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Abstract. The course timetabling problem deals with the assignment of a set of 
courses to specific timeslots and rooms within a working week subject to a 
variety of hard and soft constraints. Solutions are called feasible if all the hard 
constraints are satisfied. The goal is to satisfy as many of the soft constraints as 
possible whilst constructing a feasible schedule. In this paper, we present a 
combination of two metaheuristics i.e. great deluge and tabu search approaches. 
The algorithm is tested over eleven benchmark datasets (representing one large, 
five medium and five small problems). The results demonstrate that our 
approach is able to produce solutions that have lower penalty on all the small 
and medium problems when compared against other techniques from the 
literature. 
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1   Introduction 

In the timetabling literature, significant attention has been paid to the problem of 
constructing university course timetables. Various techniques have been applied to 
this complex and difficult problem. Exact solutions, where the optimum solution is 
guaranteed, can be only possible for problems of a limited size [38]. On the other 
hand, algorithms employing heuristic based techniques have shown to be highly 
effective. Examples include simulated annealing (e.g. [1, 2]), tabu search (e.g. [3,4]) 
and genetic algorithms (e.g. [5,6]). In this paper, a combination of two metaheuristic 
based techniques i.e. great deluge and tabu search are applied to the university course 
timetabling problem. The approach is tested over eleven benchmark datasets that were 
introduced by Socha et al. [7]. The results demonstrate that our approach is capable of 
producing high quality solutions when compared to other techniques in the literature. 
The paper is organised as follows: The next section describes the course timetabling 
problem and provides a brief overview of the relevant timetabling literature. Section 3 
describes our algorithm and its application to the course timetabling problem. 
Experimental results are presented in Section 4. A comparison between state-of-the-



art techniques from the literature and some brief concluding comments are presented 
in Section 5.  

2 The University Course Timetabling Problem 

In university course timetabling, a set of courses are scheduled into a given number of 
rooms and timeslots across a period of time. This usually takes place within a week 
and the resultant timetable replicated for as many weeks as the courses run. Also, 
students and teachers are assigned to courses so that the teaching delivery activities 
can take place. The course timetabling problem is subject to a variety of hard and soft 
constraints. Hard constraints need to be satisfied in order to produce a feasible 
solution. In this paper, we test our approach on the problem instances introduced by 
Socha et al. [7] who present the following hard constraints: 

• No student can be assigned to more than one course at the same time. 
• The room should satisfy the features required by the course. 
• The number of students attending the course should be less than or equal to 

the capacity of the room. 
• No more than one course is allowed to be assigned to a timeslot in each 

room. 
Socha et al. [7] also present the following soft constraints that are equally penalised: 

• A student has a course scheduled in the last timeslot of the day. 
• A student has more than 2 consecutive courses. 
• A student has a single course on a day. 

The problem has 
• A set of N courses, e = {e1,…,eN}. 
• 45 timeslots. 
• A set of R rooms. 
• A set of F room features. 
• A set of M students. 

The objective of this problem is to satisfy the hard constraints and to minimise the 
violation of the soft constraints.  
 
Several university course timetabling papers have appeared in the literature in the last 
few years which tackle various benchmark course timetabling problems which have 
been introduced [39]. The following provides an overview of techniques which have 
been used to find solutions to various formulations of the course timetabling problem 
in the past. Socha et al. [7] employed a local search and ant based algorithms and 

tested on eleven problems that were produced by Paechter’s
1
 course timetabling test 

instance generator (note that these instances are used to evaluate the method described 
in this paper). In 2003, Burke et al. [9] introduced a tabu-search hyperheuristic which 
was also tested on a nurse rostering problem. The Great deluge algorithm was 
employed by Burke et al. [10]. Di Gaspero and Schaerf [11] applied a multi 
neighbourhood search approach and tested on the same instances. In 2004, Lewis and 
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Paechter [12] designed several crossover operators and tested on twenty instances 
generated by Paechter’s generator which was used in the competition in 2002 (see 
http://www.idsia.ch/Files/ttcomp2002). Kostuch and Socha [13] investigated a 
statistical model in predicting the difficulty of timetabling problems particularly on the 
competition datasets. In 2005, Kostuch [14] presented a three phase approach which 
employs simulated annealing and had 13 best results of the 20 competition instances. 
A variable neighbourhood search with a fixed tabu list has been employed by 
Abdullah et al. [15]. Asmuni et al. [16] applied a fuzzy multiple heuristic ordering on 
the eleven standard benchmark datasets. In 2007, Abdullah et al. [17] developed an 
iterative improvement algorithm with composite neighbourhood structures and later 
combining this algorithm with a mutation operator (see Abdullah et al. [18]). 
McMullan [19] applied a two phased approach utilizing an adaptive construction 
heuristic and an extended version of the Great Deluge Algorithm. In 2008, Abdullah 
and Turabieh [20] employed a genetic and local search approach on 11 benchmark 
course. Landa-Silva and Obit employed a non linear great and deluge on the same 
instances [21]. Müller [22] applied a constraint-based solver applied to the curriculum-
based course timetabling problems in the 2nd International Timetabling Competition 
(Track 1 and Track 3) as introduced by Di Gaspero et al. [23] and achieved the first 
place in this competition. Lu and Hao [24] applied a hybrid heuristic algorithm called 
adaptive tabu search to the same instances. Other papers that tackle curriculum-based 
course timetabling problems can be found in Clark et al. [25], De Cesco et al. [26], 
Geiger [27] and Lach and Lubbecke [28]. Interested readers are referred to Lewis [29] 
for a comprehensive survey of the university timetabling approaches in recent years, a 
gap between theory and practice in university timetabling area by McCollum [30] and 
other related papers on course timetabling in [31,32,33,34,35]. 
 

 
3 The Algorithm 
 
The algorithm presented here is divided into two parts i.e. construction and 
improvement algorithms. Within the latter stage, four neighbourhood structures have 
been employed. 
 
 
3.1 Neighbourhood Structure 
 
The different neighbourhood structures and their explanation are outlined as follows: 
 
N1: Choose a single course at random and move to a feasible timeslot that can 

generate the lowest penalty cost. 
N2: Select two courses at random from the same room (the room is randomly 

selected) and swap timeslots. 
N3: Move the highest penalty course from a random 10% selection of the courses to 

a new feasible timeslot which can generate the lowest penalty cost. 
N4: Move the highest penalty course to a random feasible timeslot (both courses are 

in the same room). 
 



3.2 Constructive Heuristic 
 
A least saturation degree is used to generate initial solutions which start with an 
empty timetable [19]. The events with less rooms available and more likely to be 
difficult to schedule will be attempted first without taking into consideration the 
violation of any soft constraints. This process is carried out in the first phase. If a 
feasible solution is found, the algorithm terminates. Otherwise, phase 2 is executed. In 
the second phase, neighbourhood moves (N1 and/or N2) are applied with the goal of 
achieving feasibility. N1 is applied for a certain number of iterations. If a feasible 
solution is met, then the algorithm stops. Otherwise the algorithm continues by 
applying a N2 neighbourhood structure for a certain number of iterations. Across all 
instances tested, solutions were made feasible before the improvement algorithm was 
applied. 
 
 
3.3 Improvement Algorithm 

 
During the improvement stage a set of the neighbourhood structures outlined in 
subsection 3.1 are applied. The hard constraints are never violated during the 
timetabling process. The pseudo code for the algorithm implemented in this paper is 
given in Fig. 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1. The pseudo code for the improvement algorithm 
 

There are 3 steps involved in the improvement algorithm. In Step 1, the great deluge 
(see [36]) algorithm is employed followed by a tabu search (see [37]) in Step 2. Step 3 
involves  accepting a solution to be used in the search process in the next iteration 
where the best solutions from Step 1 and Step 2 are chosen (called Sol*) and 
compared with the best solution so far (called Solbest). If the quality of the Sol* is less 
then the quality of the Solbest, then the current solution will be updated and Sol* will 
be assigned as Solbest. The pseudo code for Step 1 and Step 2 are outlined in Figures 2 
and 3. Note that, the process is repeated and stops when the termination criterion is 

 
Set the initial solution Sol by employing a constru ctive heuristic; 
Calculate initial cost function f(Sol); 
Set best solution Sol best  ← Sol; 
do while (not termination criteria) 

  Step 1: Great Deluge 
  Step 2: Tabu Search 
  Step 3: Accepting Solution 

       Choose the best between SolbestGD* and Solbe stTS*, called 
      Sol* 
      if (f(Sol*) < f(Sol best )) 
          Sol ← Sol*; 
          Sol best  ← Sol*; 
      end if 

end do 



met (in this work the termination criteria is set as the number of evaluations i.e. 
100,000 and 200000 evaluations or when the penalty cost is zero). 
 
Step 1: Great Deluge 
Fig. 2 shows the pseudo code for the algorithm in Step 1. 
 

SolGD ← Sol; 
SolbestGD ← Sol 
f(SolGD) ← f(Sol); 
f(SolbestGD) ← f(Sol) 
Set optimal rate of final solution, Optimalrate;  
Set number of iterations, NumOfIteGD;  
Set initial level: level ← f(SolGD);  
Set decreasing rate ∆B = ((f(SolGD)–Optimalrate)/(NumOfIteGD);  
Set iteration ← 0;  
Set not_improving_counter ← 0, not_improving_ length_GDA; 
do while (iteration < NumOfIteGD) 
    Apply neighbourhood structure N i  where i ∈ {1,…,K} on 
    SolGD,TempSolGD i ; 
    Calculate cost function f(TempSolGD i ); 
    Find the best solution among TempSolGD i  where i ∈ {1,…,K} call new 
    solution SolGD*; 
    if (f(SolGD*) < f(SolbestGD))  
        SolGD ← SolGD*;  
        SolbestGD ← SolGD*;  
        not_improving_counter ← 0;  
        level = level - ∆B;  
    else  
        if (f(SolGD*) ≤ level)  
            SolGD ← SolGD*;  
            not_improving_counter ← 0;  
        else  
           not_improving_counter++;  
           if (not_improving_counter == not_improvi ng_length_GDA)  
                level= level + random(0,3); 
    Increase iteration by 1;  
end do;  
return SolbestGD; 
 

Fig 2. The pseudo code for the great deluge (Step 1 in Fig. 1)  
 
 
Let K be the total number of neighbourhood structures to be used in the search (K is 
set to be 4 (applied in the preliminary experiments, see subsection 4.2) and 2 (applied 
in subsection 4.3)) and f(SolGD) is the quality measure of the solution Sol. At the 
start, the best solution, SolbestGD is set to be Sol. In a do-while loop, a set of 
neighbourhoods i where i ∈ {1,…,K} is applied to SolGD to obtain TempSolGDi. The 
best solution among TempSolGDi is identified, called, SolGD*. The f(SolGD*) is 
compared to the f(SolbestGD). If it is better, then the current and best solutions are 
updated. Otherwise f(SolGD*) will be compared against the level. If the quality of 
SolGD* is less than the level, the current solution, SolGD will be updated as SolGD*. 
Otherwise, the level will be increased with a certain number (between 1 and 3 in this 
experiment) in order to allow some flexibility in accepting a worse solution. The 
process is repeated until the termination criterion is met. 



 
Step 2: Tabu Search 
Fig. 3 shows the pseudo code for the algorithm in Step 2.  

 
SolTS ← Sol; 
SolbestTS ← Sol 
f(SolTS) ← f(Sol); 
f(SolbestTS) ← f(Sol) 
Set tabu list = 10, called TL; 
Set number of iterations, NumOfIteTS which is equal  to the number TL;  
Set iteration ← 0;  
Set OptimalValue = 0/50/500(for small/medium/large instances); 
do while (iteration < NumOfIteTS or Converge == Opt imalValue) 
    Apply neighbourhood structure N i  where i ∈ {1,2} on SolTS,called 
    TempSolTS i ; 
    Calculate cost function f(TempSolTS i ); 
    Find the best solution among TempSolTS i  where i ∈ {1,2} call new 
    solution SolTS*; 
    Keep neighbourhood structure that generate SolT S*, called N TS; 
    Moved = False; 
    while !Moved 
    if (f(SolTS*) < f(SolbestTS))  
            SolTS ← SolTS*; 
            SolbestTS ← SolTS* 
        Converge = f(SolTS);  
            Moved = True; 
        endif 
        if (N TS is not tabu) 
            Push N TS into tabu list, TL; 
    end while 
end do;  
return SolbestTS; 
 

Fig 3. The pseudo code for the tabu search (Step 2 in Fig. 1) 
 
In Step 2, a similar process as in Step 1 is applied where a tabu search approach is 
employed on a different set of neighbourhood structures. In this experiment two 
neighbourhood structures are used to obtain TempSolTSi where i ∈ {1,2}. The best 
solution among TempSolTSi is identified, called SolTS*. The f(SolTS*) is compared to 
the f(SolbestTS). If it is better, then the current and best solutions are updated. Our 
tabu search algorithm uses only a short term memory. We add any moves that 
generate SolTS* to the tabu list (if currently not in the tabu list) denoted as TL. These 
moves are not allowed to be part of any search process for a certain number of 
iterations (the tabu tenure). The tabu tenure is decreased after each iteration until it 
reaches zero. All tabu moves will change to non tabu status when the tabu tenure is 
zero. In these experiments, we set the tabu tenure to be 10. The determination of these 
values was based upon a series of experiments. The process is repeated until the 
termination criterion is met. 



4    Experimental Results 

4.1 Problem instances and experimental protocol 
 
The algorithm is coded using Matlab under Windows XP. We ran the experiments 
over the weekend for medium and large datasets. For the small datasets, the algorithm 
is able to produce an optimal solution in less than a minute. We note that course 
timetabling is a problem that is usually tackled several months before the schedule is 
required. This is a scheduling problem where the time taken to solve the problem is 
often not critical. We evaluate our results on the instances taken from Socha et al. 
(2002) and which are available at http://iridia.ulb.ac.be/~msampels/tt.data/. The 
experiments for the course timetabling problem discussed in this paper were tested on 
the benchmark course timetabling problems proposed by the Metaheuristics Network 
that need to schedule 100-400 courses into a timetable with 45 timeslots 
corresponding to 5 days of 9 hours each, whilst satisfying room features and room 
capacity constraints. They are divided into three categories: small, medium and large. 
We deal with 11 instances: 5 small, 5 medium and 1 large. The parameter values 
defining the categories are given in Table 1. 
 
Table 1. The parameter values for the course timetabling problem categories 

Category small medium large 
Number of courses 100 400 400 
Number of rooms 5 10 10 
Number of features 5 5 10 
Number of students 80 200 400 

 
 
4.2 Results under preliminary experiments 
 
The aim of this preliminary experiment is to measure the effectiveness of the 
neighbourhood structures used. We tested four neighbourhood structures as discussed 
in subsection 3.1 on all instances using the great deluge algorithm (as described in 
Fig. 2). 
 

     

Fig 4. Frequency of the neighbourhood structures used for the small, medium and large datasets 
 



Fig. 4 shows the frequency charts of the neighbourhood structures that have been used 
by the great deluge algorithm for all datasets. The x-axis represents the datasets while 
the y-axis represents the frequency of the neighbourhood structures being employed 
throughout the search. It can be seen, from Figure 4, in most of the small and medium 
instances, neighbourhood structures move2 (N2) and move3 (N3) are the most popular 
structures used. The popular structures for the large dataset are move1 (N1) and 
move2 (N2). This shows that different size or complexity of the problem might need 
different neighbourhood structures in order to help the search algorithm to explore the 
search space. It is also evident that some neighbourhood structures do not contribute 
to a good quality solution. Further preliminary experiment is carried out to test the 
effect of using a set of different neighbourhood structures on different instances; for 
the small and medium instances, N2 and N3 are used while the large instance uses N1 
and N3 neighbourhood structures. Table 2 shows the comparison results on different 
neighbourhood structures when applied to great deluge algorithm for 100000 
iterations.   
 
Table 2. Comparison on different moves 

 

The preliminary results demonstrate that good moves (regardless of the number of 
moves) will help the algorithm to find better solutions. This shows the advantage of 
combining several good neighbourhood structures against the type of structure alone 
in order to help compensate against the ineffectiveness of the other neighbourhood 
structures. 
 
4.3 Results under more computational resources 

 
In this experiment, we evaluate the search potential of our algorithm with a relaxed 
stop condition. For this purpose, we run our algorithm for 200000 iterations (which 
takes approximately twelve hours) with different set of moves as presented in our 
preliminary experiment. The best results out of 5 runs obtained are presented. Table 3 
shows the comparison of the approach in this paper with other available approaches in 

Data set Initial solution Great Deluge with 4 moves Great Deluge with a set of 2 moves 

Small1 266 0 0 

Small2 225 0 0 

Small3 289 0 0 

Small4 209 0 0 

Small5 382 0 0 

Medium1 957 186 182 

Medium2 896 225 202 

Medium3 957 223 226 

Medium4 835 170 178 

Medium5 711 167 135 

Large 1613 980 845 



the literature on all instances i.e. genetic algorithm and local search by Abdullah and 
Turabieh (2008), randomised iterative improvement algorithm by Abdullah et 
al.(2007a), graph hyper heuristic by Burke et al. (2007), variable neighbourhood 
search with tabu by Abdullah et al. (2007b), hybrid evolutionary approach by 
Abdullah et al. (2007c), extended great deluge by McMullan (2007), and  non linear 
great deluge by Landa-Silva and Obit (2008). Note that the best results are presented 
in bold. The best results out of 5 runs obtained are presented. It can be seen our 
approach has better results on all datasets except large. 
 
Table 3. Best results and comparison with other algorithms under relaxed stop condition 

Note:  
M1: Genetic algorithm and local search by Abdullah and Turabieh (2008) 
M2: Randomised iterative improvement algorithm by Abdullah et al. (2007a) 
M3: Graph hyper heuristic by Burke et al. (2007). 
M4: Variable neighbourhood search with tabu by Abdullah et al. (2007b) 
M5: Hybrid evolutionary approach by Abdullah et al. (2007c) 
M6: Extended great deluge by McMullan (2007). 
M7: Non linear great deluge by Linda-Silva and Obit (2008) 

 
Fig. 5(a), (b) and (c) show the box plots of the cost when solving small, medium and 
large instances, respectively. The results for the large dataset is less dispersed 
compared to medium and small (worse dispersed case in these experiments). We 
believe that the neighbourhood structures (N1 and N2) applied to the large datasets 
are able to force the search algorithm to diversify its exploration of the solution space 
by moving from one neighbourhood structure to another even though there may be 
fewer and more sparsely distributed solution points in the solutions space since too 
many courses are conflicting with each other. When comparing between small and 
medium datasets, Figure 5 (b) shows less dispersion of solution points compared to 
Figure 5 (a). Again, applying the same neighbourhood structures (N2 and N3) for 
both instances most likely does not result in similar behaviour of the search algorithm. 
This can be supported by Figure 5 (a) where the dispersion of solution points for 

Dataset Our method M1 M2 M3 M4 M5 M6 M7 

 Min Max  Ave.         

Small1 0 2 0.8 0 0 6 0 0 0 3 

Small2 0 4  2 0 0 7 0 0 0 4 

Small3 0 3 1.4 0 0 3 0 0 0 6 

Small4 0 1 1 0 0 3 0 0 0 6 

Small5 0 1 0.6 0 0 4 0 0 0 0 

Medium1 78 143  132.2 175 242 372 317 221 80 140 

Medium2 92 186 124.6 197 161 419 313 147 105 130 

Medium3 135 180 162.0  216 265 359 357 246 139 189 

Medium4 75 160 111.2 149 181 348 247 165 88 112 

Medium5 68 151 113.1 190 151 171 292 130 88 141 

Large 556 835 738.6  912 - 1068 - 529 730 876 



small datasets is not consistent from one to another. For example small2 in Figure 5 
(a) shows worse dispersion compared to small4. From these experiments, we believe 
that the size of the search space may not be dependent on the problem size due to the 
fact that the dispersion of solution points are significantly different from one to 
another, even though the problems are from the same group of datasets with the same 
parameter values. 
 

 
 

 
 
 
 
 
 

 
 
 
 

 
 
 

Fig. 5(a), (b) and (c). Box plots of the penalty costs for small, medium and large datasets, 
respectively 

5   Conclusion and Future Work 

This paper has focused on investigating the application of a combination of a great 
deluge and tabu search algorithms with a set of neighbourhood structures. Preliminary 
comparisons indicate that this algorithm is competitive with other approaches in the 
literature. Indeed, it produced seven solutions that were better than or equal to the 
published penalty values on these eleven instances although it did require significant 
computational time for the medium/large problems. Future research will be aimed to 
test this algorithm on the International Timetabling Competition datasets (ITC-2007) 
introduced by the University of Udine. 
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