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Abstract.

Constructing examination timetable for higher ediocel institutions is a
very complex work due to the complexity of timetagl problems. The
objective of examination timetabling problem is gatisfy the hard
constraints and minimize the violations of soft stoaints. In this paper, a
tabu-based memetic approach has been applied aidagad against the
latest methodologies in the literature on standmmdchmark problems. The
approach which hybridizes a concept of tabu list s@metic algorithm. The
tabu list is used to penalise neighbourhood strastuhat are unable to
generate better solutions after the crossover anthtion operators being
applied to the selected solutions from the popattapool. We demonstrate
that our approach is able to enhance the qualithefolutions by carefully
selecting the effective neighbourhood structuresndd, some best known
results have been obtained

1 Introduction

Timetabling problems have long been a challengarga for researchers across both
Operational Research and Artificial Intelligenceméng the wide variety of
timetabling problems, educational timetabling (whicover areas such as school,
course and exam timetabling) is one of the mostlyidtudied. This concentrates on
examination timetabling problems which can be galhedefined as assigning a set
of exams into a limited number of timeslots andmnssubject to a set of constraints.
In the past, a wide variety of approaches for sgiihe examination timetable
problem have been described and discussed in tdratlire. For a recent detailed
overview readers should consult Qu et al (2009)teCa(1986) categorised the
approaches taken into four types: sequential matholdister methods, constraint-
based methods and generalised search. Petroviduakd (2004) added the following



categories: hybrid evolutionary algorithms, meta+istics, multi-criteria approaches,
case based reasoning techniques, hyper-heuristicadaptive approaches.

These approaches are tested on various examirtatietabling datasets that can be
found from http://www.asap.cs.nott.ac.uk/resouratdd Due to the existence of multi
formulations for university timetabling problem,eti?® International Timetabling
Competition (ITC2007) (McCollum et al. 2009) atteegh to standardize the
problems found within educational timetabling byraducing three tracks (one on
exam and two on course timetabling) where the probl incorporated more real-
world constraints. In doing so, the organizersmapieed to reduce the acknowledged
gap between research and practice which existshi; drea (McCollum 2007).
Interested readers can find more details about ewdion timetabling research in the
comprehensive survey paper by Qu et al. (2009)Lamds (2008).

The rest of the paper is organised as follows. fidy section formally discusses
the basic algorithm of memetic approach. Sectiom8sgnts the examination
timetabling problem and formulation. The solutiggpeoach is outlined in Section 4.
Our results are presented, discussed and evaliatgection 5. This is followed by
some brief concluding comments in Section 6.

2 Memetic Approach

Memetic algorithms which is a population-based apph were proposed by Moscato
and Norman in 1992 are an extension of geneticritfgos which sometimes is called
hybrid genetic algorithms or genetic local searlgo@thms (Hart et al. 2004). The
idea is that individuals within a population canibgroved within a generation that
can be done by employing local search methods aividual members of a
population between generations.

Burke et al. (1996) employed a memetic algorithm daiversity examination
timetabling where two evolutionary operators aredudight and heavy mutation) in
the initial phase followed by a hill-climbing algtthm. The algorithm has been tested
on real examination datasets. Experimental reslitsv that the solution quality
found was better when compared to employing evahatiy operators alone. The
effects of diversity in initial populations in metitealgorithms has been investigated
by the same authors (see Burke et al. 1996). Tdieigue by Paechter et al. (1996)
implemented an extension of memetic algorithm ® lécture timetabling problem
which utilised several types of mutation strategiesperimental results show that
selfish and co-operativemutations are very useful in increasing the penforce of
the algorithm when applied to this problem. Burke a. (1998) introduced
randomness (that used three diversity measurdghgimitial population to generate a
high level of diversity. The study of diversity imitialisation has shown great
potential benefits for memetic algorithms. Burkel atewall (1999) applied a hybrid
method of heuristic sequencing and evolutionary hod$ to the examination
timetabling problem naming the approach as a nstdtile evolutionary algorithm. In
this approach, the hybrid method is applied tolasstiof events (examinations) at a
particular time. The algorithm then fixes the egeintthe timetable before moving to
the next subsets (which is like a decompositionc@ss). In order to evaluate the
effectiveness of this approach, real datasets weegl. The results show that this



approach was able to improve the solution quality eeduce the time taken to find
that solution. A number of relevant issues on thsigh of memetic algorithm for
scheduling and timetabling problems can be se®uike and Landa Silva (2004). A
number of studies on memetic algorithms on varioambinatorial optimisation

problems can be found in Krosnogor and Smith (208%) Osman and Laporte
(1996). Interested readers can find more detaibaitabimilar approaches in Moscato
(1999, 2002). Other related papers on populaticethaapproach applied to
examination timetabling problems can be found ieyE{2007) and Ersoy et al.
(2007).

3 Problem Description

The examination timetabling problem is a commanabf@m found in schools and
higher educational institutes which are concernél allocating exams into a limited
number of timeslots (periods) subject to a setafstraints (see Burke et al. 1996).
There are generally two categories of constraimsd and soft. Hard constraints must
be completely satisfied and cannot be violated.niptas of generally accepted hard
constraints are:

* no student can sit in two exams simultaneously

« the scheduled exams must not exceed the room tapaci

In addition, often hard constraints exist relatiogthe ordering of examination.
Solutions that satisfy all hard constraints areemftalledfeasible solutions. Soft
constraints, which are desirable and not essengialtheir satisfaction dictates the
overall quality of the gained solution. A partiacdjacommon soft constraint refers to
spreading exams as evenly as possible over thelgehas discussed in Burke et al.
(1996). ITC2007 presented to the research commuaity extensive listing of
additional soft constraints. In real-world situaiso it is usually impossible to satisfy
all soft constraints, but minimising the violation$ soft constraints represents an
increase in the quality of the solution.

The problem description that is employed in thipgrais adapted from the
description presented in Burke et al. (2004). Tipauf for the examination timetabling
problem can be stated as follows

* E;is a collection ofN examinationsi€1,...,N.

* P is the number of timeslots.

* C=(cj)nn is the conflict matrix where each record, denoted c; (ij
LI{1,...,N) ,represent the number of students taking the examd;.

* M is the number of students.

* t (1<t,<T) specifies the assigned timeslots for exagkl1{1,...,N .

The following hard constraints are considered is faper:
* no students should be required to sit two exanovnatsimultaneously.
* examinations with common students should be sckdduh different
periods.
In this problem, we formulate an objective functiauhich tries to spread out
students’ exams throughout the exam period (Eximegs)).
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Equation (2) presents the cost for an exawvhich is given by the proximity value
multiplied by the number of students in conflicguation (3) represents a proximity
value between two exams (Carter et al. 1996). Emud#) represents a clash-free
requirement so that no student is asked to sitexams at the same time. The clash-
free requirement is considered to be a hard canstra

4 The Tabu-based M emetic Approach

The approach described here consists of a constnucitage followed by
improvement.

4.1 Construction Heuristic

A construction algorithm which is based on a sdioma degree graph
colouring heuristic is used to generate large pamiis of feasible timetables.
The approach starts with an empty timetable. Tharnsxwith highest number
of exams in conflict and more likely to be diffitub be scheduled will be
attempted first without taking into consideratidme tviolation of any soft
constraints, until the hard constraints are medreMietails on graph colouring
applications to timetabling can be found in Burkele (2004).

4.2 Improvement Algorithm

In this paper, a tabu-based memetic approach ipopesl as an improvement
algorithm that operates on a set of possible swist(generated from the construction
heuristic) to solve examination timetabling problemhere a set of neighbourhood
structures (as discussed in subsection 4.3) hawn hesed as a local search



mechanism. The aim of using a set of neighbourhstrdcture inside genetic
operators is to produce significant improvementsainsolution quality. In this
approach, a concept of tabu list is employegpeémalise neighbourhood structures
that are unable to generate better solutions #feercrossover and mutation
operators being applied to the selected solutioom fthe population pool.
The schematic overview of the algorithm is presgrite Fig. 1 where the
populations are generated using the constructiauridiee. Two parents
(solutions) will be selected from the populationsé@d on roulette wheel
procedure. Two memetic operators i.e. crossover anutation will be
employed prior to the improvement algorithm (i.@bu-based memetic
algorithm). The best solution found after the ergpient of the improvement
algorithm will be added to the population pool whihaintaining the size of
the population.

roulette

Population |«

wheel
A 4
Parents Tabu-based
Selection memetic
algorithir
A
»|  Crossover » Mutation

Fig. 1.A schematic overview of the approach

The pseudo code of the algorithm is presented gn EiThe algorithm begins
by creating initial populations. A best solutioorfr the population is selected,
Sest A tabu list with the sizeTabuSizeis created with an aim to hold
ineffective neighbourhood structures from beingstd in the next iteration
and will give more chances for the remaining negirhood structures to be
explored (see Table 3 for parameter setting). Aalde CanSelect(represents
a boolean value) that allows the algorithm to amnthe selection of a
neighbourhood structure. For example if a neighbood structuresNbs
shows a good performance (in terms of producingweet penalty solution),
so the algorithm will continue usé¢bsin the next iterations until no good
solution can be obtained. In this cadieswill be pushed into the FIFO (First
In First Out) tabu listT s This move is not allowed to be part of any search
process for a certain number of iterations. tloavhileloop, two solution are
randomly selectedS, and S,. The crossover and mutation operators are
applied onS; and$S; to obtainS’ and S;'. Randomly select a neighbourhood
structure,Nbs and applied or§’ and S’ to obtain §” and S”. The best
solution amondy’, S', §” andS;" is chosen an assigned to a current solution
S, If S*is better than the best solution in hafgls; thenS* is accepted.
OtherwiseNbswill be added into th& ;.. The member of the populations will



be updated by removing the worst solution and tirsgrthe new solution
obtained from the search process while maintaittiegsize of the population
and to be used in the next generation. The prasaspeated and stops when
the termination criterion is met (in this work ttegmination criterion is set as
a computational times).

for i=1 to population size
Generate random solutiofs,
end
Set the length of the tabliabuSize
Choose a best solution from the populati®ys;
Create an empty tabu list wilfabuSizeT ;
SetCanSelect True
do while (not termination criterion)
Select two parents from the population usimgulette wheel selection,
S and$;
Apply crossover and mutation operators@andS, to produces;,’ and
S
if CanSelect== True
Randomly select a neighbourhood strectuhich is not inT g,
calledNbs;
end if
Apply NbsonS;’ andS,’ to produceS;,” andS,”;
Get a minimum solution penalty frddi, S, S;” andS,", called current
solutionS¥;
if (S < Ses)
Spes — S*;
CanSeleet False
else
Pushbs to T j;
CanSeleet True
end if
Update the sorted population by inserting mmoving good and worse
solutions, respectively, while maintaining the sif¢he population;
end while
Output the best solutioBes;

Fig.2 Tabu-based memetic algorithm
4.3 Neighbourhood Structures

Ahuja et al. (2000) in their paper highlighted thgportance of the neighbourhood
structure in the local or neighbourhood searchy®aad,

“A critical issue in the design of a neighbourhoedrsh
approach is the choice of the neighbourhood stmecthat is the
manner in which the neighbourhood is defiried



Some techniques in the literature, like simulatethealing and tabu search,
generally use a single neighbourhood structureutjitout the search and focus more
on the parameters that affect the acceptance of nloees rather than the
neighbourhood structure. Thompson and Dowsland§12998) discussed how the
choice of the neighbourhood structure affects thality of solutions obtained for
examination timetabling. We can say that the sicaddinding good solutions for
these problems is determined by the techniquef ésel the neighbourhood structure
employed during the search. In this paper, a sdiffefrent neighbourhood structures
have been employed. Their explanation can be eutlias follows (adapted from
Abdullah et al. 2007):

Nbs;: Select two exams at random and swap timeslots.

Nbs: Choose a single exam at random and move to aamestom feasible timeslots.

Nbss: Select two timeslots at random and simply swiatha exams in one timeslots
with all the exams in the other timeslots.

Nbs;: Take two timeslots at random, sayandt, (wherej>i) where timeslots are
orderedty,t,ts,...4. Take all exams that iy and allocate them tg, then
allocate those that were ig to t., and so on until we allocate those that were
ti.1 tot; and terminate the process.

Nbs;: Move the highest penalty exams from a random $6féction of the exams to
a random feasible timeslots.

Nbss: Carry out the same process as indNhg with 20% of the exams.

Nbs;: Move the highest penalty exams from a random $6#éction of the exams to
a new feasible timeslots which can generate thesbywenalty cost.

Nbsg: Carry out the same process as inNhg with 20% of the exams

Nbs;: Select two timeslots based on the maximum erda@bams, say andt; .Select
the most conflicted exam i with t; and then apply Kempe chain from
Thompson and Dowsland (1996).

4.4 Solution Representation
A direct representation is used. Each populatiomber (which represents a feasible

solution) is represented as a number of genesdatiain information about the
timeslot and exams. For exampglg e, &, &, 4 are scheduled at timesIot

Timeslots Exams
iy —
Tl | e E11 Eg €7 214
T2 3 =] (=} 24 21 217 212 212
T3 | e 215 213 €10 g5 genes
T4 | en | ew
T5 | e15| 2w | en

Fig.3 Solution representation



4.5 The Memetic Operators. Crossover and M utation

There are different types of crossover operatorsilave in the literature. For
example Cheong et al (2007) applied a crossoveratipa based on the best days
(three periods per day and minimum number of clagier students). In this paper,
we applied a period exchange crossover. This cvessaperator allows a humber of
exams (from one timeslot) to be added to anotineegiot and vice versa based on a
crossover rate. The repair mechanism is applieshture the feasibility of the child.
The crossover operation is illustrated in Fig.4presents a period-exchange
crossover. The shaded periods represent the slgmdeiods for a crossover
operation. These periods are selected based obsaower rate using roulette wheel
selection method, for example timesldtsand Ts are chosen as parents (a) and (b),
respectively. Crossover is performed by insertihgx@ams from timesloTs in parent
(b) to timeslofT; in parent (a), which then will produce a child. (@he same process
is applied to obtain child (b). This operation Isdd an infeasible solution due to a
conflict appeared between a number of exams. Fample; in child (a).eyp is
repeated i3 (occurs twice), which should be removeg;ande;, that are located in
T, andT,, respectively, should also be removed to insurée ¢héd (a) is feasible. In
child (b), e, is conflicted withee, as a resulg; cannot be inserted ify, while e;o and

e1g are occur twice ifTs and T,, respectively, so these exams should be removed to
obtain feasibility. Removing conflicts and repegtiexams in each timeslot is
considered as a repair function that changed tfeasibility of each offspring to
feasible once.

The mutation is used to enhance the performanceragsover operation in
allowing a large search space to be explored. Ransielection of neighbourhood
structures is used in a mutation process based omtation rate obtained after
preliminary experiments (see Table 2 for a paranss#ing).

Ti € | En (31 g7 (#] €15 T1 (%] en (=] (=] €14
T2 €13 [+ = €1 T2 (] [+ (=] [+ €] €17 €11 E1g
T3 | e | en | ey >—of T3 | e | e | & | em| &
T4 | e €14 =] g7 T4 €11 | €10
T5 ey | e [en | e | & TS % | ew | en
- =
S —
Parent(a) Parent(b)
TL | ey | en Elg er €3 \EM\ T | & en =] g7 €14
T2 | e | e | & | ®n T2 [ e; | & | & | e | e |y |en e
T3 | e [ o5 | e | e | e | o] em T3 | e [Tewa | &3 |6 | &
T4 | es | e | &7 | & T4 | ey | e
T5 | ey | e | en | & | & TS | e | ew | en &5 e
Child(a) child (b

Fig.4 Chromosome representation after crossover



5 Experimental Results

The proposed algorithm was programmed using Ma#dal simulations were
performed on the Intel Pentium 4 2.33 GHz computer.

5.1 Problem instances

In this paper, we considered on a standard benéhmgamination timetabling
problem from Carter et al. (1996) as shown in Tdblén this work, we evaluate the
performance of our approach on eleven instancesn®ed comparing our technique
to the substantial body of work which has been ighbl since the release of the
Carter datasets. This will allow us to understprsdl how effective our technique is.
Once we have achieved this, we intend looking &2007 datasets (see McCollum et
al. 2007). To look at ITC2007 first would provide with limited scope in relation to
understanding how good our technique is as verydapers have been published so
far. We do intend doing this in future work.

The parameters used in the algorithm are chosen @feliminary experiments as
shown in Table 2 (and are comparable similar with papers in Abdullah and
Turabieh, 2008). In this approach, we reduced thaulation size (compared to the
one in Abdullah and Turabieh, 2008) with an ainspeed up the searching process
and to reduce the time taken to generate the ptimoga

Number of Number of Number of DenS|t_y of
Instance . S Conflict
periods examination Students :
Matrix
car-s-91 35 682 16925 0.14
car-f-92 32 543 18419 0.13
ear-f-83 24 190 1125 0.29
hec-s-92 18 81 2823 0.42
kfu-s-93 20 461 5349 0.06
Ise-f-91 18 381 2726 0.06
sta-f-83 13 139 611 0.07
tre-s-92 23 261 4360 0.14
uta-s-92 35 622 21267 0.18
ute-s-92 10 184 2750 0.13
yor-f-83 21 181 941 0.08
Table 1 Examination timetabling datasets
Parameter Value
Population size 50
Crossover rate 0.8
Mutation rate 0.04
Selection mechanism Roulette wheel selection

Table 2 Parameter setting



5.2 Preliminary Experiments

The preliminary experiments have been performetkés$t the most appropriate tabu
size to be used in the improvement algorithm asudised in subsection 4.2. Six
different sizes of the tabu list have been testadu size = 1 to 6) and one without
tabu (tabu size = 0). The algorithm was testedhoeet datasets. Table 3 shows the
average of 5 runs with different tabu sizes witbheeun takes about 5 to 8 hours. It
shows that, the algorithm is able to obtain betsults with tabu size = 3.

Tabu size  Sat-f-83 Kfu-s-93  Ute-s-92

159.53 14.05 26.48
159.27 13.53 26.35
158.59 13.25 25.03
157.76 13.00 25.18
158.23 13.40 25.45
158.64 13.2 25.64

Table 3 Performance comparison based on diffeadnt sizes

O wWNEFEO

This is believed that the higher the value of talmne, the longer the neighbourhood
structures will remain in the tabu list. This limithe search space. We notice that a
higher value of tabu size makes the solution camnainly worse, since in this case less
number of neigbourhood structures available to begleyed in the next search
process, and thus more difficult to improve. Ndtattin the next experiment, the tabu
size = 3 is used to evaluate the performance o&lmarithm (see subsection 4.3).

5.3 Comparison Results

We ran the experiments between 5 to 8 hours foh ezcthe datasets. Other
techniques reported here run their experiments dmiws to 9 hours. For example
Yang and Petrovic (2005) took more than 6 houid @ote et al. (2005) about 9
hours Note that running a system within these pleris not unreasonable in the
context of examination timetabling where the tinbégta are usually produced months
before the actual schedule is required. Table #iges the comparison of our results
with the best known results for these benchmarksds (taken from Qu et al. 2009).
The best results out of 5 runs are shown in bold.

Instance our Best Authors for best known
approach  known
car-s-91 4.35 4.50 Yang and Petrovic (2005)
car-f-92 3.82 3.93 Yang and petrovic (2005)
ear-f-83 33.76 29.3 Caramia et al. (2001)
hec-s-92 10.29 9.2 Caramia et al. (2001)
kfu-s-93 12.86 13.0 Burke et al. (2006)
Ise-f-91 10.23 9.6 Caramia et al. (2001)

sta-f-83 155.98 157.2 Cote et al. (2005)



tre-s-92 8.21 7.9 Burke et al. (2006)

uta-s-92 3.22 3.14 Yang and Petrovic (2005)
ute-s-92 2541 244 Caramia et al. (2001)
yor-f-83 36.35 36.2 Caramia et al. (2002), Abdullah et al. (2007)

Table 4 Comparison results

Our algorithm produces better results on four ofiteteven datasets. We are
particularly interested to compare our results with other results in the literature
that employed population based algorithms i.e.eGutal. (2005) that employed bi-
objective evolutionary algorithm with local searoperators in the recombination
process; Burke et al. (2006) that employed geradgorithms on selecting subset of
neighbourhood in variable neighbourhood searchy ER007) that applied ant
algorithm with hill climbing operators and Ersoyat (2007) that applied memetic
algorithm hyper-heuristics with three hill climbergshosen adaptively or
deterministically.

Table 5 shows the comparison results on the pdpuolatased algorithms as
mentioned above. Again, the best results out afrs mre shown in bold. Note that
the value marked “-“ indicates that the correspogdbroblem is not tested. From
Table 5, we can see that our algorithm produceteibetsults on all datasets when
compared against the method of Eley (2007) andygesal. (2007). Note that Ersoy
et al. (2007) only attempt to solve six out of elewvdatasets presented here. Our
approach produces better results than Cote eR@05) and Burke et al. (2006) on
eight and seven datasets, respectively. It is lglstiown that our tabu-based memetic
approach out performs other population based algns on most of the instances.
We believe that with the help of a tabu list, thgoathm performs better and able to
find a better solution because the non-effectivightsourhood structures will not be
employed in the next iterations i.e. the algorittmiti only be feed with the currently
effective neighborhood structure.

Instance Our Cote etal. Burke et Eley Ersoy et
approach  (2005) al. (2006) (2007) al. (2007)
car-s-91 4.35 5.2 4.6 5.2 -
car-f-92 3.82 4.2 4.0 4.3 -
ear-f-83 33.76 34.2 37.92 36.8 -
hec-s-92 10.29 10.2 12.25 11.1 11.7
kfu-s-93 12.86 14.2 13.0 14.5 15.8
Ise-f-91 10.23 11.2 10.0 11.3 13.3
sta-f-83 155.98 157.2 159.9 157.3 157.9
tre-s-92 8.21 8.2 7.9 8.6 -
uta-s-92 3.22 3.2 3.2 3.5 -
ute-s-92 2541 25.2 24.8 26.4 26.7
yor-f-83 36.35 36.2 37.28 39.4 40.7

Table 5 Comparison results on population based itthgos
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Fig. 4 and Fig. 5 show the behaviour of the algonitvhen applied to two of the
datasets i.esta-f-83andcar-s-91 respectivelyln all the figures, the x-axis represents
the number of iterations while the y-axis represehe penalty cosEvery point in
the graphs corresponds to the penalty cost and ewwibiterations of a separate
solution. These graphs show how our algorithm engsldhe search space. In Fig. 4
the solution is steadily improved as the searcle tincreases until it reaches a steady
state towards the end of the search process. Howeave-ig. 5, the curve that
represents the quality of the current solution, esowp and down and slowly
converge to a better solution. The difference afvesgence process between these
two datasets is believed to have a relation tovédee of the conflict density. The
higher matrix conflict density signifies that moegams are conflicting with each
other. From Table 1, we can see that the confietsdty value oftar-s-91(0.14) is
higher compared to the conflict density valuest#-f-83(0.07). This implies that we
have less feasible solution points in our seareteefforcar-s-97). This is proven by
the presented graph in Fig. 5 that shows the cgevee process is not as smooth as
onsta-f-83dataset.

Fig. 6 (a-e), show the box plots of the cost whamisg car-s-91, car-f-92, sta-f-

83, ear-f-83 andkfu-s-93instances, respectively.
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Fig. 6 (a-f). Box plots of the penalty costs &ar-s-9], car-f-92, sta-f-83 ear-f-83andkfu-s-93
instances, respectively

The results from the figures show less dispersafrsolution points. We believe that
by employing a series of neighbourhood structured a tabu list to penalize
unperformed neighbourhood structures to be used laithin the search algorithm
helps the search algorithm to differently expldre search space. This will allow high
possibility to obtain better solutions. We alsoidet that the results obtained can
relate to the value of the conflict matrix denggge Table 1). The higher value of the
conflict matrix density shows the higher the numbgthe exams that conflict with
each other, thus less and sparsely distributedtignlypoints are available in the
solution space. This is indicated by the resultsioled for theear-f-83 andhec-s-92
datasets where the conflict matrix densities aghdr compared to the other datasets
used in this experiment. The results also showsthength of combining several
neighbourhood structures where it helps to comgeregainst the ineffectiveness of
using each type of neighbourhood structure in tgmlaand offer flexibility for the
search algorithm to explore different regions @& #olution space. This also has been
aided by the implementation of a tabu list withisemrch process as a mechanism to
escape from the cycle and to jump the barrier foma solution point to another in
order to obtain a better solution. We also belietfeat if the algorithm is equipped
with intensification and diversification strategiean help the algorithm to better
explored the search space especially for the datagith higher conflict density.
However, in general, a tabu-based memetic algorithable to obtain some of best
known results and comparable on the rest.



6. Conclusion

The overall goal of this paper is to investigatalau-based memetic approach for the
examination timetabling problem. Preliminary conigans indicate that our approach
outperforms the current state of the art on fourchenark problems. The key feature
of our approach is the combination of a multipleghbourhood structures and a
search approach that incorporates the concepttafwalist. Our future work will be
aimed to testing this algorithm on Internationamé&tabling Competition datasets
(ITC2007) introduced by University of Udine. We ieek that the performance of a
tabu-based memetic algorithm for the examinationetabling problem can be
improved by applying advanced memetic operators andhtelligently selects the
appropriate neighbourhood structures based onutientt solution obtained.
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