbourhood Structures for University Course Timetabling.
In: Metaheuristics Progress in Complex Systems Optimization, Springer, 153-169 (2007).

18. S Abdullah, EK Burke and B McCollum, A Hybrid Evolutionary Approach to the
University Course Timetabling Problem. IEEE Congres on Evolutionary Computation,
ISBN: 1-4244-1340-0, 1764-1768 (2007).

19. P McMullan. An Extended Implementation of the Great Deluge Algorithm for Course
Timetabling, Lecture Notes in Computer Science, Springer, Vol 4487, pp538-545 (2007).

20. S Abdullah and H Turabieh, Generating university course timetable using genetic algorithms
and local search. The Third 2008 International Conference on Convergence and Hybrid
Information Technology ICCIT, vol. I, 254-260 (2008).

21. D Landa-Silva and JH Obit. Great Deluge with Nonlinear Decay Rate for Solving Course
Timetabling Problems. Proceedings of the 2008 IEEE Conference on Intelligent Systems (IS
2008), IEEE Press, 8.11-8.18 (2008).

22. T Müller, ITC2007: Solver Description, Proceedings of the 7th International Conference on
the Practice and Theory of Automated Timetabling, (2008).

23. Z. Lu and J. Hao. Adaptive Tabu Search for Course Timetabling. European Journal of
Operational Research (2009), doi:10.1016.j.ejor.2008.12.007.

24. L Di Gaspero, B McCollum and A Schaerf, The Second International Timetabling
Competition (ITC2007): Curriculum-based Course Timetabling Track, the 14th RCRA
workshop on Experimental Evaluation of Algorithms for Solving Problems with
Combinatorial Explosion (2007).

25. M Clark, M Henz and B Love. QuikFix: A repair-based timetable solver. In Proceedings of
the 7th PATAT Conference (2008).

26. F De Cesco, L Di Gaspero and A Schaerf. Benchmarking curriculum-based course
timetabling: Formulations, data format, instances, validation and results. In Proceedings of
the 7th PATAT Conference (2008).

27. MJ Geiger. An application of the threshold accepting metaheuristic for curriculum-based
course timetabling. In Proceedings of the 7th PATAT Conference (2008).

28. G Lach and ME Lubbecke. Curriclum-based course timetabling: Optimal solutions to the
udine benchmark instances. In Proceedings of the 7th PATAT Conference (2008).

29. R Lewis. A survey of metaheuristic-based techniques for university timetabling problems,
OR Spectrum 30 (1), 167-190 (2008).

30. B McCollum, A perspective on bridging the gap between theory and practice in university
timetabling. LNCS 3867, Springer-Verlag, 3-23 (2007).

31. EK Burke, B McCollum, A Meisels, S Petrovic and R Qu, A Graph-Based Hyper Heuristic
for Educational Timetabling Problems, European Journal of Operational Research 176(1),
177-192 (2007).

32. B McCollum, EK Burke, P McMullan. A review and description of datasets, formulations
and solutions to the University Course Timetabling Problem. To be submitted April 2009 to
the Journal of Scheduling.

33. M Chiarandini, M Birattari, K Socha and O Rossi-Doria. An effective hybrid algorithm for
university course timetabling. Journal of Scheduling 9(5), pp 403-432 (2006).

34. Z. Lu, J. Hao. Solving the Course Timetabling Problem with a Hybrid Heuristic Algorithm.
AIMSA 2008, LNAI 5253, pp. 262–273, 2008. Springer-Verlag Berlin Heidelberg 2008.

35. M Dimopoulou and P Miliotis. An automated university course timetabling system
developed in a distributed environment: A case study. European Journal of Operational
Research 153(1), pp 136-147 (2004).

36. G Dueck. New Optimization Heuristics. The great deluge algorithm and the record-to-
record travel. Journal of Computational Physics 104, pp 86-92 (1993).

37. F Glover and M Laguna. Tabu Search. Kluwer Academic, Boston (1997).
38. E.K. Burke and G. Kendall. Search methodologies. Introductory tutorials in optimization

and decision support techniques. Springer (2005).
39. L. Di Gaspero, B.McCollum and A. Schaerf. The second international timetabling

competition (ITC-2007): Curriculum-based course timetabling (track 3). Technical Report
QUB/IEEE/Tech/ITC2007/CurriculumCTT/v1.0, Queen's University, Belfast, United
Kingdom, August (2007).

