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A key concept in timetabling problems is that of the conflict graph with edges representing pairs of
events that are not allowed to occur at the same time. Usually, the only information presented about
such graphs is their density. However, intuitively, it seems likely that such graphs are structured, and
most likely have some clustering. In analysing the structure of social networks or of the world-wide
web it is common to use various measures. Amongst these is the “clustering coefficient”. We propose
using this coefficient in order to analyse timetabling conflict graphs, and give results showing that
on some common benchmarks the graphs are indeed clustered by this measure.

1 Introduction and Context

In previous papers [1, 2, 3] we have studied the issue of space planning within academic institutions
[5]. The problem is that currently teaching space is poorly utilised. In many institutions, teaching
rooms are used only half the time, and even when used they are often only half full. Since building
and maintaining rooms is expensive (the second highest institutional budgetary consideration after
staff), it is not surprising that institutions would like to rectify this situation. On the other hand,
excess teaching space is often requested in order to satisfy institutional timetabling requirements.
This leads to the question of precisely how to manage the balance; making best use of minimal
space whilst still satisfying demand. In addition, projected demand for teaching space must be
considered when deciding upon future space requirements. We intend to address this by supporting
institutional decision making with the following methodology. Firstly, analyse and quantitatively
classify the current student enrollment and course structures. Secondly, in order to generate the
test cases for analysis, create a simulator to generate course structures and student enrollments in a
meaningful way. Finally, using the simulator together with appropriate course-timetabling software,
run simulations under various proposed scenarios for space changes, and develop a methodology for
evaluation and comparison of these scenarios. This outlined methodology is a form of “simulation
optimisation” [6]. A crucial part of the process is having reasonable confidence that the simulator
is realistic compared to real-world scenarios. The output of this research strives to ensure that
the system is validated. The research will also explore the sensitivity of the final decisions to the
assumptions underlying the simulator, to ensure that they are applicable.

In practice, this means that the simulator will be designed: (i) based on properties and patterns
observable in existing instances, and (ii) validated against such patterns. However, there are few ways
in order to compare simulated and real instances. Currently, the only property typically measured of
a timetabling instance is the density, d, of the conflict graph. However the density is far too “blunt”
a tool: graphs with similar densities might have very different structures. This suggests that better
measures are needed in order to characterise and exploit the properties of conflict graphs. We aim
to identify a suite of properties to measure in a timetabling instance. Such a suite will be used to
ensure that the simulator uses instances that have realistic structures. Here, we start building such
a suite by using standard concepts from the network analysis literature, specifically, the “clustering
coefficient” of the conflict graph.

Many papers have studied the graphs resulting from social networks and the world-wide web, e.g.
see [7]. One of the techniques used in such analysis is the “clustering coefficient” defined as follows.
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Name Exams (n) edges (e) Dens.(d) (%) Clust. Coeff. c (%)
hec-s-92 81 2823 42 67.3
sta-f-83 139 611 14.4 85.8
yor-f-83 181 941 28.9 57.5
ute-s-92 184 2750 8.5 53.3
ear-f-83 190 1125 26.7 62.9
tre-s-92 261 4360 5.8 45.3
lse-f-91 381 2726 6.3 56.6
kfu-s-93 461 5349 5.6 56.6
rye-s-93 486 11483 7.5 60.2
car-f-92 543 18419 13.8 45.6
uta-s-92 622 21267 12.6 40.4
car-s-91 682 16925 12.8 40.8
pur-s-93 2419 30032 2.9 36.5

Table 1: Sizes and densities of the conflict graphs generated by the Carter instances, together with
their clustering coefficients.

Suppose that the degree of node i is ki - then there are potentially ki(ki − 1)/2 edges between the
neighbours of i. Let ci be the local density of the graph between the neighbours of node i.

ci =
num edges between neighbours of i

ki(ki − 1)/2
(1)

The overall “clustering coefficient”, c, is defined as the mean value (with respect to the n nodes of
the entire graph) of the clustering ci

c =
1
n

n∑

i=1

ci (2)

In a random graph, the edges are selected randomly and independently with probability p [4], hence
the expected density of the local neighbourhood is p, the same as the overall density. We will say
that the graph is clustered if the clustering coefficient, c, is higher than the overall density, d.

2 Empirical Clustering Coefficients
In the context of the conflict graph in timetabling problems, it is natural to expect that if an event A
conflicts with events B and C, then the chances of B and C conflicting with each other is higher than
the overall (average) density. This corresponds to expecting the conflict graph to be clustered. Table 1
gives the clustering coefficients of the standard real-world Carter instances of Exam Timetabling2,
and confirms that they are indeed clustered.

For the purposes of the “International Timetabling Competition (TTComp)”3, artificial course
timetabling problems were “designed by Ben Paechter for the Metaheuristics Network”4. Sixty more
instances were also made publically available later and are grouped into the sets: “small”, “medium”
and “large”. Figure 1 is a plot of clustering against density for the Carter and TTComp instances.
It shows that the TTComp instances seem to fall into the same region as the Carter instances.5 Note

2See ftp://ftp.mie.utoronto.ca/pub/carter/testprob/ and http://www.cs.nott.ac.uk/∼rxq/data.htm
3http://www.idsia.ch/Files/ttcomp2002/
4http://www.idsia.ch/Files/ttcomp2002/IC Problem/node1.html
5One might object that the Carter instances are for exam timetabling and the TTComp for course timetabling.

However, we do expect that course and exam timetabling will have related structures, particularly in the conflict
matrix. For example, on the basis that students taking exams presumably also took the associated course. However,
this issue will also be under future study.
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Figure 1: Each point corresponds to the conflict graph from a separate timetabling instance, plotted
by their clustering coefficient, c, against their density, d.

that the ‘small’ artificial instances seem to have unrealistic densities. However, it is reassuring to
observe that the ‘large’ instances do fall into the same region of the (d, c) plane as the real Carter
instances. We believe this supports the argument that the TTComp instances are a reasonable test
for solvers. We observe that larger problems generally have both smaller density and clustering.
However, whilst the density does not seem to have a lower limit, the clustering does not drop below
about 40%. That is, even when there are few conflicts they still tend to cluster significantly, with
the neighbourhood of nodes having a density of about 40%. Besides being a test of the validity of
artificial instances, this might also have interesting implications for the design of solvers.

We have seen that, as might be expected, timetabling conflict graphs are clustered and that
the artificial instances used so far exhibit similar clustering. It is likely that the clustering will
significantly affect important properties of the conflict graphs - for example, their chromatic numbers.
Also, algorithms might be improved if they were to directly measure and exploit the clustering of the
graphs. Current work is investigating such links and ways to exploit measured clustering. Finally,
we remark that other domains such as scheduling and rostering generate (“conflict”) graphs and
these might well also exhibit properties that could be revealed (and exploited) by their clustering
coefficients. Our findings help us understand the structure of conflict graphs and so are an important
step towards improving teaching space utilisation because timetabling directly impacts this issue.
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