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Abstract The efficient generation of parallel code for multi processor environments, is a large and complicated issue. 
Attempts to address this problem have always resulted in significant input from users. Because of constraints on user 
knowledge and time, the automation of the process is a promising and practically important research area. In recent 
years heuristic approaches have been used to capture available knowledge and make it available for the parallelisation 
process. Here, the introduction of the novel approach of application of neural networks techniques is combined with 
an expert system technique to enhance the availability of knowledge to aid in the automatic generation of parallel 
code 
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1   Introduction 
One of the principal limiting factor to the development 
of a fully automatic parallelisation environment is the 
automatic distribution of data to the available 
processors. Various aspects of this problem have 
proven to be intractable [1]. Recently heuristic 
techniques have re-invigorated research in this area. 
Systems such as expert systems, simulated annealing 
and genetic algorithms are currently being applied to 
the problem of data partitioning [2][3]. These 
approaches could be deemed to be incomplete for the 
following reasons: 
i) they make generalising assumptions or tend to 

be biased towards particular problems [3]. 
ii) most rely on intensive analysis of the possible 

distribution solutions which can be time 
consuming for anything but quite small 
programs. A lot of time can be spent tuning 
the parallel code to become as efficient as 
possible [3]. 

iii) they are machine specific and are not portable 
across a number of architectures [4]. 

iv) they rely on limited pattern matching thus not 
exploiting to the full the fact that similar 
structures exist within different sets of 
sequential code. Although some may use 
expert systems or knowledge based systems to 
advise on distribution strategies, this type of 
knowledge is not easily represented in such 
systems [5]. 

v) In many cases, the search space is pruned to 
make it sufficiently small to make the search 
for the solution fast [5]. 

However, while many of these heuristic approaches 
have been useful but limited, it is our contention that a 
combination of such approaches founded in a 

consistent framework can offer a significant 
improvement. 
Neural networks offer a method of extracting 
knowledge implicit in the code itself. This provides an 
alternative low-level, signal-based, view of the 
parallelisation problem in contrast to the high-level, 
symbolic view offered by an expert system. 
Combining both paradigms within a coherent 
knowledge hierarchy should improve the strategic 
intelligent guidance offered to users through access to 
a broader and deeper knowledge model. This 
knowledge model has been reported elsewhere [6]. 
This paper reports on this meta-heuristic approach for 
the purpose of data partitioning within a suite of 
existing knowledge based tools for automatic 
parallelisation, the KATT environment [2].  
The architecture being used consists a cluster of five 
Pentium processor workstations (COW) with a UNIX 
operating system connected via a 10Mb bandwidth 
LAN switch in a star topology. Communication 
templates have been developed using C with 
embedded MPI statements to provide the necessary 
inter-processor communication. A SPMD 
programming model is used.  
 
 
2   Existing Environments 
In all areas, except an automatic approach, 
parallelisation is guided by data parallelism and based 
upon a user-provided specification of data distribution. 
Alternatively, the automatic approach invariably casts 
the problem as one of optimising processor usage 
while minimising communication. As an optimisation 
problem a range of techniques such as genetic 
algorithms,
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Figure 1 - Overview of system

 
simulated annealing and formal mathematical notation 
have been brought to bare [4,5,7,8]. As yet, few of 
these approaches have been used within an overall 
parallelisation environment. 
 
Research reported here is grounded within the 
framework of the on-going Knowledge Assisted 
Transformation Tools (KATT) project (2). KATT 
provides an integrated software development and 
migration environment for sequential programmers. 
Central to the ethos of KATT is the belief that the user 
should have control over the extent of their 
involvement in the parallelisation process. For 
example, it should be possible for novice users to be 
freed from the responsibility of detecting parallelisable 
sections of code and distributing the code over the 
available processors. Alternatively, experienced users 
should have the facility to interact with all phases of 
the parallelisation and distribution of code. To enable 
a novice user to devolve responsibility entirely to the 
system implies that the system must have sufficient 
expert knowledge to accomplish the task. With the 
current KATT environment an expert system chooses 
either a column, row or block distribution depending 
on the assignment statements within the section of 
code under scrutiny. Cyclic and Block-Cyclic 
partitioning are not presently covered due to the 
complication of load balancing issues. Captured 
knowledge is currently held in two forms; explicitly as 
the facts and rules used by the existing expert system; 
and implicitly as hard-coded information about the 
target architecture for example, or inferred from within 
the code itself. The current expert system is limited 
due to its poor pattern matching capabilities and 
inability to generalise from the specific rules within its 
knowledge base. 
 
The approach taken here enhances the existing expert 
system approach by the introduction of a second 
heuristic technique - neural networks. 
 
 

3   Meta-Heuristic Approach 
An overview of the hybrid system is shown in figure 
1. Here the neural network is responsible for 
suggesting an appropriate data partition given a set of 
characteristics derived from the code under 
consideration. The strategy expert system takes the 
suggested partition information together with the 
architectural information to determine a suitable data 
distribution strategy. This in turn is used to generate 
the actual parallel code for execution on the target 
architecture. 
 
Distributions on the chosen architecture have been 
coded using MPI. These are, column block, column 
block cyclic, row block, row cyclic block and block 
block. Using Fortran with embedded MPI statements, 
code fragments have been distributed on the cluster of 
workstations (COWs) ensuring that the results before 
and after distribution are the same. The intention is to 
ascertain, through the experimentation process, how 
individual and particular combinations of 
characteristics are related to the choice of a particular 
data partition  
 
 
4   Data Partitioning Strategy 
As data dependencies are a serious impediment to 
parallelism [9], it is essential to remove and preferable 
eliminate them during the parallelism process. Data 
dependency reduction can be achieved either by 
program transformations [9] or internalisation [10]. 
program transformations allow the exploitation of low 
level parallelism and increase memory locality. These 
are cumbersome to do by hand but may have an 
important influence on overall performance. This 
method for data dependency reduction is currently 
used within the overall KATT project [2].  
Another effective way to reduce data dependencies is 
to internalise the data dependencies within each code 
partition so that all values required by computation 
local to a processor are available in its local domain. If 
this is not possible, the compiler must insert the 
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appropriate communication statements to access non-
local data. Due to the need to distribute data operated 
on by loops which have not necessarily gone through 
one of the established transformations [9], the 
internalisation method is used and is the overriding 
factor when choosing how code should be partitioned 
and distributed. 
 
 
5   The Neural Network Approach 
Neural networks have achieved notable success in 
other areas where heuristic solutions are sought.[13]. 
In this work we intend to take advantage of their 
ability to generalise and extract patterns from a corpus 
of codes, one of the failings identified in alternative 
techniques. Two distinct approaches are currently 
being using: 
 
• an iterative data partitioning selection technique 

which uses a multilayer perceptron model to 
recommend a particular partitioning, selected from 
a restricted set, to apply to an input loop structure. 
Training the neural network requires a 
representative selection of loops, each of which 
must be characterised and analysed to determine 
the appropriate transformation. This process has 
been carried out matching loop characteristics to 
the data partitioning which gives maximum speed 
up in loop execution. 

• a clustering technique which uses a previously 
constructed feature map to determine an 
appropriate data partitioning for the code. The 
clusters formed are investigated to determine which 
data partitioning is applicable. The feature map 
may then be labelled such that a partitioning may 
be associated with an input. 

 
The key issues are identifying sources of knowledge, 
deciding on the level of complexity to be dealt with, 
establishing a suitable characterisation scheme and 
acquiring training examples from a significant corpus 
of codes. 
 
 
6   Sources of Knowledge 
A set of characteristics has been gleaned from a corpus 
of codes and stored in a code characteristic database. 
These characteristics are those which are considered 
important in the choice of an appropriate data 
partitioning scheme. Characteristics, particular those 
which inhibit parallelism (number and type of data 
dependencies), together with the appropriate data 
distribution, determined by experimentation, are 
processed for input to the neural network. Codes have 
been analysed from the following sources: a selection 
of loops from Banerjee’s loops taken from “Loop 

Transformations for Restructuring Compilers” [11] 
and Dongarra’s parallel loops [12]. 
 
 
7   Definition and coverage of problem 
space 
To ensure that the completed neural network tool can 
deal appropriately with unseen code of arbitrary 
complexity it is essential that the training cases reflect 
the complexities found in real codes. We intend to 
model these complexities by defining a problem space 
occupied by exam13s of real code. We define a 
number of dimensions which delineate this problem 
space, namely; number of dependencies, type of 
dependencies, degree of nesting, computational shape 
presence of conditional statements, subroutine calls 
and symbolic bounds (figure 1).  
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Figure 1. Diagrammatic representation of 
problem space. 

 
Codes within this space may be labelled with a 
complexity level. 
 
Level 1 
This is the simplest level and includes that body of 
codes where it is clear parallelism is not appropriate, 
as communication will always dominate computation. 
Nevertheless, a number of examples are needed for 
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completeness. The characteristics of this level are the 
following: 
i. Loops are perfectly nested i.e. only inner loop 

contains statements 
ii. There are a maximum of two statements in the 

loop body 
iii. Loops are normalised i.e. stride =1 
iv. All loop bounds are known 
v. Arrays within loops may have a maximum of 

two dimensions. 
 
Level 2 
This level is defined by the introduction of data 
dependencies and an increased number of statements 
within loop bounds.  
 
Level 3 
This level sees the introduction of higher dimensions, 
statements between loops, conditional statements and 
varying shapes of computation space.  
 
Level 4  
At this level those factors that typically prevent data 
dependence analysis and data distribution are 
introduced. These include; linear expression being too 
complex, symbolic terms in subscript expressions and 
non-constant direction vectors. 
 
Each piece of code studied may be mapped to a 
number of points in the defined problem space. To 
ensure significant coverage four hundred and fifty 
cases have been identified from the loop corpus and 
labelled with the appropriate level. These cases cover 
a number of discrete points within the problem space. 
However, once trained the neural network represents a 
continuous model of the problem space. As a result, 
any unseen input code, provided that it lies within the 
defined problem space, may be mapped to an 
appropriate data partition. 
 
 
8   Training of Network 
Example codes have been identified at levels 1, 2 and 
3 within the loop corpus. These have been 
characterised and, by a process of experimentation, the 
partitioning strategy and most efficient data 
distribution identified for the target architecture. 
 
 
8.1   Code Characterisation and Coding 
The characterisation scheme used is shown in detail in 
Appendix A. These are considered to be the principal 
features exhibited by a loop which influence the 
choice of data distribution. A binary coding scheme 
has been developed to code these characteristics for 
input to the neural network. Categorical fields 
containing two or more options i.e. data dependencies 

are encoded as a one-of-n encoding. In some cases it is 
appropriate to preserve some sort of relationship 
between neighbouring categories, e.g., whether a 
particular dependency is uniform, loop carried forward 
etc. This information is captured by a fuzzy one-of-n 
encoding scheme. 
 
 
8.2   Generation of the Data Set 
This process was carried out using the following 
algorithm: 
 
REPEAT 
 Scrutinise loop 
 Sequential code time profiling 
 Sequential code results analysis 

Characteristics manually extracted for use 
 in production of parallel code 

 REPEAT 
  Chose Partitioning of Data  

Production of Parallel Code 
  Parallel code results analysis 

Parallel code time profiling 
Store time  
Store DPP it stored if time is less than 
 previous stored time 

 UNTIL All partitions have been used 
 Associate partition with code characteristics 
UNTIL  All loops analysed.  
 
i.  
This knowledge is provided by the expert system, 
which together with the neural model, draws from and 
exploits all available knowledge in advising on a 
suitable data distribution. Actual parallel code is then 
produced by adding a communications harness using 
MPI. 
To prove the neural component we have, at this stage, 
fixed the architecture. All timings are taken on a four-
processor workstation cluster. 
Once this process has been completed each code has 
been characterised and an appropriate partition 
identified. This data set is then used to train a 
multilayer perceptron capable of taking the 
characterisation of an unseen code and producing the 
appropriate data partition. 
 
 
9   An Illustrative Example 
To illustrate the process, consider the following code 
fragment: 
 
DO 30, I = 1, rows 
     DO 40, J = 1, cols 
          A (I, J) = B (I +3, J) 
          B (I, J) = A (I, J) 
          M = I*J 
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          B (I, J) = B(I, J) *A(I, J) 
     CONTINUE 
CONTINUE  
 
The following relevant characteristics for partitioning 
are: 
• 2 arrays 
• Input dependence  
• 2 Loop carried forward Anti dependence 
• 2 Loop independent flow dependence 
• Dependencies carried by outer loop 
 
These characteristics are coded for input to the 
network which indicates that partitioning should be by 
column. The following table provides relative timings 
for both sequential and parallel partitioning for an 
array size of 800 by 800 (variables rows and cols in 
the code fragment above). 
 
Sequential Time 31.394252 
Column = 1 20.670667 
Column = 10 20.283152 
Column = 25 24.287525 
Column = 50 30.393759 
Column = 100 45.762204 
Column = 200 56.749110 
 
The expert system drawing on these facts together 
with the partitioning suggested by the neural network 
indicates a particular distribution i.e. a column based 
distribution cyclically on four processors with a block 
size of 10. 
 
 
10   Further Work 
The system outlined above employs a multilayer 
perceptron trained using a supervised learning 
approach where both the input (the characterisations) 
and the output (the associated partition) must be 
known. This requirement represents a limitation in the 
system in that, in order to gather the training data, the 
target architecture must be fixed. The trained network 
then is applicable only to this fixed architecture. Work 
is ongoing on an architecture independent approach 
using an unsupervised mapping network - the 
Kohonen self-organising network. The Kohonen 
network will cause the input characteristics to cluster. 
These clusters may be labelled with a suitable data 
partition. This information will supplement the 
architectural details characterised within the expert 
system. 
11   Conclusion 
A meta-heuristic approach to data distribution has 
been developed and implemented. The approach 
involves the definition and modelling of the problem 
space, characterisation of the knowledge available and 

exploitation by appropriate paradigms, namely neural 
networks and expert systems. Results to date have 
proven the technique but are limited to a fixed 
architecture due to the nature of the neural model used. 
Work is progressing on an alternative approach using 
Kohonen networks which will result in an architectural 
independent, automatic data distribution technique. 
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Appendix A 
The Characterisation scheme used. 
 
No Characteristic 
1) Code section identification 
2) Number of loops in code section 
3) Number of statements before first Loop 

4) Loop Identification 
 a) Loop Lower Bound 
 b) Loop Upper Bound 
 c) Stride of loop 
 d) Level of Nesting 
 e) Degree of Nesting 
 f) Number of statements In Loop Body 
 g) Type of Loop Transformation underwent 
 h) Sequential timing of loop 
5) Number of Flow Dependence 
6) Number of Anti Dependence 
7) Number of Output Dependence 
8) Number of Input Dependence 
9) Number of Dependencies 
 a) Data Dependence Type 
 b) Within Single Statement 
 c) Across Statements 
 d) Loop Independent 
 e) Loop carried forward i.e. Direction vector 
 f) Loop carried backwards i.e. Direction vector 
 g) Dependence Distance 
 h) If Dependence is Uniform 
 i) Which loop carries dependence  
10) Sequential timing of code section 
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