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Abstract. 

Constructing examination timetable for higher educational institutions is a 
very complex work due to the complexity of timetabling problems. The 
objective of examination timetabling problem is to satisfy the hard 
constraints and minimize the violations of soft constraints. In this paper, a 
tabu-based memetic approach has been applied and evaluated against the 
latest methodologies in the literature on standard benchmark problems. The 
approach which hybridizes a concept of tabu list and memetic algorithm. The 
tabu list is used to penalise neighbourhood structures that are unable to 
generate better solutions after the crossover and mutation operators being 
applied to the selected solutions from the population pool. We demonstrate 
that our approach is able to enhance the quality of the solutions by carefully 
selecting the effective neighbourhood structures. Hence, some best known 
results have been obtained. 

1   Introduction 

Timetabling problems have long been a challenging  area for researchers across both 
Operational Research and Artificial Intelligence. Among the wide variety of 
timetabling problems, educational timetabling (which cover areas such as school, 
course and exam timetabling) is one of the most widely studied. This concentrates on 
examination timetabling problems which can be generally defined as assigning a set 
of exams into a limited number of timeslots and rooms subject to a set of constraints. 

In the past, a wide variety of approaches for solving the examination timetable 
problem have been described and discussed in the literature. For a recent detailed 
overview readers should consult Qu et al (2009). Carter (1986) categorised the 
approaches taken into four types: sequential methods, cluster methods, constraint-
based methods and generalised search. Petrovic and Burke (2004) added the following 



categories: hybrid evolutionary algorithms, meta-heuristics, multi-criteria approaches, 
case based reasoning techniques, hyper-heuristics and adaptive approaches. 
These approaches are tested on various examination timetabling datasets that can be 
found from http://www.asap.cs.nott.ac.uk/resource/data.  Due to the existence of multi 
formulations for university timetabling problem, the 2nd International Timetabling 
Competition (ITC2007) (McCollum et al. 2009) attempted to standardize the 
problems found within educational timetabling by introducing three tracks (one on 
exam and two on course timetabling) where the problems incorporated more real-
world constraints. In doing so, the organizers attempted to reduce the acknowledged 
gap between research and practice which exists in this area (McCollum 2007). 
Interested readers can find more details about examination timetabling research in the 
comprehensive survey paper by Qu et al. (2009) and Lewis (2008). 

The rest of the paper is organised as follows. The next section formally discusses 
the basic algorithm of memetic approach. Section3 presents the examination 
timetabling problem and formulation. The solution approach is outlined in Section 4. 
Our results are presented, discussed and evaluated in Section 5. This is followed by 
some brief concluding comments in Section 6. 

2    Memetic Approach 

Memetic algorithms which is a population-based approach were proposed by Moscato 
and Norman in 1992 are an extension of genetic algorithms which sometimes is called 
hybrid genetic algorithms or genetic local search algorithms (Hart et al. 2004). The 
idea is that individuals within a population can be improved within a generation that 
can be done by employing local search methods on individual members of a 
population between generations. 

Burke et al. (1996) employed a memetic algorithm for university examination 
timetabling where two evolutionary operators are used (light and heavy mutation) in 
the initial phase followed by a hill-climbing algorithm. The algorithm has been tested 
on real examination datasets. Experimental results show that the solution quality 
found was better when compared to employing evolutionary operators alone. The 
effects of diversity in initial populations in memetic algorithms has been investigated 
by the same authors (see Burke et al. 1996). The technique by Paechter et al. (1996) 
implemented an extension of memetic algorithm to the lecture timetabling problem 
which utilised several types of mutation strategies. Experimental results show that 
selfish and co-operative mutations are very useful in increasing the performance of 
the algorithm when applied to this problem. Burke et al. (1998) introduced 
randomness (that used three diversity measures) in the initial population to generate a 
high level of diversity. The study of diversity in initialisation has shown great 
potential benefits for memetic algorithms. Burke and Newall (1999) applied a hybrid 
method of heuristic sequencing and evolutionary methods to the examination 
timetabling problem naming the approach as a multi-stage evolutionary algorithm. In 
this approach, the hybrid method is applied to a subset of events (examinations) at a 
particular time. The algorithm then fixes the events in the timetable before moving to 
the next subsets (which is like a decomposition process). In order to evaluate the 
effectiveness of this approach, real datasets were used. The results show that this 



approach was able to improve the solution quality and reduce the time taken to find 
that solution. A number of relevant issues on the design of memetic algorithm for 
scheduling and timetabling problems can be seen in Burke and Landa Silva (2004). A 
number of studies on memetic algorithms on various combinatorial optimisation 
problems can be found in Krosnogor and Smith (2005) and Osman and Laporte 
(1996). Interested readers can find more details about similar approaches in Moscato 
(1999, 2002). Other related papers on population-based approach applied to 
examination timetabling problems can be found in Eley (2007) and Ersoy et al. 
(2007). 

3    Problem Description 

The examination timetabling problem is a command problem found in schools and 
higher educational institutes which are concerned with allocating exams into a limited 
number of timeslots (periods) subject to a set of constraints (see Burke et al. 1996). 
There are generally two categories of constraints: hard and soft. Hard constraints must 
be completely satisfied and cannot be violated. Examples of generally accepted hard 
constraints are: 

• no student can sit in two exams simultaneously  
• the scheduled exams must not exceed the room capacity 

In addition, often hard constraints exist relating to the ordering of examination. 
Solutions that satisfy all hard constraints are often called feasible solutions.  Soft 
constraints, which are desirable and not essential i.e. their satisfaction dictates the 
overall quality of the gained solution. A particularly common soft constraint refers to 
spreading exams as evenly as possible over the schedule as discussed in Burke et al. 
(1996). ITC2007 presented to the research community an extensive listing of 
additional soft constraints. In real-world situations, it is usually impossible to satisfy 
all soft constraints, but minimising the violations of soft constraints represents an 
increase in the quality of the solution. 

The problem description that is employed in this paper is adapted from the 
description presented in Burke et al. (2004). The input for the examination timetabling 
problem can be stated as follows  

• Ei is a collection of N examinations (i= 1,…,N). 
• P is the number of timeslots. 
• C=(cij)NxN is the conflict matrix where each record, denoted by cij (i,j 

∈ {1 ,…,N})  ,represent the number of students taking the exams i and j. 
• M is the number of students. 
• tk (1≤tk≤T) specifies the assigned timeslots for exam k (k∈ {1 ,…,N} . 

 
The following hard constraints are considered in this paper:  

• no students should be required to sit two examinations simultaneously. 
• examinations with common students should be scheduled in different 

periods. 
In this problem, we formulate an objective function which tries to spread out 

students’ exams throughout the exam period (Expression (1)). 
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Equation (2) presents the cost for an exam i which is given by the proximity value 
multiplied by the number of students in conflict. Equation (3) represents a proximity 
value between two exams (Carter et al. 1996). Equation (4) represents a clash-free 
requirement so that no student is asked to sit two exams at the same time. The clash-
free requirement is considered to be a hard constraint.  

4  The Tabu-based Memetic Approach 

The approach described here consists of a construction stage followed by 
improvement. 

 
4.1 Construction Heuristic 

 
A construction algorithm which is based on a saturation degree graph 
colouring heuristic is used to generate large populations of feasible timetables. 
The approach starts with an empty timetable. The exams with highest number 
of exams in conflict and more likely to be difficult to be scheduled will be 
attempted first without taking into consideration the violation of any soft 
constraints, until the hard constraints are met. More details on graph colouring 
applications to timetabling can be found in Burke et al. (2004).  
 
4.2 Improvement Algorithm 
 
In this paper, a tabu-based memetic approach is proposed as an improvement 
algorithm that operates on a set of possible solutions (generated from the construction 
heuristic) to solve examination timetabling problem, where a set of neighbourhood 
structures (as discussed in subsection 4.3) have been used as a local search 



mechanism. The aim of using a set of neighbourhood structure inside genetic 
operators is to produce significant improvements in a solution quality. In this 
approach, a concept of tabu list is employed to penalise neighbourhood structures 
that are unable to generate better solutions after the crossover and mutation 
operators being applied to the selected solutions from the population pool. 
The schematic overview of the algorithm is presented in Fig. 1 where the 
populations are generated using the construction heuristic. Two parents 
(solutions) will be selected from the population based on roulette wheel 
procedure. Two memetic operators i.e. crossover and mutation will be 
employed prior to the improvement algorithm (i.e. tabu-based memetic 
algorithm). The best solution found after the employment of the improvement 
algorithm will be added to the population pool while maintaining the size of 
the population. 

 
 
 
 
 
 
 
 
 
 

Fig. 1. A schematic overview of the approach  
 

The pseudo code of the algorithm is presented in Fig. 2. The algorithm begins 
by creating initial populations. A best solution from the population is selected, 
Sbest. A tabu list with the size TabuSize is created with an aim to hold 
ineffective neighbourhood structures from being selected in the next iteration 
and will give more chances for the remaining neighbourhood structures to be 
explored (see Table 3 for parameter setting). A variable CanSelect, (represents 
a boolean value) that allows the algorithm to control the selection of a 
neighbourhood structure. For example if a neighbourhood structures, Nbs, 
shows a good performance (in terms of producing a lower penalty solution), 
so the algorithm will continue uses Nbs in the next iterations until no good 
solution can be obtained. In this case Nbs will be pushed into the FIFO (First 
In First Out) tabu list, TList. This move is not allowed to be part of any search 
process for a certain number of iterations. In a do-while loop, two solution are 
randomly selected, S1 and S2. The crossover and mutation operators are 
applied on S1 and S2 to obtain S1’ and S2’. Randomly select a neighbourhood 
structure, Nbs, and applied on S1’ and S2’ to obtain S1” and S2”. The best 
solution among S1’, S2’, S1” and S2” is chosen an assigned to a current solution 
S*. If S* is better than the best solution in hand, Sbest, then S* is accepted. 
Otherwise Nbs will be added into the TList. The member of the populations will 

Mutation 

Tabu-based 
memetic 
algorithm 

Parents 
Selection  

Crossover 

roulette 
wheel Population 



be updated by removing the worst solution and inserting the new solution 
obtained from the search process while maintaining the size of the population 
and to be used in the next generation. The process is repeated and stops when 
the termination criterion is met (in this work the termination criterion is set as 
a computational times).  

 
  

for  i=1 to population size 
        Generate random solutions, Si; 
 end 

Set the length of the tabu, TabuSize; 
Choose a best solution from the population, Sbest; 
Create an empty tabu list with TabuSize, TList;  

 Set CanSelect ← True  
 do while (not termination criterion) 
      Select two parents from the population using a roulette wheel selection, 

S1 and S2; 
Apply crossover and mutation operators on S1 and S2 to produce S1’ and 
S2’;  

       if  CanSelect== True 
             Randomly select a neighbourhood structure, which is not in TList, 

called Nbs; 
       end if 
 Apply Nbs on S1’ and S2’ to produce S1” and S2”; 
       Get a minimum solution penalty from S1’, S2’, S1” and S2”, called current 

solution S*; 
       if  (S* < Sbest) 
                 Sbest ← S*; 
                 CanSelect ← False; 
       else 
               Push Nbs  to TList; 
               CanSelect ← True; 
       end if 
      Update the sorted population by inserting and removing good and worse 

solutions, respectively, while maintaining the size of the population; 
 end while 
 Output the best solution, Sbest;  

 
Fig.2 Tabu-based memetic algorithm 

 
4.3 Neighbourhood Structures 
 
Ahuja et al. (2000) in their paper highlighted the importance of the neighbourhood 
structure in the local or neighbourhood search. They said, 

 
“A critical issue in the design of a neighbourhood search 

approach is the choice of the neighbourhood structure that is the 
manner in which the neighbourhood is defined.” 

 



Some techniques in the literature, like simulated annealing and tabu search, 
generally use a single neighbourhood structure throughout the search and focus more 
on the parameters that affect the acceptance of the moves rather than the 
neighbourhood structure. Thompson and Dowsland (1996, 1998) discussed how the 
choice of the neighbourhood structure affects the quality of solutions obtained for 
examination timetabling. We can say that the success of finding good solutions for 
these problems is determined by the technique itself and the neighbourhood structure 
employed during the search. In this paper, a set of different neighbourhood structures 
have been employed. Their explanation can be outlined as follows (adapted from 
Abdullah et al. 2007): 

 
Nbs1: Select two exams at random and swap timeslots. 
Nbs2:  Choose a single exam at random and move to a new random feasible timeslots. 
Nbs3:  Select two timeslots at random and simply swap all the exams in one timeslots 

with all the exams in the other timeslots. 
Nbs4: Take two timeslots at random, say ti and tj (where j>i ) where timeslots are 

ordered t1,t2,t3,…tp. Take all exams that in ti and allocate them to tj, then 
allocate those that were in tj-1 to tj-2 and so on until we allocate those that were 
tj+1 to ti and terminate the process. 

Nbs5: Move the highest penalty exams from a random 10% selection of the exams to 
a random feasible timeslots. 

Nbs6: Carry out the same process as in Nbs5 but with 20% of the exams. 
Nbs7: Move the highest penalty exams from a random 10% selection of the exams to 

a new feasible timeslots which can generate the lowest penalty cost. 
Nbs8: Carry out the same process as in Nbs7 but with 20% of the exams 
Nbs9: Select two timeslots based on the maximum enrolled exams, say ti and tj .Select 

the most conflicted exam in ti with tj and then apply Kempe chain from 
Thompson and Dowsland (1996). 

 
4.4 Solution Representation 
 
A direct representation is used. Each population member (which represents a feasible 
solution) is represented as a number of genes that contain information about the 
timeslot and exams. For example e2, e11, e8, e7, e14 are scheduled at timeslot T1. 

 

 
Fig.3 Solution representation 

 
 
 



4.5 The Memetic Operators: Crossover and Mutation 
 
There are different types of crossover operators available in the literature. For 
example Cheong et al (2007) applied a crossover operation based on the best days 
(three periods per day and minimum number of clashes per students). In this paper, 
we applied a period exchange crossover. This crossover operator allows a number of 
exams (from one timeslot) to be added to another timeslot and vice versa based on a 
crossover rate. The repair mechanism is applied to ensure the feasibility of the child. 
The crossover operation is illustrated in Fig.4, represents a period-exchange 
crossover. The shaded periods represent the selected periods for a crossover 
operation. These periods are selected based on a crossover rate using roulette wheel 
selection method, for example timeslots T3 and T5 are chosen as parents (a) and (b), 
respectively. Crossover is performed by inserting all exams from timeslot T5 in parent 
(b) to timeslot T3 in parent (a), which then will produce a child (a). The same process 
is applied to obtain child (b). This operation leads to an infeasible solution due to a 
conflict appeared between a number of exams. For example; in child (a), e10 is 
repeated in T3 (occurs twice), which should be removed; e16 and e12 that are located in 
T1 and T2, respectively, should also be removed to insure that child (a) is feasible. In 
child (b), e1 is conflicted with e16, as a result e1 cannot be inserted in T5, while e10 and 
e18 are occur twice in T5 and T2, respectively, so these exams should be removed to 
obtain feasibility. Removing conflicts and repeating exams in each timeslot is 
considered as a repair function that changed the infeasibility of each offspring to 
feasible once. 

The mutation is used to enhance the performance of crossover operation in 
allowing a large search space to be explored. Random selection of neighbourhood 
structures is used in a mutation process based on a mutation rate obtained after 
preliminary experiments (see Table 2 for a parameter setting). 
  
 

 
Fig.4 Chromosome representation after crossover  



5   Experimental Results  

The proposed algorithm was programmed using Matlab and simulations were 
performed on the Intel Pentium 4 2.33 GHz computer. 

 
5.1 Problem instances 
 
In this paper, we considered on a standard benchmark examination timetabling 
problem from Carter et al. (1996) as shown in Table 1. In this work, we evaluate the 
performance of our approach on eleven instances. We intend comparing our technique 
to the substantial body of work which has been published since the release of the 
Carter datasets.  This will allow us to understand just how effective our technique is.  
Once we have achieved this, we intend looking at ITC2007 datasets (see McCollum et 
al. 2007).  To look at ITC2007 first would provide us with limited scope in relation to 
understanding how good our technique is as very few papers have been published so 
far. We do intend doing this in future work. 

The parameters used in the algorithm are chosen after preliminary experiments as 
shown in Table 2 (and are comparable similar with the papers in Abdullah and 
Turabieh, 2008). In this approach, we reduced the population size (compared to the 
one in Abdullah and Turabieh, 2008) with an aim to speed up the searching process 
and to reduce the time taken to generate the populations. 
 

Instance 
Number of 

periods 
Number of 

examination 
Number of 
Students 

Density of 
Conflict 
Matrix 

car-s-91 35 682 16925 0.14 
car-f-92 32 543 18419 0.13 
ear-f-83 24 190 1125 0.29 
hec-s-92 18 81 2823 0.42 
kfu-s-93 20 461 5349 0.06 
lse-f-91 18 381 2726 0.06 
sta-f-83 13 139 611 0.07 
tre-s-92 23 261 4360 0.14 
uta-s-92 35 622 21267 0.18 
ute-s-92 10 184 2750 0.13 
yor-f-83 21 181 941 0.08 

Table 1 Examination timetabling datasets  
 
 

Parameter Value 
Population size 50 
Crossover rate 0.8 
Mutation rate 0.04 

Selection mechanism Roulette wheel selection 
Table 2 Parameter setting  

 



 
5.2 Preliminary Experiments 
 
The preliminary experiments have been performed to test the most appropriate tabu 
size to be used in the improvement algorithm as discussed in subsection 4.2. Six 
different sizes of the tabu list have been tested (tabu size = 1 to 6) and one without 
tabu (tabu size = 0). The algorithm was tested on three datasets. Table 3 shows the 
average of 5 runs with different tabu sizes with each run takes about 5 to 8 hours. It 
shows that, the algorithm is able to obtain better results with tabu size = 3.  
 

Tabu size Sat-f-83 Kfu-s-93 Ute-s-92 
0 159.53 14.05 26.48 
1 159.27 13.53 26.35 
2 158.59 13.25 25.03 
3 157.76 13.00 25.18 
4 158.23 13.40 25.45 
5 158.64 13.2 25.64 

Table 3 Performance comparison based on different tabu sizes  
 
This is believed that the higher the value of tabu size, the longer the neighbourhood 
structures will remain in the tabu list. This limits the search space. We notice that a 
higher value of tabu size makes the solution considerably worse, since in this case less 
number of neigbourhood structures available to be employed in the next search 
process, and thus more difficult to improve. Note that in the next experiment, the tabu 
size = 3 is used to evaluate the performance of our algorithm (see subsection 4.3). 
 
 
5.3 Comparison Results 
 
We ran the experiments between 5 to 8 hours for each of the datasets. Other 
techniques reported here run their experiments between 5 to 9 hours. For example 
Yang and Petrovic (2005) took  more than 6 hours and Cote et al. (2005) about 9 
hours Note that running a system within these periods is not unreasonable in the 
context of examination timetabling where the timetables are usually produced months 
before the actual schedule is required. Table 4 provides the comparison of our results 
with the best known results for these benchmark datasets (taken from Qu et al. 2009). 
The best results out of 5 runs are shown in bold.  
 

Instance 
Our 

approach  
Best 

known 
Authors for best known 

car-s-91 4.35 4.50 Yang and Petrovic (2005) 
car-f-92 3.82 3.93 Yang and petrovic (2005) 
ear-f-83 33.76 29.3 Caramia et al. (2001) 
hec-s-92 10.29 9.2 Caramia et al. (2001) 
kfu-s-93 12.86 13.0 Burke et al. (2006) 
lse-f-91 10.23 9.6 Caramia et al. (2001) 
sta-f-83 155.98 157.2 Cote et al. (2005) 



tre-s-92 8.21 7.9 Burke et al. (2006) 
uta-s-92 3.22 3.14 Yang and Petrovic (2005) 
ute-s-92 25.41 24.4 Caramia et al. (2001) 
yor-f-83 36.35 36.2 Caramia et al. (2002), Abdullah et al. (2007) 

Table 4 Comparison results 
 
Our algorithm produces better results on four out of eleven datasets. We are 
particularly interested to compare our results with the other results in the literature 
that employed population based algorithms i.e.: Cote et al. (2005) that employed bi-
objective evolutionary algorithm with local search operators in the recombination 
process; Burke et al. (2006) that employed genetic algorithms on selecting subset of 
neighbourhood in variable neighbourhood search; Eley (2007) that applied ant 
algorithm with hill climbing operators and Ersoy et al. (2007) that applied memetic 
algorithm hyper-heuristics with three hill climbers chosen adaptively or 
deterministically.  

Table 5 shows the comparison results on the population based algorithms as 
mentioned above. Again, the best results out of 5 runs are shown in bold. Note that 
the value marked “-“ indicates that the corresponding problem is not tested. From 
Table 5, we can see that our algorithm produces better results on all datasets when 
compared against the method of Eley (2007) and Ersoy et al. (2007). Note that Ersoy 
et al. (2007) only attempt to solve six out of eleven datasets presented here. Our 
approach produces better results than Cote et al. (2005) and Burke et al. (2006) on 
eight and seven datasets, respectively. It is clearly shown that our tabu-based memetic 
approach out performs other population based algorithms on most of the instances. 
We believe that with the help of a tabu list, the algorithm performs better and able to 
find a better solution because the non-effective neighbourhood structures will not be 
employed in the next iterations i.e. the algorithm will only be feed with the currently 
effective neighborhood structure.  
 

Instance 
Our 

approach  
Cote et al. 

(2005) 
Burke et 
al. (2006) 

Eley 
(2007) 

Ersoy et 
al. (2007) 

car-s-91 4.35 5.2 4.6 5.2 - 
car-f-92 3.82 4.2 4.0 4.3 - 
ear-f-83 33.76 34.2 37.92 36.8 - 
hec-s-92 10.29 10.2 12.25 11.1 11.7 
kfu-s-93 12.86 14.2 13.0 14.5 15.8 
lse-f-91 10.23 11.2 10.0 11.3 13.3 
sta-f-83 155.98 157.2 159.9 157.3 157.9 
tre-s-92 8.21 8.2 7.9 8.6 - 
uta-s-92 3.22 3.2 3.2 3.5 - 
ute-s-92 25.41 25.2 24.8 26.4 26.7 
yor-f-83 36.35 36.2 37.28 39.4 40.7 

Table 5 Comparison results on population based algorithms 
 



 
Fig. 4 sta-f-83 convergence 

 

 
Fig. 5 car-s-91 convergence 

 
Fig. 4 and Fig. 5 show the behaviour of the algorithm when applied to two of the 

datasets i.e. sta-f-83 and car-s-91, respectively. In all the figures, the x-axis represents 
the number of iterations while the y-axis represents the penalty cost. Every point in 
the graphs corresponds to the penalty cost and number of iterations of a separate 
solution. These graphs show how our algorithm explores the search space. In Fig. 4 
the solution is steadily improved as the search time increases until it reaches a steady 
state towards the end of the search process. However, in Fig. 5, the curve that 
represents the quality of the current solution, moves up and down and slowly 
converge to a better solution. The difference of convergence process between these 
two datasets is believed to have a relation to the value of the conflict density. The 
higher matrix conflict density signifies that more exams are conflicting with each 
other. From Table 1, we can see that the conflict density value of car-s-91 (0.14) is 
higher compared to the conflict density value of sta-f-83 (0.07). This implies that we 
have less feasible solution points in our search space (for car-s-91). This is proven by 
the presented graph in Fig. 5 that shows the convergence process is not as smooth as 
on sta-f-83 dataset. 

Fig. 6 (a-e), show the box plots of the cost when solving car-s-91, car-f-92, sta-f-
83, ear-f-83, and kfu-s-93 instances, respectively. 
 



  

   
Fig. 6 (a-f). Box plots of the penalty costs for car-s-91, car-f-92, sta-f-83, ear-f-83 and kfu-s-93 
instances, respectively 
 
The results from the figures show less dispersions of solution points. We believe that 
by employing a series of neighbourhood structures and a tabu list to penalize 
unperformed neighbourhood structures to be used later within the search algorithm 
helps the search algorithm to differently explore the search space. This will allow high 
possibility to obtain better solutions. We also believe that the results obtained can 
relate to the value of the conflict matrix density (see Table 1). The higher value of the 
conflict matrix density shows the higher the number of the exams that conflict with 
each other, thus less and sparsely distributed solution points are available in the 
solution space. This is indicated by the results obtained for the ear-f-83 and hec-s-92 
datasets where the conflict matrix densities are higher compared to the other datasets 
used in this experiment. The results also show the strength of combining several 
neighbourhood structures where it helps to compensate against the ineffectiveness of 
using each type of neighbourhood structure in isolation and offer flexibility for the 
search algorithm to explore different regions of the solution space. This also has been 
aided by the implementation of a tabu list within a search process as a mechanism to 
escape from the cycle and to jump the barrier from one solution point to another in 
order to obtain a better solution. We also believed that if the algorithm is equipped 
with intensification and diversification strategies can help the algorithm to better 
explored the search space especially for the datasets with higher conflict density. 
However, in general, a tabu-based memetic algorithm is able to obtain some of best 
known results and comparable on the rest. 
 



6. Conclusion 
 
The overall goal of this paper is to investigate a tabu-based memetic approach for the 
examination timetabling problem. Preliminary comparisons indicate that our approach 
outperforms the current state of the art on four benchmark problems. The key feature 
of our approach is the combination of a multiple neighbourhood structures and a 
search approach that incorporates the concept of a tabu list. Our future work will be 
aimed to testing this algorithm on International Timetabling Competition datasets 
(ITC2007) introduced by University of Udine. We believe that the performance of a 
tabu-based memetic algorithm for the examination timetabling problem can be 
improved by applying advanced memetic operators and by intelligently selects the 
appropriate neighbourhood structures based on the current solution obtained. 
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