
A Meta-Heuristic Approach to Parallel Code Generation

B. MCCOLLUM, P.H.CORR AND P. MILLIGAN
School of Computer Science,

The Queen's University of Belfast
Belfast BT7 1NN

N. IRELAND
(b.mccollum, p.corr)@qub.ac.uk

Abstract The efficient generation of parallel code for multi processor environments, is a large and complicated issue.
Attempts to address this problem have always resulted in significant input from users. Because of constraints on user
knowledge and time, the automation of the process is a promising and practically important research area. In recent
years heuristic approaches have been used to capture available knowledge and make it available for the parallelisation
process. Here, the introduction of the novel approach of application of neural networks techniques is combined with
an expert system technique to enhance the availability of knowledge to aid in the automatic generation of parallel
code

Key Words Meta-heuristics, Neural Networks, Automatic Parallelisation, Data Distribution

1 Introduction
One of the principal limiting factor to the development
of a fully automatic parallelisation environment is the
automatic distribution of data to the available
processors. Various aspects of this problem have
proven to be intractable [1]. Recently heuristic
techniques have re-invigorated research in this area.
Systems such as expert systems, simulated annealing
and genetic algorithms are currently being applied to
the problem of data partitioning [2][3]. These
approaches could be deemed to be incomplete for the
following reasons:
i) they make generalising assumptions or tend to

be biased towards particular problems [3].
ii) most rely on intensive analysis of the possible

distribution solutions which can be time
consuming for anything but quite small
programs. A lot of time can be spent tuning
the parallel code to become as efficient as
possible [3].

iii) they are machine specific and are not portable
across a number of architectures [4].

iv) they rely on limited pattern matching thus not
exploiting to the full the fact that similar
structures exist within different sets of
sequential code. Although some may use
expert systems or knowledge based systems to
advise on distribution strategies, this type of
knowledge is not easily represented in such
systems [5].

v) In many cases, the search space is pruned to
make it sufficiently small to make the search
for the solution fast [5].

However, while many of these heuristic approaches
have been useful but limited, it is our contention that a
combination of such approaches founded in a

consistent framework can offer a significant
improvement.
Neural networks offer a method of extracting
knowledge implicit in the code itself. This provides an
alternative low-level, signal-based, view of the
parallelisation problem in contrast to the high-level,
symbolic view offered by an expert system.
Combining both paradigms within a coherent
knowledge hierarchy should improve the strategic
intelligent guidance offered to users through access to
a broader and deeper knowledge model. This
knowledge model has been reported elsewhere [6].
This paper reports on this meta-heuristic approach for
the purpose of data partitioning within a suite of
existing knowledge based tools for automatic
parallelisation, the KATT environment [2].
The architecture being used consists a cluster of five
Pentium processor workstations (COW) with a UNIX
operating system connected via a 10Mb bandwidth
LAN switch in a star topology. Communication
templates have been developed using C with
embedded MPI statements to provide the necessary
inter-processor communication. A SPMD
programming model is used.

2 Existing Environments
In all areas, except an automatic approach,
parallelisation is guided by data parallelism and based
upon a user-provided specification of data distribution.
Alternatively, the automatic approach invariably casts
the problem as one of optimising processor usage
while minimising communication. As an optimisation
problem a range of techniques such as genetic
algorithms,

 1

Distribution
Strategy

(DS)

Strategy
Expert System

(SES)

Architecture
Information

Neural Network

Block Block

Block Cyclic Column

Block Cyclic Row

Block Column

Block Row

Data Partitions

Strategy

Expert System
(SES)

Parallel Code

Generator

Characteristics

Figure 1 - Overview of system

simulated annealing and formal mathematical notation
have been brought to bare [4,5,7,8]. As yet, few of
these approaches have been used within an overall
parallelisation environment.

Research reported here is grounded within the
framework of the on-going Knowledge Assisted
Transformation Tools (KATT) project (2). KATT
provides an integrated software development and
migration environment for sequential programmers.
Central to the ethos of KATT is the belief that the user
should have control over the extent of their
involvement in the parallelisation process. For
example, it should be possible for novice users to be
freed from the responsibility of detecting parallelisable
sections of code and distributing the code over the
available processors. Alternatively, experienced users
should have the facility to interact with all phases of
the parallelisation and distribution of code. To enable
a novice user to devolve responsibility entirely to the
system implies that the system must have sufficient
expert knowledge to accomplish the task. With the
current KATT environment an expert system chooses
either a column, row or block distribution depending
on the assignment statements within the section of
code under scrutiny. Cyclic and Block-Cyclic
partitioning are not presently covered due to the
complication of load balancing issues. Captured
knowledge is currently held in two forms; explicitly as
the facts and rules used by the existing expert system;
and implicitly as hard-coded information about the
target architecture for example, or inferred from within
the code itself. The current expert system is limited
due to its poor pattern matching capabilities and
inability to generalise from the specific rules within its
knowledge base.

The approach taken here enhances the existing expert
system approach by the introduction of a second
heuristic technique - neural networks.

3 Meta-Heuristic Approach
An overview of the hybrid system is shown in figure
1. Here the neural network is responsible for
suggesting an appropriate data partition given a set of
characteristics derived from the code under
consideration. The strategy expert system takes the
suggested partition information together with the
architectural information to determine a suitable data
distribution strategy. This in turn is used to generate
the actual parallel code for execution on the target
architecture.

Distributions on the chosen architecture have been
coded using MPI. These are, column block, column
block cyclic, row block, row cyclic block and block
block. Using Fortran with embedded MPI statements,
code fragments have been distributed on the cluster of
workstations (COWs) ensuring that the results before
and after distribution are the same. The intention is to
ascertain, through the experimentation process, how
individual and particular combinations of
characteristics are related to the choice of a particular
data partition

4 Data Partitioning Strategy
As data dependencies are a serious impediment to
parallelism [9], it is essential to remove and preferable
eliminate them during the parallelism process. Data
dependency reduction can be achieved either by
program transformations [9] or internalisation [10].
program transformations allow the exploitation of low
level parallelism and increase memory locality. These
are cumbersome to do by hand but may have an
important influence on overall performance. This
method for data dependency reduction is currently
used within the overall KATT project [2].
Another effective way to reduce data dependencies is
to internalise the data dependencies within each code
partition so that all values required by computation
local to a processor are available in its local domain. If
this is not possible, the compiler must insert the

 2

appropriate communication statements to access non-
local data. Due to the need to distribute data operated
on by loops which have not necessarily gone through
one of the established transformations [9], the
internalisation method is used and is the overriding
factor when choosing how code should be partitioned
and distributed.

5 The Neural Network Approach
Neural networks have achieved notable success in
other areas where heuristic solutions are sought.[13].
In this work we intend to take advantage of their
ability to generalise and extract patterns from a corpus
of codes, one of the failings identified in alternative
techniques. Two distinct approaches are currently
being using:

• an iterative data partitioning selection technique

which uses a multilayer perceptron model to
recommend a particular partitioning, selected from
a restricted set, to apply to an input loop structure.
Training the neural network requires a
representative selection of loops, each of which
must be characterised and analysed to determine
the appropriate transformation. This process has
been carried out matching loop characteristics to
the data partitioning which gives maximum speed
up in loop execution.

• a clustering technique which uses a previously
constructed feature map to determine an
appropriate data partitioning for the code. The
clusters formed are investigated to determine which
data partitioning is applicable. The feature map
may then be labelled such that a partitioning may
be associated with an input.

The key issues are identifying sources of knowledge,
deciding on the level of complexity to be dealt with,
establishing a suitable characterisation scheme and
acquiring training examples from a significant corpus
of codes.

6 Sources of Knowledge
A set of characteristics has been gleaned from a corpus
of codes and stored in a code characteristic database.
These characteristics are those which are considered
important in the choice of an appropriate data
partitioning scheme. Characteristics, particular those
which inhibit parallelism (number and type of data
dependencies), together with the appropriate data
distribution, determined by experimentation, are
processed for input to the neural network. Codes have
been analysed from the following sources: a selection
of loops from Banerjee’s loops taken from “Loop

Transformations for Restructuring Compilers” [11]
and Dongarra’s parallel loops [12].

7 Definition and coverage of problem
space
To ensure that the completed neural network tool can
deal appropriately with unseen code of arbitrary
complexity it is essential that the training cases reflect
the complexities found in real codes. We intend to
model these complexities by defining a problem space
occupied by exam13s of real code. We define a
number of dimensions which delineate this problem
space, namely; number of dependencies, type of
dependencies, degree of nesting, computational shape
presence of conditional statements, subroutine calls
and symbolic bounds (figure 1).

Dependence Type Output

Anti

Flow

Input

1 2 3 4 5
 Number of Dependencies

Figure 1. Diagrammatic representation of
problem space.

Codes within this space may be labelled with a
complexity level.

Level 1
This is the simplest level and includes that body of
codes where it is clear parallelism is not appropriate,
as communication will always dominate computation.
Nevertheless, a number of examples are needed for

Dependence Type

Degree of Nesting

Number of Statements

Computational shape/Conditional statements

Subroutine calls and symbolic bounds

Complexity of Loop

 3

completeness. The characteristics of this level are the
following:
i. Loops are perfectly nested i.e. only inner loop

contains statements
ii. There are a maximum of two statements in the

loop body
iii. Loops are normalised i.e. stride =1
iv. All loop bounds are known
v. Arrays within loops may have a maximum of

two dimensions.

Level 2
This level is defined by the introduction of data
dependencies and an increased number of statements
within loop bounds.

Level 3
This level sees the introduction of higher dimensions,
statements between loops, conditional statements and
varying shapes of computation space.

Level 4
At this level those factors that typically prevent data
dependence analysis and data distribution are
introduced. These include; linear expression being too
complex, symbolic terms in subscript expressions and
non-constant direction vectors.

Each piece of code studied may be mapped to a
number of points in the defined problem space. To
ensure significant coverage four hundred and fifty
cases have been identified from the loop corpus and
labelled with the appropriate level. These cases cover
a number of discrete points within the problem space.
However, once trained the neural network represents a
continuous model of the problem space. As a result,
any unseen input code, provided that it lies within the
defined problem space, may be mapped to an
appropriate data partition.

8 Training of Network
Example codes have been identified at levels 1, 2 and
3 within the loop corpus. These have been
characterised and, by a process of experimentation, the
partitioning strategy and most efficient data
distribution identified for the target architecture.

8.1 Code Characterisation and Coding
The characterisation scheme used is shown in detail in
Appendix A. These are considered to be the principal
features exhibited by a loop which influence the
choice of data distribution. A binary coding scheme
has been developed to code these characteristics for
input to the neural network. Categorical fields
containing two or more options i.e. data dependencies

are encoded as a one-of-n encoding. In some cases it is
appropriate to preserve some sort of relationship
between neighbouring categories, e.g., whether a
particular dependency is uniform, loop carried forward
etc. This information is captured by a fuzzy one-of-n
encoding scheme.

8.2 Generation of the Data Set
This process was carried out using the following
algorithm:

REPEAT
 Scrutinise loop
 Sequential code time profiling
 Sequential code results analysis

Characteristics manually extracted for use
 in production of parallel code

 REPEAT
 Chose Partitioning of Data

Production of Parallel Code
 Parallel code results analysis

Parallel code time profiling
Store time
Store DPP it stored if time is less than
 previous stored time

 UNTIL All partitions have been used
 Associate partition with code characteristics
UNTIL All loops analysed.

i.
This knowledge is provided by the expert system,
which together with the neural model, draws from and
exploits all available knowledge in advising on a
suitable data distribution. Actual parallel code is then
produced by adding a communications harness using
MPI.
To prove the neural component we have, at this stage,
fixed the architecture. All timings are taken on a four-
processor workstation cluster.
Once this process has been completed each code has
been characterised and an appropriate partition
identified. This data set is then used to train a
multilayer perceptron capable of taking the
characterisation of an unseen code and producing the
appropriate data partition.

9 An Illustrative Example
To illustrate the process, consider the following code
fragment:

DO 30, I = 1, rows
 DO 40, J = 1, cols
 A (I, J) = B (I +3, J)
 B (I, J) = A (I, J)
 M = I*J

 4

 B (I, J) = B(I, J) *A(I, J)
 CONTINUE
CONTINUE

The following relevant characteristics for partitioning
are:
• 2 arrays
• Input dependence
• 2 Loop carried forward Anti dependence
• 2 Loop independent flow dependence
• Dependencies carried by outer loop

These characteristics are coded for input to the
network which indicates that partitioning should be by
column. The following table provides relative timings
for both sequential and parallel partitioning for an
array size of 800 by 800 (variables rows and cols in
the code fragment above).

Sequential Time 31.394252
Column = 1 20.670667
Column = 10 20.283152
Column = 25 24.287525
Column = 50 30.393759
Column = 100 45.762204
Column = 200 56.749110

The expert system drawing on these facts together
with the partitioning suggested by the neural network
indicates a particular distribution i.e. a column based
distribution cyclically on four processors with a block
size of 10.

10 Further Work
The system outlined above employs a multilayer
perceptron trained using a supervised learning
approach where both the input (the characterisations)
and the output (the associated partition) must be
known. This requirement represents a limitation in the
system in that, in order to gather the training data, the
target architecture must be fixed. The trained network
then is applicable only to this fixed architecture. Work
is ongoing on an architecture independent approach
using an unsupervised mapping network - the
Kohonen self-organising network. The Kohonen
network will cause the input characteristics to cluster.
These clusters may be labelled with a suitable data
partition. This information will supplement the
architectural details characterised within the expert
system.
11 Conclusion
A meta-heuristic approach to data distribution has
been developed and implemented. The approach
involves the definition and modelling of the problem
space, characterisation of the knowledge available and

exploitation by appropriate paradigms, namely neural
networks and expert systems. Results to date have
proven the technique but are limited to a fixed
architecture due to the nature of the neural model used.
Work is progressing on an alternative approach using
Kohonen networks which will result in an architectural
independent, automatic data distribution technique.

References:
[1] Ayguade, E., Garcia, J., Kremer, U., "Tools

and techniques for automatic data layout",
Parallel Computing 24 (1998) 557-578

[2] P. J. P. McMullan, P. Milligan, P. P. Sage and

P. H. Corr. A Knowledge Based Approach to
the Parallelisation, Generation and Evaluation
of Code for Execution on Parallel
Architectures. IEEE Computer Society Press,
ISBN 0-8186-7703-1, pp 58 - 63, 1997

[3] Mansour, N., Fox, G., "Allocating data to

distributed memory multiprocessors by genetic
algorithms", Concurrency: Practice and
Experience, Vol. 6(6), 485-504(September
1994)

[4] Shenoy, U., Spikant, Y., Bhatkar, V., Kohli S.,

"Automatic Data Partitioning by Hierarchical
Genetic Search", Parallel Algorithms and
Applications, Vol. 14, pp 119-147.

[5] Chrisochoides, N., Mansour, N., Fox, G., "A

Comparison of optimisation heuristics for the
data mapping problem", Concurrency: Practice
and Experience, Vol. 9(5), 319-343 (May
1997)

[6] McCollum B.G.C., Milligan P. and Corr P.H.,

“The Structure and Exploitation of Available
Knowledge for Enhanced Data Distribution in
a Parallel Environment” ,Software and
Hardware Engineering for the 21st Century,
Ed. N. E. Mastorakis, World Scientific and
Engineering Society Press, 1999, pp139-145,
ISBN 960-8052-06-8

[7] K. Kennedy and U.Kremer,” Automatic Data

Alignment and Distribution for Loosely
Synchronous Problems in an Interactive
Programming Environment” Technical Report
COMP TR91-155, Rice University, April
1991.

[8] K. Knobe, J. Lukas and G. Steele, “Data

Optimisation: Allocation of arrays to reduce
communication on SIMD Machines”, Journal

 5

of Parallel and Distributed Computing 8, 102-
118 (1990)

[9] Z. Shen, Z. Li and P. C. Yew, An Empirical Study
of Fortran Programs for Parallelising Compilers”,
Technical Report 983, Centre for Supercomputing
research and Development.

[10] A. Dierstein, R. Hayer and T. Rauber, “Automatic
Data Distribution and Parallelization” Paralel
Programming 1995

[11] U.Banerjee “Loop Transformations for
Restructuring Compilers”, Macmillan College
Publishing Company, 1992

[12] J. Dongara, “Atest Suite for Parallelising

Compilers: Description and Example Results”,
Parallel Computing, 17, pp 1247-1255, 1991.

[13] S Haykin “Neural Networks A Comprehensive

Foundation” Macmillan College Publishing
Company, Inc. 1994.

[14] Kohonen, “ The Self-Organising Map”,

Procedures of the IEEE, vol.78, pp 1464-1480,
1990

[15] V. Purnell, P. H. Corr and P.Milligan, “Neural

Networks for Code Transformation”, Lecture
Notes in Computer Science, 1225, Springer
Verlag, pp 1028-1029

Appendix A
The Characterisation scheme used.

No Characteristic
1) Code section identification
2) Number of loops in code section
3) Number of statements before first Loop

4) Loop Identification
 a) Loop Lower Bound
 b) Loop Upper Bound
 c) Stride of loop
 d) Level of Nesting
 e) Degree of Nesting
 f) Number of statements In Loop Body
 g) Type of Loop Transformation underwent
 h) Sequential timing of loop
5) Number of Flow Dependence
6) Number of Anti Dependence
7) Number of Output Dependence
8) Number of Input Dependence
9) Number of Dependencies
 a) Data Dependence Type
 b) Within Single Statement
 c) Across Statements
 d) Loop Independent
 e) Loop carried forward i.e. Direction vector
 f) Loop carried backwards i.e. Direction vector
 g) Dependence Distance
 h) If Dependence is Uniform
 i) Which loop carries dependence
10) Sequential timing of code section

 6

	

