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Abstract. The course timetabling problem deals with thegasaent of a set of
courses to specific timeslots and rooms within akinmg week subject to a
variety of hard and soft constraints. Solutions caked feasible if all the hard
constraints are satisfied. The goal is to satisfynany of the soft constraints as
possible whilst constructing a feasible schedutethis paper, we present a
combination of two metaheuristics i.e. great delage tabu search approaches.
The algorithm is tested over eleven benchmark dedsepresenting one large,
five medium and five small problems). The resulsmdnstrate that our
approach is able to produce solutions that havelgenalty on all the small
and medium problems when compared against othdmitpees from the
literature.
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1 Introduction

In the timetabling literature, significant attemtilias been paid to the problem of
constructing university course timetables. Varideshniques have been applied to
this complex and difficult problem. Exact solutipnghere the optimum solution is
guaranteed, can be only possible for problems linded size [38]. On the other
hand, algorithms employing heuristic based techlesgbhave shown to be highly
effective. Examples include simulated annealing.(EL, 2]), tabu search (e.g. [3,4])
and genetic algorithms (e.g. [5,6]). In this pagecombination of two metaheuristic
based techniques i.e. great deluge and tabu sasgdcpplied to the university course
timetabling problem. The approach is tested ovevexl benchmark datasets that were
introduced by Sochet al. [7]. The results demonstrate that our approachjgble of
producing high quality solutions when compared ttteo techniques in the literature.
The paper is organised as follows: The next sedmstribes the course timetabling
problem and provides a brief overview of the retéuametabling literature. Section 3
describes our algorithm and its application to tmurse timetabling problem.
Experimental results are presented in Section domparison between state-of-the-



art techniques from the literature and some bmgictuding comments are presented
in Section 5.

2 TheUniversity Course Timetabling Problem

In university course timetabling, a set of couraesscheduled into a given number of
rooms and timeslots across a period of time. Thisally takes place within a week
and the resultant timetable replicated for as maegks as the courses run. Also,
students and teachers are assigned to courseststhéhteaching delivery activities
can take place. The course timetabling problenaligest to a variety of hard and soft
constraints. Hard constraints need to be satisfiedrder to produce deasible
solution. In this paper, we test our approach @npioblem instances introduced by
Socheet al. [7] who present the following hard constraints:

*  No student can be assigned to more than one course at the same time.

e Theroom should satisfy the features required by the course.

e The number of students attending the course should be less than or equal to

the capacity of the room.
* No more than one course is allowed to be assigned to a timeslot in each
room.

Sochaet al. [7] also present the following soft constrairttattare equally penalised:

* Astudent has a course scheduled in the last timeslot of the day.

* Astudent has more than 2 consecutive cour ses.

e Astudent has a single course on a day.
The problem has

e AsetofN coursese = {ey,....e\}.

* 45 timeslots.

* AsetofRrooms.

» Aset ofF room features.

* Aset ofM students.
The objective of this problem is to satisfy the chaonstraints and to minimise the
violation of the soft constraints.

Several university course timetabling papers hageared in the literature in the last
few years which tackle various benchmark coursettitning problems which have
been introduced [39]. The following provides an mi@w of techniques which have
been used to find solutions to various formulatiohshe course timetabling problem
in the past. Sochat al. [7] employed a local search and ant based algostand

tested on eleven problems that were produced byhﬂaésl course timetabling test
instance generator (note that these instancessarkta evaluate the method described
in this paper). In 2003, Burket al. [9] introduced a tabu-search hyperheuristic which
was also tested on a nurse rostering problem. TreatGdeluge algorithm was
employed by Burkeet al. [10]. Di Gaspero and Schaerf [11] applied a multi
neighbourhood search approach and tested on the isatances. In 2004, Lewis and

1 http://www.dcs.napier.ac.uk/~benp/



Paechter [12] designed several crossover operatmistested on twenty instances
generated by Paechter’'s generator which was usé¢lkeirtompetition in 2002 (see
http://www.idsia.ch/Files/ttcomp2002). Kostuch arffocha [13] investigated a
statistical model in predicting the difficulty afrtetabling problems particularly on the
competition datasets. In 2005, Kostuch [14] presgra three phase approach which
employs simulated annealing and had 13 best restttse 20 competition instances.
A variable neighbourhood search with a fixed taist has been employed by
Abdullahet al. [15]. Asmuniet al. [16] applied a fuzzy multiple heuristic ordering
the eleven standard benchmark datasets. In 200duliab et al. [17] developed an
iterative improvement algorithm with composite r#igurhood structures and later
combining this algorithm with a mutation operatamed Abdullahet al. [18]).
McMullan [19] applied a two phased approach utigzian adaptive construction
heuristic and an extended version of the Great ggelilgorithm. In 2008, Abdullah
and Turabieh [20] employed a genetic and localcteapproach on 11 benchmark
course. Landa-Silva and Obit employed a non lirggaat and deluge on the same
instances [21]. Muller [22] applied a constrainséa solver applied to the curriculum-
based course timetabling problems in tf& Iaternational Timetabling Competition
(Track 1 and Track 3) as introduced by Di Gaspatral. [23] and achieved the first
place in this competition. Lu and Hao [24] appleettybrid heuristic algorithm called
adaptive tabu search to the same instances. Odpergthat tackle curriculum-based
course timetabling problems can be found in Ckirkl. [25], De Cescat al. [26],
Geiger [27] and Lach and Lubbecke [28]. Interestatlers are referred to Lewis [29]
for a comprehensive survey of the university tirbétey approaches in recent years, a
gap between theory and practice in university tabltg area by McCollum [30] and
other related papers on course timetabling in [38334,35].

3 TheAlgorithm

The algorithm presented here is divided into twatgad.e. construction and
improvement algorithms. Within the latter stageyrfaeighbourhood structures have
been employed.

3.1 Neighbourhood Structure
The different neighbourhood structures and thgilanation are outlined as follows:

N;: Choose a single course at random and move taasible timeslot that can
generate the lowest penalty cost.

N,: Select two courses at random from the same rothve oom is randomly
selected) and swap timeslots.

Ns:  Move the highest penalty course from a random $e%éction of the courses to
a new feasible timeslot which can generate the $dwenalty cost.

N4 Move the highest penalty course to a random Iiéasimeslot (both courses are
in the same room).



3.2 ConstructiveHeuristic

A least saturation degree is used to generatalirgtlutions which start with an
empty timetable [19]. The events with less roomailable and more likely to be
difficult to schedule will be attempted first withbtaking into consideration the
violation of any soft constraints. This processaried out in the first phase. If a
feasible solution is found, the algorithm termisat®therwise, phase 2 is executed. In
the second phase, neighbourhood moves (N1 and/pamtd2applied with the goal of
achieving feasibility. N1 is applied for a certainmber of iterations. If a feasible
solution is met, then the algorithm stops. Otheewike algorithm continues by
applying a N2 neighbourhood structure for a certaimber of iterations. Across all
instances tested, solutions were made feasibledéie improvement algorithm was
applied.

3.3 Improvement Algorithm

During the improvement stage a set of the neighimaot structures outlined in
subsection 3.1 are applied. The hard constrainés reaver violated during the
timetabling process. The pseudo code for the dlgarimplemented in this paper is
given in Fig. 1.

Set the initial solution Sol by employing a constru ctive heuristic;
Calculate initial cost function f(Sol);
Set best solution Sol pest « SOl;
do while (not termination criteria)
Step 1: Great Deluge
Step 2: Tabu Search
Step 3: Accepting Solution

Choose the best between SolbestGD* and Solbe StTS*, called
Sol*
if (f(Sol*) < f(Sol best ))
Sol ~ Sol*;
Sol pest <« SOI*;
end if
end do

Fig 1. The pseudo code for the improvement algorith

There are 3 steps involved in the improvement dlgor In Step 1, the great deluge
(see [36]) algorithm is employed followed by a ta@arch (see [37]) in Step 2. Step 3
involves accepting a solution to be used in therdde process in the next iteration
where the best solutions from Step 1 and Step 2chosen (calledsol*) and
compared with the best solution so far (calfetley). If the quality of theSol* is less
then the quality of th&ol,ey, then the current solution will be updated and* Sall

be assigned &l,4. The pseudo code for Step 1 and Step 2 are odiimEigures 2
and 3. Note that, the process is repeated and sthes the termination criterion is



met (in this work the termination criteria is set the number of evaluations i.e.
100,000 and 200000 evaluations or when the penaftyis zero).

Step 1: Great Deluge
Fig. 2 shows the pseudo code for the algorithmiép 3.

SolGD - Sol;
SolbestGD -~ Sol
f(SolGD)  ~ f(Sol);
f(SolbestGD)  ~ f(Sol)
Set optimal rate of final solution, Optimalrate;
Set number of iterations, NumOflteGD;
Set initial level: level ~ f(SolGD);
Set decreasing rate AB = ((f(SolGD)-Optimalrate)/(NumOflteGD);
Set iteration ~0;
Set not_improving_counter ~ 0, not_improving_ length_GDA,;
do while (iteration < NumOflteGD)
Apply neighbourhood structure N i where i 0{1,....K} on
SolGD,TempSolGD  ;
Calculate cost function f(TempSolGD i)
Find the best solution among TempSolGD i where i 0{1,...,K} call new
solution SolGD*,
if (f(SolGD*) < f(SolbestGD))

SolGD ~ SolGD*;
SolbestGD ~ SolGD*;
not_improving_counter ~0;
level = level - AB;
else
if (f(SolGD*) < level)
SolGD — SolGD*;
not_improving_counter ~0;
else
not_improving_counter++;
if (not_improving_counter == not_improvi ng_length_GDA)

level= level + random(0,3);
Increase iteration by 1;
end do;
return SolbestGD;

Fig 2. The pseudo code for the great deluge (Stag-ig. 1)

Let K be the total number of neighbourhood structurdsetaised in the searcK (s
set to be 4 (applied in the preliminary experimesé® subsection 4.2) and 2 (applied
in subsection 4.3)) anf{fSolGD) is the quality measure of the solutiGaol. At the
start, the best solutiorfolbestGD is set to beSol. In a do-while loop, a set of
neighbourhoodswherei O {1,...,K} is applied toSolGD to obtainTempSolGD;. The
best solution amon@empSolGD; is identified, called,SolGD*. The f(SolGD*) is
compared to thé(SolbestGD). If it is better, then the current and best dohg are
updated. Otherwis&SolGD*) will be compared against the level. If the qualitf
SolGD* is less than the level, the current soluti8olGD will be updated aSolGD*.
Otherwise, the level will be increased with a dertaumber (between 1 and 3 in this
experiment) in order to allow some flexibility irc@pting a worse solution. The
process is repeated until the termination critersomet.



Step 2: Tabu Search
Fig. 3 shows the pseudo code for the algorithmiép 2.

SoITS -~ Sol;

SolbestTS « Sol
f(SolTS)  —f(Sol);
f(SolbestTS)  — f(Sol)

Set tabu list = 10, called TL;

Set number of iterations, NumOflte TS which is equal to the number TL;
Set iteration ~0;
Set OptimalValue = 0/50/500(for small/medium/large instances);
do while (iteration < NumOflteTS or Converge == Opt imalValue)
Apply neighbourhood structure N i where i 0{1,2} on SolTS,called
TempSoITS  §;
Calculate cost function f(TempSoITS i)
Find the best solution among TempSolTS i where i 0{1,2} call new
solution SolTS*,
Keep neighbourhood structure that generate SolT S*, called N TS)

Moved = False;
while 'Moved
if (f(SoITS*) < f(SolbestTS))
SolTS ~ SoITS*;
SolbestTS ~ SolTS*
Converge = f(SoITS);
Moved = True;

endif
if (N 15 IS not tabu)
Push N tsinto tabu list, TL;
end while
end do;

return SolbestTS;
Fig 3. The pseudo code for the tabu search (Steg-). 1)

In Step 2, a similar process as in Step 1 is agpplibere a tabu search approach is
employed on a different set of neighbourhood stmast. In this experiment two
neighbourhood structures are used to obl@mpSol TS wherei O {1,2}. The best
solution amongrempSol TS is identified, calledsol TS*. Thef(SolTS') is compared to
the f(SolbestTS). If it is better, then the current and best sohg are updated. Our
tabu search algorithm uses only a short term memdfg add any moves that
generatesol TS to the tabu list (if currently not in the tabustl denoted a$L. These
moves are not allowed to be part of any searchgsodor a certain number of
iterations (the tabu tenure). The tabu tenure @edsed after each iteration until it
reaches zero. All tabu moves will change to nom tsfatus when the tabu tenure is
zero. In these experiments, we set the tabu tdnuse 10. The determination of these
values was based upon a series of experiments.piideess is repeated until the
termination criterion is met.



4 Experimental Results

4.1 Praoblem instances and experimental protocol

The algorithm is coded using Matlab under WindowR. XVe ran the experiments
over the weekend for medium and large datasetsthesmall datasets, the algorithm
is able to produce an optimal solution in less thaminute. We note that course
timetabling is a problem that is usually tacklegesal months before the schedule is
required. This is a scheduling problem where theettaken to solve the problem is
often not critical. We evaluate our results on igtances taken from Soclefal.
(2002) and which are available at http://iridia.athbe/~msampels/tt.data/. The
experiments for the course timetabling problemulised in this paper were tested on
the benchmark course timetabling problems propasetthe Metaheuristics Network
that need to schedule 100-400 courses into a tbieetavith 45 timeslots
corresponding to 5 days of 9 hours each, whildsfyaiig room features and room
capacity constraints. They are divided into thraggoriessmall, medium andlarge.
We deal with 11 instances: $nall, 5 medium and 1large. The parameter values
defining the categories are given in Table 1.

Table 1. The parameter values for the course timetablioblpm categories

Category small medium large
Number of courses 100 400 400
Number of rooms 5 10 10
Number of features 5 5 10
Number of students 80 200 400

4.2 Resultsunder preliminary experiments

The aim of this preliminary experiment is to measuhe effectiveness of the

neighbourhood structures used. We tested four heigihood structures as discussed
in subsection 3.1 on all instances using the gieaige algorithm (as described in
Fig. 2).
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Fig. 4 shows the frequency charts of the neighbmadistructures that have been used
by the great deluge algorithm for all datasets. Xagis represents the datasets while
the y-axis represents the frequency of the neigtitmmd structures being employed
throughout the search. It can be seen, from Figune most of thesmall andmedium
instances, neighbourhood structunas/e2 (N2) andmove3 (N3) are the most popular
structures used. The popular structures for ldrge dataset aremovel (N1) and
move2 (N2). This shows that different size or complexfythe problem might need
different neighbourhood structures in order to Hakpsearch algorithm to explore the
search space. It is also evident that some neighbod structures do not contribute
to a good quality solution. Further preliminary exment is carried out to test the
effect of using a set of different neighbourhoodictures on different instances; for
thesmall andmedium instances, N2 and N3 are used whileltige instance uses N1
and N3 neighbourhood structures. Table 2 showsdingparison results on different
neighbourhood structures when applied to great ggelalgorithm for 100000
iterations.

Table 2. Comparison on different moves

Data set Initial solution  Great Deluge with 4 moves Great Deluge with a set of 2 moves
Smalll 266 0 0
Small2 225 0 0
Small3 289 0 0
Small4 209 0 0
Small5 382 0 0
Mediuml 957 186 182
Medium2 896 225 202
Medium3 957 223 226
Mediumé 835 170 178
Mediumb 711 167 135
Large 1613 980 845

The preliminary results demonstrate that good mdwegardless of the number of
moves) will help the algorithm to find better saduis. This shows the advantage of
combining several good neighbourhood structuresnagéhe type of structure alone
in order to help compensate against the ineffeatige of the other neighbourhood
structures.

4.3 Resultsunder more computational resources

In this experiment, we evaluate the search poteatiaur algorithm with a relaxed
stop condition. For this purpose, we run our alhoni for 200000 iterations (which
takes approximately twelve hours) with different e moves as presented in our
preliminary experiment. The best results out ofisrobtained are presented. Table 3
shows the comparison of the approach in this pajtarother available approaches in



the literature on all instances i.e. genetic athamiand local search by Abdullah and
Turabieh (2008), randomised iterative improvemelgodhm by Abdullah et
al.(2007a), graph hyper heuristic by Burkeal. (2007), variable neighbourhood
search with tabu by Abdullalet al. (2007b), hybrid evolutionary approach by
Abdullahet al. (2007c), extended great deluge by McMullan (20@Ad non linear
great deluge by Landa-Silva and Obit (2008). Nbtg the best results are presented
in bold. The best results out of 5 runs obtainesl presented. It can be seen our
approach has better results on all datasets ebargpet

Table 3. Best results and comparison with other algorithmden relaxed stop condition

Dataset Our method M1 M2 M3 M4 M5 M6 M7
Min Max Ave.

Smalll 0 2 0.8 0 0 6 0 0 0 3

Small2 0 4 2 0 0 7 0 0 0 4

Small3 0 3 1.4 0 0 3 0 0 0 6

Small4 0 1 1 0 0 3 0 0 0 6

Small5 0 1 0.6 0 0 4 0 0 0 0

Mediuml 78 143 1322 175 242 372 317 221 80 140

Medium2 92 186 1246 197 161 419 313 147 105 130

Medium3 135 180 1620 216 265 359 357 246 139 189

Medium4 75 160 1112 149 181 348 247 165 88 112

Mediums 68 151 1131 190 151 171 292 130 88 141

Large 556 835 7386 912 - 1068 - 520 730 876

Note:

M1: Genetic algorithm and local search by Abdulledd Turabieh (2008)
M2: Randomised iterative improvement algorithm bydAlahet al. (2007a)
M3: Graph hyper heuristic by Burletal. (2007).

M4: Variable neighbourhood search with tabu by Alatuet al. (2007b)
M5: Hybrid evolutionary approach by Abdullahal. (2007c¢)

M6: Extended great deluge by McMullan (2007).

M7: Non linear great deluge by Linda-Silva and GjBR08)

Fig. 5(a), (b) and (c) show the box plots of thetawhen solvinggmall, medium and
large instances, respectively. The results for thege dataset is less dispersed
compared tomedium and small (worse dispersed case in these experiments). We
believe that the neighbourhood structures (N1 a)l &pplied to théarge datasets
are able to force the search algorithm to diverg#fyexploration of the solution space
by moving from one neighbourhood structure to amotwven though there may be
fewer and more sparsely distributed solution pointshe solutions space since too
many courses are conflicting with each other. Whbemparing betweesmall and
medium datasets, Figure 5 (b) shows less dispersion lofisp points compared to
Figure 5 (a). Again, applying the same neighboudhstructures (N2 and N3) for
both instances most likely does not result in similehaviour of the search algorithm.
This can be supported by Figure 5 (a) where thpedsson of solution points for



small datasets is not consistent from one to anotherekamplesmall2 in Figure 5
(a) shows worse dispersion comparedall4. From these experiments, we believe
that the size of the search space may not be deptnd the problem size due to the
fact that the dispersion of solution points arensigantly different from one to
another, even though the problems are from the game of datasets with the same
parameter values.
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Fig. 5(a), (b) and (c). Box plots of the penalty costs dorll, medium and large datasets,
respectively

5 Conclusion and Future Work

This paper has focused on investigating the apdicaof a combination of a great
deluge and tabu search algorithms with a set gfhfeiurhood structures. Preliminary
comparisons indicate that this algorithm is contpetiwith other approaches in the
literature. Indeed, it produced seven solutions there better than or equal to the
published penalty values on these eleven instastiesugh it did require significant

computational time for the medium/large problemstufe research will be aimed to
test this algorithm on the International Timetagli@ompetition datasets (ITC-2007)
introduced by the University of Udine.
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