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Abstract. In this paper, we investigate variable neighbourhood search (VNS)
approaches for the university examination timetabling problem. In addition to a
basic VNS method, we introduce variants of the technique with different initiali-
sation methods including a biased VNS and its hybridisation with a Genetic Algo-
rithm. A number of different neighbourhood structures are analysed. It is demon-
strated that the proposed technique is able to produce high quality solutions across
a wide range of benchmark problem instances. In particular, we demonstrate that
the Genetic Algorithm, which intelligently selects approporiate neighbourhoods
to use within the biased VNS produces the best known results in the literature,
in terms of solution quality, on some of the the benchmark instances, although
it requires relatively large amount of computational time. Possible extensions to
this overall approach are also discussed.

1 Introduction

A very important factor which affects the success of a local search technique when ap-
plied to a given problem is the neighbourhood employed during the search. The neigh-
bourhood is defined by a givenmoveoperator, i.e. all solutions that can be reached
from the current solution by moving a single element. The most basic steepest descent
technique simply takes the steepest route down to a nearby local minimum and termi-
nates there. More sophisticated methodologies such as Simulated Annealing [1] and
Tabu search [30] have a mechanism to escape from local optima. Such methodologies
have been very successful when applied to a wide variety of search problems including
university exam timetabling [50].

The issue of how much the choice of neighbourhood affects the quality of solu-
tions is considered by Thompson & Dowsland [56, 57]. The conclusion they arrive at
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is that the utilisation of a more complex neighbourhood than the standard single move
neighbourhood can yield significant improvements in solution quality.

In the late 1990s, Mladenović and Hansen [42] proposed the Variable Neighbour-
hood (VNS) meta-heuristic for solving difficult optimisation problems. This approach
changes the neighbourhood during the search. Since the neighbourhoods are varied reg-
ularly, there is no need to accept worsening solutions to escape local minima. It is both
versatile and successful when applied to a range of different problem domains [34].
The elaborated and systematised practices of Mladenović and Hansen in metaheuristics
lead to this novel and powerful approach since Glover [31]. This work presents a good
example which demonstrates the power and flexible approach in meta-heuristics.

One of the key factors in the development of meta-heuristic techniques is the con-
nectivity of the search space. This is largely defined by the neighbourhood used and can
have a major impact on the quality of solutions obtained. If the search space is highly
disconnected as a result of using abad neighbourhood, the reliance on the initial so-
lution becomes much greater since many good solutions will not be reachable by any
technique using such a neighbourhood alone. In the case of exam timetabling, the most
commonly used is thesingle moveneighbourhood where a single exam is reallocated to
a new feasible timeslot. This neighbourhood, when used alone, can yield a disconnected
search space when exams which clash with another exam in every other timeslot often
cannot be moved at all. The aim of our research is to investigate the neighbourhoods
within VNS methodology in the context of the university exam timetabling problem.

1.1 Examination Timetabling Problems

The formulation of the exam timetabling problem considered as part of this work4

consists of

– a set of examsE = {e1, e2, ...,en};
– a limited number of ordered timeslots (time periods)T = {t1, t2, ..., tk};
– a limited number of rooms of certain capacity in each timeslotC = {c1, c2, ...,ck};

wheren andk are non-negative integers. The problem is to assign all the exams into
the timeslots subject to a set of constraints [11, 23, 50], which can be divided into two
categories, known ashardandsoftconstraints.

Hard constraintsare defined as those which must be satisfied in order to have a fea-
sible for use. A common hard constraint is thatconflictingexams which have common
students cannot be scheduled into the same timeslot. That is:

∀ es, ep ∈ E, (s 6= p and Desep > 0)⇒ xes 6= xep
whereDesep is the number of students in both examses andep; xes is the timeslot

to which exames is assigned.
Soft constraintsare less essential and violation of them is acceptable, although still

undesirable. The violation of these soft constraints is used to evaluate the quality of a
given feasible solution.

4 Although a new formulation of the problem has been introduced as part of the 2nd International
Timetabling Competition (ITC2007), the competition was ongoing at the time of submission
of this work. Please refer to the section on future research directions.



As a result of more students and a significantly increased level of modularisation
of courses at many universities [11, 37], the number and variety of the constraints has
increased markedly in recent years. This, in turn, makes the exam timetabling problem
not only more difficult to solve, but also potentially very different from year to year.
This has attracted a significant amount of research attention on exam timetabling in the
last decade [50].

1.2 Examination Timetabling Techniques

Exam timetabling has been a well studied topic across both Operational Research and
Artificial Intelligence since the 1960’s [23, 50]. Recent techniques include meta-heuristics
[31] including Tabu Search (e.g. [28, 58]), Simulated Annealing (e.g. [41, 56, 57]), Great
Deluge [8, 18], GRASP [25] and Evolutionary Algorithms (e.g. [17, 20]). Other variety
of work has investigated case based reasoning [15, 59], fuzzy techniques [5], an ant al-
gorithm [26], multi-objective method [9], artificial immune systems [36] and constraint
programming techniques [41]. Hybridisations between meta-heuristics and other tech-
niques such as graph heuristics (e.g. [10, 16, 20, 47, 49]), integer programming[51] and
constraint based techniques (e.g. [55]) have also been shown to be very effective. A
selection of overview and survey papers detailing many of these techniques applied to
exam timetabling problems include [13, 21, 23, 37, 46, 50, 53].

Another state-of-the-art development is the investigation of more general techniques
which can automatically adapt to a wide range of problems. Hyper-heuristics [12] rep-
resent one of the research directions that are motivated by this goal. They search over
(low level) heuristics rather than over potential solutions. Examples of papers which
have explored hyper-heuristics for exam timetabling include [6, 10, 15, 16, 29, 32, 35,
45, 47, 49, 52, 55].

Another trend of research is concerned with exploring neighbourhood structures
with the aim of designing more flexible approaches (e.g. VNS [42]) and very large
neighborhood search [4, 44]) on exam timetabling [2, 3, 47]. This paper investigates
VNS for exam timetabling problems.

VNS has started attracting attention in exam timetabling research. In [47], a steepest
descent VNS has been employed within a hyper-heuristic framework to search for se-
quences of graph heuristics, which are then applied to construct exam timetables. It was
observed that, compared to Tabu Search and Steepest Descent, VNS was much more
flexible in searching the search space of graph heuristics, and thus could generate better
solutions on exam timetabling problems.

The aim of our research in this paper is to develop VNS techniques which use a va-
riety of different neighbourhoods in order to increase the generality of the method. Sec-
tion 2 introduces a generic VNS technique and its application to exam timetabling. Sec-
tion 3 presents a combined Genetic Algorithm and VNS approach (VNS-GA) to exam
timetabling to improve solution quality by using the intelligent selection of neighbour-
hoods. Our results and analysis for both VNS and VNS-GA are presented in Section 4
and overall conclusions are given in Section 5.



2 The Variable Neighbourhood Search

The use of more than one neighbourhood within a search provides a very effective
method of escaping from a local optimum. Indeed, it is often the case that the current
solution, which is a local optimum in one neighbourhood is no longer a local optimum in
a different neighbourhood and can therefore be further improved using a simple descent
approach. This is the key to the success of the VNS technique presented here, with a
variety of neighbourhoods ensuring not only a far greater connectivity of the search
space, but also enabling a simple, yet powerful search technique to yield high quality
results.

Figure 1 presents the basic modified VNS framework we are studying in this paper
(steps with ‘*’ indicate our modifications). A number of variants of the approach are
investigated (see later sections) to improve its performance. Any finite number,kmax,
of pre-defined neighbourhoods may be used. Stopping conditions may be defined as
for any local search technique. The move selected at step 2 (a) is randomly generated,
avoiding issues of cycling, and the local search is performed using a single neighbour-
hood. A large number of variations of the basic VNS are discussed in [33].

Basic VNS Algorithm

– Initialisation: Select the set of neighbourhood structuresNk, k = 1, . . . , kmax; find
an initial solutionx; choose stopping criteria;

– Repeatuntil stopping criteria is satisfied:
1. Setk := 1;
2. Until k = kmax, repeat:

(a) Shaking: Generate a pointx′ ∈ Nk(x) at random from thekth neighbour-
hood ofx;

(b) *Local search: Apply a local search (a simple steepest descent in this pa-
per) tox′, until a local optimum,x′′, is obtained;

(c) *Move or not: If x′′ is better than the incumbent solutionx thenx ← x′′,
and continue the search withNk; otherwise, setk = k + 1;

Fig. 1.The steps of the modified basic VNS framework.

2.1 Neighbourhoods used in Basic VNS

In order to keep the number of parameters in our VNS as small as possible, the local
search within VNS uses a simple steepest descent approach (step 2 (b) * in Figure
1), which is fast and yields very good results. Instead of continuing the search with
neighbourhoodN1 each time an improvement is found (as in standard basic VNS),
the search continues using the current neighbourhood which yielded the improvement
(continue withNk in step 2 (c) * in Figure 1). This places slightly less reliance upon
the ordering of the neighbourhoods and focuses the search on each neighbourhood.



Experiments with the basic VNS in Figure 1 so far have not been as good as with the
modified one. Hence, further experiments are all performed with this modified basic
VNS.

In exam timetabling, the neighbourhoods used in local search techniques generally
consist of moving some subset of exams from their current timeslot to a new timeslot.
Our implementation of VNS used the following nine neighbourhoods:

– Single move(N1) selects a single exam and move it to a new feasible time slot. This
neighbourhood, although widely used in timetabling, can be quite limiting as many
exams in a timetable have no other feasible slots to move to.

– Swap(N2) swaps the timeslots of a pair of exams,es andep whilst preserving the
feasibility.

– Move 2 exams randomly(N3): Two exams are chosen at random and moved to new
feasible timeslots, independently of each other.

– Move 3, 4 or 5 exams randomly(N4,N5,N6): As above but with three, four, or five
exams.

– Move a whole timeslot(N7) moves an entire timeslot, selected at random, with
all the exams in it, to a new positionp (also randomly selected) in a timetable.
The original timeslots with all their exams afterp are moved forward to the next
timeslot in the timetable. This enables exams which would otherwise be unable to
move around the timetable, thus allows for exploration of a wide area of the search
space.

– Swap timeslots(N8) simply swap all exams in one timeslot with the other, both
randomly selected.

– Kempe chain neighbourhood(N9) swaps a subset of exams which clash in two
distinct timeslots. Given a starting exam, a chain of clashed exams in two timeslots
can be formed and swapped. For example, if a starting exames in timeslotti clashes
with a subset of examsep in tj , which clash with another subset of examseq in ei,
then a chain of examses → ep → eq is formed.N9 swapses eq in ti and ep
in tj , thus enables any exam within the timetable to be moved more flexibly to a
new timeslot. It was shown to be very successful within a Simulated Annealing
technique [56] for exam timetabling.

2.2 Variations of VNS for exam timetabling

One of the significant advantages of VNS is that it is a very modular technique which
allows for changes in almost any steps in Figure 1. A number of variations are listed
below:

– Descent-ascent: Basic VNS is a ‘descent, first improvement method with random-
ization’ [33]. A very simple change to it is to accept worsening moves with some
probability (similar to that used in Simulated Annealing). We consider, in this work,
an acceptance criterion that only solutions which are less than 1% worse than the
current solution are considered in step 2 (c). This variant adds in further parame-
ters, but can yield some improvement without these parameters having been tuned
to each individual problem.



– Biased VNS: In step 2 (a) of the basic VNS, it is possible to generate the solution
x′ by a number of different methods rather than purely at random. In this work
we investigate selecting an exam at random from then (n = 5% and 20%) exams
causing the highest penalty and use these exams to start a move by the Kempe
chain neighbourhood. This is to bias the moves on the most troublesome exams,
which are usually difficult to move by simple neighbourhoods. Results from this
variation of VNS are presented in Section 4 together with those of basic VNS for
comparison.

– Problem-specific neighbourhoods: The structure of different exam timetabling prob-
lems can vary significantly, thus quite often some neighbourhoods work far better
on one problem than another. We investigate in this work the effect of reducing the
number of neighbourhoods to thebestsubset for the specific problem (see Section
4).

– Different initialisation strategies: We use two different initialisation strategies to
seed VNS: a greedy and a random construction technique. The largest degree graph
colouring heuristic assignes exams, ordered by the number of clashes they have
with the other exams, to the feasible timeslot which yields the least penalty. In the
randomised variant, a random feasible timeslot is chosen for the next exam.

In addition to the above variants, we also investigated the best improvement, the
variable neighbourhood descent and complex local search (great deluge or Simulated
Annealing) methods (see more details in [33]). It was observed that these variants do
not bring any benefit in terms of solution quality, and also increase the run time, thus
they are not considered here. Also neighbourhoods consisting of up to five Kempe chain
moves did not yield any successful results when used in VNS.

Another interesting observation concerns theproblem-specific neighbourhoodse-
lection in VNS. Statistics collated from many runs of VNS on the benchmark problems
show that for some problems a certain neighbourhood very often results in an improve-
ment whilst in other problems the same neighbourhood is rarely successful. Rather than
just use these fairly crude statistics we investigate a Genetic Algorithm (GA) to intelli-
gently select the best neighbourhoods within VNS.

3 The Hybrid VNS with a Genetic Algorithm

3.1 The Hybrid VNS Approach

The idea of using a GA at a higher level of abstraction rather than being applied di-
rectly to the problem itself is strongly connected to recent work on hyper-heuristics [6,
12, 16, 29, 32, 35, 45, 47, 52, 55] and case based timetabling heuristic selection [10, 15,
59]. These algorithms selects, from a variety of low-level techniques, the best one to
apply to a problem. The key difference is that in the hyper-heuristic framework, low-
level heuristics are being ordered and applied sequentially to the problem, whereas in
our VNS, all neighbourhoods are searched, but a move is only made within a given
neighbourhood if it fulfils the criteria for move acceptance. The work of using GA to
select subset of neighborhoods in VNS for specific problems are also linked to current



research on fine tuning parameters within algorithms by using artificial intelligent al-
gorithms [43]. Our work concerns the further improvement upon the VNS by using a
GA for neighbourhood configuration. As far as we are aware, this is an entirely new
approach in both VNS and GA research on timetabling problems.

The Genetic Algorithm is used to evolve a subset of neighbourhoods from a large
pool for use within the VNS framework (referred to hereafter as VNS-GA). Figure 2
presents the pseudo-code of the hybrid GA algorithm. The chromosome represents the
set of neighbourhoods to be used within VNS, where the ordering of neighbourhoods
is unimportant since the VNS method cycles through all neighbourhoods (moves to the
next neighbourhood when the current neighbourhood is not accepted, see the modified
basic VNS in Figure 1). Duplicates of neighbourhoods in the chromosomes are removed
when they are translated to the actual set of neighbourhoods to be used within VNS.
A chromosome in which all elements are the same would represent just that single
neighbourhood supplied to the VNS.

Hybrid Genetic Algorithm

1. Initialisation: randomly generate an initial populationX1 of chromosomes
{c1, c2, ..., cm}, ci = (n1, n2, ..., nk), nj ∈ {N1, ..., Nk} (see Table 1),k as the
total number of neighborhoods defined;

2. Calculate the fitness of all chromosomesci in the population (see Figure 3)
3. Repeatfor the number of generations:

– For 70 per cent of the current population
(a) Randomly select two parents, at a probability ofP (ci) (see formula 1),

using a roulette wheel style selection;
(b) Replace the chosen two parents by the two offspring generated using one

point corssover;
(c) Mutation to change randomly one element in a chromosome;

– Calculate the fitness of all chromosomesci in the population (see Figure 3)

Fig. 2. The hybrid genetic algorithm selecting subset of neighborhoods within VNS
(VNS-GA).

Fitness Evaluation of Chromosomes in a Population

– For all chromosomesci in the population
1. Remove duplicate neighborhoods in chromosomeci;
2. Produce the solution by using the modified basic VNS (see Figure 1) with the

neighborhoods inci;
3. Calculate the fitness ofci using the fitness evaluation (see formula 2)

Fig. 3.The fitness evaluation for chromosomes in a GA population.



The probability,P (ci), of a chromosomeci being selected from the populationXg

in generationg is given in formula (1) with the fitness function given in formula (2).

P (ci) = fitness(ci)/(
∑
∀cj∈Xg

fitness(cj)) (1)

fitness(ci) = max{( max
∀cj∈X1

{V NS(cj)} × f)− V NS(ci), 0} (2)

V NS(cj) gives the solution penalty by applying the VNS with the neighbourhoods
specified in chromosomecj . f is a fitness modifier. A lower value off gives better
chromosomes a higher chance of roulette wheel selection than the worse chromosomes,
whereas a higher value gives worse chromosomes a better chance of being selected
by making the difference between fitness values of the best and worse chromosomes
relatively smaller.

3.2 The Neighbourhoods

Exam timetabling problems quite often differ greatly in their structures so different
neighbourhoods suit different problems. Increasing the number of neighbourhoods tested
and taking note of which neighbourhoods are most efficient when optimising different
problems can give a good indication of this.

With this aim we increase the number of neighbourhoods to 23 (Table 1) to cover
of a higher number of possible neighbourhoods when using the VNS-GA technique.
This represents a good set of neighbourhoods used in exam timetabling. This number
can be easily extended due to the intelligent selection of GA upon the neighbourhoods
within VNS. ‘Type A’ and ‘Type B’ represent the Kempe chain move with the first
exam selected at random from the 5% and 20% of the total exams that give the highest
penalty, respectively.

Table 1.Neighbourhoods defined for VNS-GA

Ni ID Neighbourhood structures
1. Single random Kempe chain move
2. Swap two exams
3. 5. 7. & 9. Move two, three, four, and five exams at random
4. 6. 8. & 10. Make two, three, four, and five random Kempe chain moves
11. & 12. Make one Kempe chain move (Type A & Type B)
13. & 14. Make two Kempe chain moves (Type A & Type B)
15. & 16. Make three Kempe chain moves (Type A & Type B)
17. & 18. Make four Kempe chain moves (Type A & Type B)
19. & 20. Make five Kempe chain moves (Type A & Type B)
21. Move a whole timeslot
22. Swap timeslots
23. Randomly order timeslots



4 Results

4.1 VNS Results

The most widely used benchmark problems were first presented by Carter et al. [24]
for the uncapacitated exam timetabling problem. Over the years, two versions of the
datasets have circulated using the same name, and this has caused some confusion in
comparing results from different approaches in the literature [54]. We have renamed the
datasets and discussed the issue in more detail in [50]. A web site was also set up to
include all the different datasets with new distinct names, together with an API evalua-
tion function at
http://www.cs.nott.ac.uk/∼rxq/data.htm. The new naming conventions presented in [50]
are used here.

In these problem instances, the number of timeslots is fixeda priori and the aim is
to spread clashing exams around the timetable as much as possible. Graph density is
calculated based on the conflict matrixC for the problem, wherecesp = 1 if examei
conflicts with examej (i.e. have students in common), orcesp = 0 otherwise. It is the
ratio between the number of elements of value “1” to the total number of elements in
the conflict matrix. The objective function adds a penaltyws for a timetable whenever a
student must sit two examinations withins periods of each other, wherew1 = 16, w2 =
8, w3 = 4, w4 = 2, w5 = 1. The results for these problems are reported as the average
penalty per student. The key features of these problems are given in Table 2.

Data No. of No. of No. of Graph No. of
Set exams students enrolments Density periods

car91 682 16925 56877 0.13 35
car92 543 18419 55522 0.14 32

ear83 I 190 1125 8109 0.27 24
hec92 I 81 2823 10632 0.42 18
kfu93 461 5349 25113 0.06 20
lse91 381 2726 10918 0.06 18

sta83 I 139 611 5751 0.14 13
tre92 261 4360 14901 0.18 23

uta92 I 622 21267 58979 0.13 35
ute92 184 2750 11793 0.08 10

you83 I 181 941 6034 0.29 21
Table 2.Characteristics of the uncapacitated benchmark problems [24]

Results from a variety of methods in the literature during the years are presented in
Table 3. These different techniques have been successful on these problems but no sin-
gle approach outperformed all others across the whole range of problems. Techniques
which are successful on one problem are often far less successful on other problems
when compared against different techniques.



Carter Di Gaspero Caramia Burke & Merlot Yang
Data et al. & Schaerf et al. Newall et al. et al.
Set (1996) (2001) (2001) (2003) (2003) (2004)

[24] [28] [22] [18] [41] [59]
car91 I 7.1 6.2 6.6 4.7 5.1 4.5
car92 I 6.2 5.2 6.0 4.1 4.3 3.93
ear83 I 36.4 45.7 29.3 37.05 35.1 33.7
hec92 I 10.8 12.4 9.2 11.54 10.6 10.83
kfu93 14.0 18.0 13.8 13.9 13.5 13.82
lse91 10.5 15.5 9.6 10.8 10.5 10.35

sta83 I 161.5 160.8 158.2 168.73 157.3 158.35
tre92 9.6 10.0 9.4 8.35 8.4 7.92

uta92 I 3.5 4.2 3.5 3.2 3.5 3.14
ute92 25.8 29.0 24.4 25.83 25.1 25.39

yor83 I 41.7 41.0 36.2 37.28 37.4 36.35
Table 3.Selected results from the literature on the uncapacitated benchmark problems
from [24] (best results given in bold)

Eley Abdullah Burke & Qu & Burke Burke Burke &
Data et al. Newall Burke et al. et al. Bykov
Set (2007) (2004) (2004) (2007) (2004) (2007) (2007)

[26] [2] [19] [48] [8] [16] [7]
car91 I 5.2 5.2 5.0 5.45 4.8 5.36 4.42
car92 I 4.3 4.4 4.3 4.5 4.2 4.53 3.74
ear83 I 36.8 34.9 36.2 36.15 35.0 37.92 32.76
hec92 I 11.1 10.3 11.6 11.38 10.8 12.25 10.15
kfu93 14.5 13.5 15.0 14.75 13.7 15.2 12.96
lse91 11.3 10.2 11.0 10.85 10.4 11.33 9.83

sta83 I 157.3 159.2 161.9 157.2 159.1 158.19 157.03
tre92 8.6 8.4 8.4 8.79 8.3 8.92 7.75

uta92 I 3.5 3.6 3.4 3.55 3.4 3.88 3.06
ute92 26.4 26.0 27.4 26.68 25.7 28.01 24.82

you83 I 39.4 36.2 40.8 42.2 36.7 41.37 34.84
Table 3. (cont.) Selected results from the literature on the uncapacitated benchmark
problems from [24] (best results given in bold)



Table 4 compares the results produced by the modified basic VNS algorithm from
different initialisations with the best reported solutions from Table 3. Values in italics
represent the best solution found between the two initialisation techniques, Basic VNS
uses neighbourhoods 1-8 from Table 1, all using random move selection in step 2 (a)
of the algorithm in Figure 1. A t-test between the basic VNS with random and greedy
initialisations was carried out, for which the p-value for each dataset is also given in
Table 4. For most datasets, the p-value for the results of two approaches is less than 0.2,
indicating the results between them are siginificantly different.

Data Best reported Basic VNS-RI Basic VNS-GI p-value
Set solution Best Average Best Average

car91 4.42 5.10 5.29 5.07 5.24 4.2E-06
car92 3.74 4.20 4.39 4.17 4.30 2.5E-08

ear83 I 29.3 33.56 36.33 33.70 36.35 0.01
hec92 I 9.2 10.41 11.08 - - -
kfu93 12.96 13.72 14.40 13.85 14.54 6.0E-03
lse91 9.6 11.13 11.70 11.18 11.74 9.4E-08

sta83 I 157.03 156.86 157.12 156.86 157.15 0.12
tre92 7.75 8.48 8.88 8.49 8.84 0.22

uta92 I 3.06 3.49 3.59 3.40 3.49 2.7E-17
ute92 24.4 25.10 25.94 25.18 26.01 0.11

you83 I 34.84 36.80 38.70 36.77 38.47 0.067
Table 4. Results from the basic VNS with random (VNS-RI) and greedy (VNS-GI)
initialisations

Table 5 gives the results of the Biased VNS when initialised by the two different
methods, both use neighbourhoods 1-8 from Table 1 with two additional biased Kempe
Chain neighbourhoods, as described in Section 2.2, with a 5% and 20% sample of
the exams causing the largest penalty. Again, the best result reported from Table 3 is
included for comparison.

The average and best results from 100 runs on a 750MHz Athlon are presented for
both the Basic and Biased variants. The stopping condition is 2,500 iterations without
improvement. On the smaller datasets, the algorithm generally terminates in the order of
1-2 minutes, whereas runtimes for larger data sets range from 30 minutes to 90 minutes.

It can be seen that the basic implementation of VNS when compared with the other
techniques from Table 3, is highly competitive and beats the results each of the other
techniques on at least one problem, indicating that it is highly consistent across the
range of problems. In particular, it obtained the best results reported in the literature on
dataset sta83 I.

Comparing the results of Tables 4 & 5 illustrates clearly an improvement by in-
troducing the two biased neighbourhoods. Results on the two initialisations are mixed
although the random initialisation approach slightly outperforms the greedy initialisa-
tion across all problems. The p-values from a t-test between these two approaches are



Data Best reported Biased VNS-RI Biased VNS-GI p-value
Set solution Best Average Best Average

car91 4.42 5.02 5.28 5.07 5.12 2.2E-09
car92 3.74 4.17 4.34 4.12 4.23 3.7E-10

ear83 I 29.3 33.10 36.00 33.46 35.78 0.29
hec92 I 9.2 10.26 11.02 - - -
kfu93 12.96 13.38 13.87 13.38 14.03 2.89E-04
lse91 9.6 10.66 11.33 10.93 11.58 4.97E-10

sta83 I 157.03 156.86 157.04 156.86 157.06 0.92
tre92 7.75 8.35 8.76 8.39 8.77 0.58

uta92 I 3.06 3.47 3.55 3.39 3.50 1.77E-04
ute92 24.4 24.86 25.41 24.86 25.43 0.91

yor83 I 34.84 36.48 38.33 36.43 38.03 1.75E-09
Table 5. Results from the VNS with biased neighbourhoods with random (VNS-RI)
and greedy (VNS-GI) initialisations

presented in the table, indicating that the differences between them for 3 datasets are
not significant. This implies that VNS has the capability to overcome a seemingly bad
initialisation and still produce high quality results.

Table 6 presents the best results obtained by the descent-ascent variation of the
Biased VNS5 compared to those of selected best five techniques in the literature. The
approach is ranked the second giving a total penalty across all data sets. This simple
sum may be biased heavily by the sta83 I dataset. We further measured across only
those 10 datasets besides sta83 I, and VNS is still very competitive (ranked the third)
on producing high quality results across all the data sets we tested.

4.2 VNS-GA Results

The main aim of this work is to investigate the potential performance of variants of
the VNS algorithm by employing various neighbourhoods rather than to evaluate the
GA itself. For this reason, it was deliberately decided not to carry out a deep investiga-
tion of GA parameter settings. Initial experiments gave us a broad idea of appropriate
parameters in the experiments. Mutation rates of 0.002 and 0.01 were both tested. We
use the descent-ascent Biased VNS with the largest degree heuristic with randomisation
initialisation (Biased VNS-RI). The VNS-GA hybrid approach that we present is able
to intelligently select appropriate neighbourhoods and obtain better results across the
different problems that we are addressing.

Table 7 gives the best results found by the VNS-GA algorithm on each data set,
compared with the previous best results from the VNS and in the literature (Table 3).
The neighbourhoods in VNS which contributed to the best solutions are also given.
Across all 11 and 10 well studied problems, the hybrid GA ranked the second (total
penalty 302 and 145.1 compared with those in 6) across all the best approaches in

5 These results are the best across both initialisation techniques



Data Abdullah Caramia Burke & Merlot Yang Descent-
Set et al. et al. Bykov et al. et al. ascent

[2] [22] [7] [41] [59] Biased VNS
car91 I 5.2 6.6 4.42 5.1 4.5 4.9
car92 I 4.4 6.0 3.74 4.3 3.93 4.1
ear83 I 34.9 29.3 32.76 35.1 33.7 33.2
hec92 I 10.3 9.2 10.15 10.6 10.83 10.3
kfu93 13.5 13.8 12.96 13.5 13.82 13.2
lse91 10.2 9.6 9.83 10.35 10.5 10.4

sta83 I 159.2 158.2 157.03 157.3 158.35 156.9
tre92 8.4 9.4 7.75 8.4 7.92 8.3

uta92 I 3.6 3.5 3.06 3.5 3.14 3.3
ute92 26.0 24.4 24.82 25.1 25.39 24.9

you83 I 36.2 36.2 34.84 37.4 36.35 36.3
Total Penalty (11) 312.2 306.2 301.36 310.8 308.28 305.8
Total Penalty (10) 153 148 144.33 153.5 149.93 148.9
Table 6. Descent-ascent Biased VNS compared to results from the literature (best re-
sults given). “Total Penalty (11)” and “Total Penalty (10)” is the sum of results for all
datasets and those except sta83 I

the literature. It can also be easily seen that the VNS-GA improves the descent-ascent
Biased VNS with 10 neighbourhoods used previously.

For the same problem, it was observed that a variety in the neighbourhood subsets
was evolved from VNS-GA for different seeds of runs due to the fact that some of
the neighbourhoods are quite similar to the others. Within the 100 runs, almost every
neighbourhood was included on the same dataset, but some were selected far more
often than others. Another interesting issue worth of further investigations is to study
statistically if similar subsets of neighbourhoods would be evolved for problems with
similar characteristics. Based on these analysis knowledge based systems can be built
to assist neighbourhood selection within meta-heuristics.

Experiments were also carried out using the full set of 23 neighbourhoods with
VNS for all problems. In all cases these results were at least as good as the previous
best results with the 10 neighbourhoods, but were not as good as the results from the
VNS-GA. This indicates that some (or all) of the additional 13 neighbourhoods are
adding something useful to the process, but that selecting a subset of these 23 to focus
on gives still better results.

In order to test whether the neighbourhoods which provided the best solutions given
in Table 7 are consistently better than using all 23 neighbourhoods, a further series of
tests were undertaken. Table 8 shows the results of running VNS 100 times with the
neighbourhood sets suggested in Table 7, compared to those produced by 100 runs of
VNS with the full set of 23 neighbourhoods. Average runtimes for the technique are
also given in both cases. The results are fairly inconclusive with regard to the merits
of using selected neighbourhoods rather than using all 23. In all cases, the difference



Data Best Best Best Neighbourhood
Set Reported VNS VNS-GA Subset For

Solution Solution Solution Best Solution
car91 I 4.42 4.9 4.6 {1,4-8,11-13,16,17,19-23}
car92 I 3.74 4.1 3.9 {1,3-6,8-11,13-17,19-23}
ear83 I 29.3 33.1 32.8 {1,3,4,7,11,13-15,17,21-23}
hec92 I 9.2 10.3 10.0 {1-4,6,8,10-12,14,16,17,19-22}
kfu93 12.96 13.2 13.0 {2,4,6,8-10,12-15,17-20,22}
lse91 9.6 10.4 10.0 {2,3,5-8,10,13,15-17,19,20,22,23}

sta83 I 157.03 156.9 156.9 Many
tre92 7.75 8.3 7.9 {2,4,7-12,15,19,21-23}

uta92 I 3.06 3.3 3.2 {1-9,13,18-22}
ute92 24.82 24.9 24.8 {1-3,5-10,13-17,19,20,22,23}

you83 I 34.84 36.3 34.9 {1,5,6,9,10,12-14,16,17,19,21,22}
Table 7.Best results obtained from the VNS-GA algorithm with neighbourhoods given

between the two sets of results is small. We have carried out t-test and provided p-values
for the comparisons in Table7.

Data VNS with all VNS with selected
Set neighbourhoods neighbourhoods p-value

Best Average Time (s) Best Average Time (s)
car91 I 4.7 4.9 2751 4.6 4.9 3084 0.36
car92 I 4.0 4.2 1605 3.9 4.1 1686 0.027
ear83 I 32.9 34.2 175 32.8 34.1 162 0.019
hec92 I 10.2 10.6 28 10.0 10.6 28 0.11
kfu93 13.2 13.6 633 13.0 13.4 673 0.017
lse91 10.1 10.6 359 10.0 10.8 345 0.058
tre92 8.3 8.4 244 7.9 8.2 218 0.17

uta92 I 3.3 3.4 2358 3.2 3.4 2040 0.022
ute92 24.9 25.1 67 24.8 25.0 73 0.061

you83 I 35.2 36.4 124 34.9 36.6 126 0.96
Table 8. Results from VNS comparing all neighbourhoods with the ‘best’ subset of neighbour-
hoods

The hybrid VNS-GA can provide highly competitive results for a range of problems
by adaptively selecting appropriate neighbourhoods. Based on the Biased VNS with all
23 neighbourhoods, the VNS-GA selects the neighbourhoods presented in Table 7, en-
abling VNS to obtain the best results whereas no other combination of neighbourhoods
was able to produce results of that quality.

An analysis of the individual runs of the VNS-GA algorithm shows that the vast ma-
jority of improvement takes place very quickly, the remainder of the time is then spent
making relatively small improvements. Therefore, in common with many local search
techniques, there is a trade-off between runtime and solution quality. However, in real



world timetabling, time is not a critical issue as usually the timetables are produced
weeks before they are used. This is also the reason why much of the other work in the
timetabling literature does not report computational time. In addition, algorithms im-
plemented across different platforms make it impossible to compare the computational
time upon the same problems.

5 Conclusions and Future Research Directions

One significant advantage of the Basic Variable Neighbourhood Search (VNS) is that
it involves very few parameters apart from the selection of neighbourhoods. With a
high degree of modularisation, neighbourhoods can be added and taken away easily,
any local search technique can be used and the method of move acceptance altered.
The Basic VNS also has a large number of potential improvements. The one notable
disadvantage to the VNS implementation described here (so far) is the time taken on
large problems which can be as much as 90 minutes for large problems. As mentioned
above, this is not a significant issue for real world timetabling, since exams are generally
only taken once or twice a year with a fair degree of planning time, it is still an area
which deserves future research attention.

The VNS techniques can be adapted more easily than many single neighbourhood
techniques and be applied to exam timetabling problems with more complex side con-
straints. With the increasing complexity of exam timetabling problems in universities,
we believe that this general VNS technique can be adapted easily without taking away
from the genericity of the method. New neighbourhoods which better reflect constraints
in real world environment can be added easily and tested.

The hybrid Genetic Algorithm (VNS-GA) which intelligently selects the neigh-
bourhoods for use within VNS produced very competitive results on benchmark exam
timetabling problems which attracted a large research attention in the last decade. The
algorithm ranked the second compared with all the best methods in the literature.

A number of methods for improving the performance of the VNS-GA with a par-
ticular focus on its consistency have been considered. Most notable amongst these is
to run VNS more times for each chromosome and to take an average result for the fit-
ness function rather than a single run. This should result in a much better evolution of
neighbourhoods, but at the cost of significantly increased running time. Further tuning
of the other parameters of the GA could also significantly improve the consistency of
its performance.

At the time of writing, the 2nd International Timetabling Competition (ITC2007)
was underway. Authors should refer to [38] for further information about the compe-
tition. As part of track one of this competition, a new formulation of the Examination
Timetabling Problem was introduced. This formulation models additional constraints
which are found in many modern institution. Details of the new formulation can be
found at [39]. In relation to the work presented here, the authors intend experimenting
with this new formulation and associated datasets released as part of ITC2007. Details
of techniques used by competitors can be found in [40].
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