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Abstract. There is a perception that teaching space in universities is a rather
scarce resource. However, some studies have revealed that in many institutions
it is actually chronically under-used. Often, rooms are occupied only half the
time, and even when in use they are often only half full. This is usually measured
by the “utilisation” which is basically the percentage of available ’seat-hours’
that are employed. In real institutions, this utilisation can often takes values as
low as 20-40%.

One consequence of such low utilisation is that space managers are under pres-
sure to make a more efficient use of the available teaching space. However, better
management is hampered because there does not appear to be a good under-
standing within space management (near-term planning) of why this happens.
Nor, a good basis within space planning (long-term planning) of how best to
accommodate the expected low utilisations. This motivates our two main goals:
(i) To understand the factors that drive down utilisations, (ii) To set up methods
to provide better space planning.

Here, we provide quantitative evidence that constraints arising from timetabling
and location requirements easily have the potential to explain the low utilisa-
tions seen in reality. Furthermore, on considering the decision question “Can
this given set of courses all be allocated in the available teaching space?” we
find that the answer depends on the associated utilisation in a way that ex-
hibits threshold behaviour: There is a sharp division between regions in which
the answer is “almost always yes” and those of “almost always no”.

Our work suggests that progress in space management and planning will arise
from an integrated approach; combining purely space issues with restrictions
representing an aggregated or abstracted version of key constraints such as
timetabling or location, and also performing statistical studies to reveal under-
lying threshold phenomena.

1 Introduction

In this paper we are concerned with understanding the efficient planning and manage-
ment of teaching space allocation within academic (or similar) institutions. Teaching
space includes the usual lecture rooms, but also includes rooms for tutorials, seminars,
workshops, etc. Generally, the efficiency of teaching space management is measured by
the “Utilisation” U. Exact definitions will be given later, but basically U is a simple
measure of the fraction of the available space that is actually used. A utilisation of
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100% corresponds to every seat being occupied at all available times. Unfortunately,
and perhaps surprisingly, utilisation figures are often very low; often around 20-30% in
practice. The "Higher Education Funding Council for England’ (HEFCE) has reported
low utilisations [20], and two of the authors have commercial experience of such low
utilisations from their work with Realtime Solutions Ltd [24,25]. As another example,
in work at the University of Puget Sound in the USA, Fizzano and Swanson [17] report
that the registrar asked them space-related questions such as “How many classrooms
does the University need to hold the classes it currently offers?”. They include as one
of their conclusions that “the university is not using all of its classroom space as effi-
ciently as it might”. Naturally, many institutions would like to improve this situation
in order to reduce costs, improve services, or to identify teaching space that might be
converted to other uses (e.g. office space might be in higher demand).

The overall area of management of space can be divided into two broad areas:
“Space Management” for the near-term usage of existing resources, and “Space Plan-
ning” for long-term decisions relating to the provision of space resources. For example,
space management handles the assignment of people to existing rooms, whereas space
planning is concerned with decisions as to which rooms ought to be built or re-allocated
to different tasks. In particular, the long-range nature of space planning implies that
decisions need to be made before the exact details of current timetables, student num-
bers, etc, become available. One approach to cope with this incomplete information is
to rely upon some “tried-and-tested” standard practice. In the case of space allocation
problems, this corresponds to relying upon what are called “space norms”. An example
of a norm might be a physical objective such as “5m? per Ph.D. student”, in which case
it can form the basis for space management. Norms of this form can provide the basis
for space management in Office Space Allocation (OSA) [34]. Such norms provide a
basis for space planning: use the norms to calculate the overall demand for office space,
and then design the supply of rooms to closely match the demand. However, this works
so well for OSA only because, generally, most offices are all used. Attempting to do
this for Teaching Space Allocation is more difficult because the expected low utilisa-
tion implies that planners must build in a corresponding excess capacity. Furthermore,
expected utilisations are such that this inbuilt “safety margin” has to be as much as a
factor of two, or more. This has obvious and large impacts on costs.

However, attempts to remedy this situation, and so to carry out better space plan-
ning are hampered because there does not seem to be an agreed or qualitative under-
standing of why utilisation is so low in the first place. Furthermore, the safety margins
incorporated into space norms are obtained from standard sources, the origin of which
is generally unclear, and might well be inappropriate for modern module systems, as
the sizes of classes might well have changed significantly. Hence, we have two primary
goals:

1. to develop an understanding of the factors that lead to low utilisations.

2. to develop methods to chose safety-margins that are more cost-efficient: aiming to
reduce the teaching space that needs to be provided, whilst not increasing the risk
of it turning out to be inadequate

To these ends, we first consider a simple “pure” event allocation problem in which
we optimise utilisation by taking events from a pool of courses and assigning them
to the available timeslots. On the datasets we have available, this immediately gave
utilisations of 85-90%. This is far too high to match reality, and so indicates that a
model based purely on space issues, and given free choice of courses, is inadequate to
model the problem of managing teaching space allocation in real-world universities.

To extend the model we move in two independent directions:

Extra Constraints: Event-allocation usually takes place within the context of many
constraints on locations and timings of events. Accordingly we include within our model



objectives that are intended to provide a simplified approximation/abstraction of real
timetabling issues.

Threshold Phenomena: We study notions arising from the threshold phenomena (also
called phase transitions) common in many large systems. Such phenomena arise when
typical properties of a system tend to be reliably predictable, based merely on over-
all properties of an instance; see for example [4]. (Phase transitions in the course
timetabling arena have been studied from a different perspective in [31], and we will
discuss the differences later).

We find that the location and timetabling-based objectives do indeed have the
potential to drive down utilisations, when performing trade-offs in the multi-objective
sense. Also, the achievable utilisation measures are statistically predictable, and this
supports the case for reliable space planning. We also find that if courses are selected
in advance then the reliably achievable utilisation can be much lower than when course
selection is by the optimizer.

We remark that the problem classes we use are not new within the general area of
course timetabling (for general surveys of the area see [13,2,33,9,6,29]). The under-
lying problem that we will consider is the event allocation problem. This is a simple
existing problem and indeed often occurs as the classroom assignment problem [8] and
within timetabling problems in order to select feasible room assignments for events.
However, in our work it is not automatically a hard constraint that all the events must
be allocated, but rather the decision as to which events are used becomes a part of the
problem. To the best of our knowledge, this differs from all of the course timetabling
literature in which it is a hard constraint that every event must be allocated a place.
This also meant we implemented a new solver rather than attempt to use an existing
one.

Concerning our choice of potential search algorithm, we remark that recent work
in [1] on exact (provable optimal) solutions was limited to relatively small instances of
course timetabling; up to 69 courses and 15 rooms. For larger instances it is necessary
to use (meta)-heuristics. In this case, a general pattern of the most successful studies
is that firstly a constructive algorithm is used in order to produce initial feasible so-
lutions, followed by improvement of the feasible solution uses some form of heuristic
local search. For example, in the International Timetabling Competition 2002* (organ-
ised by the Metaheuristics network® and PATAT 2002°) the top four solvers used: 1)
simulated annealing [23] 2) tabu search [11] 3) Dueck’s Great Deluge [15] in [7, 16], 4)
Tabu search with shakes [19]. Also, in a comparison of performances of different meta-
heuristics [32] it is noteworthy that the authors restricted themselves to local search
“in an evolutionary algorithm, and ant colony optimization algorithm, and an iterated
local search. A simulated annealing, and a tabu search were restricted to the same
neighbourhood structure”. Hence, local search is the favoured method for improving
feasible solutions. In our case, because we do not have the hard constraint that all
events must be allocated a time and place, constructing an initial feasible solution is
trivial. Hence, our algorithm “only” needs to do improvement, and hence will do so
using local search (with simulated annealing).

Another difference of our work from existing course timetabling work lies in the
focus and methodology for using the problem instances and optimization algorithms.
Typically, timetabling research focuses on a small number of instances, and attempts to
obtain excellent solutions with the intention of using the entire solution. In contrast, we
take a large number of problem instances, derive reasonable solutions, and then take

4 http://www.idsia.ch/Files/ttcomp2002/
® http://www.metaheuristics.net/
5 http://www.asap.cs.nott.ac.uk/patat/patat02/patat02.shtml



only “aggregate” properties such as utilisation and frequency and discard the rest.
We then look at how these aggregate properties change as we manipulate the overall
resources, sizes, and other aggregate properties of the problem instances. Generally
we only need a reasonable solver as improving the solver will have minimal difference
on the patterns we are studying. We expect it is more important for our solver to be
robust, in the sense of consistency between instances, than for it to be particularly
well-performing on some.

It should be emphasised that we use problem instances based on real data for
courses and rooms obtained from a University in Sydney Australia, and so we expect
our methods, and the broad picture of our results, are likely to be applicable to other
institutions.

Outline of the Paper Section 2 covers the basics of the problem: the terminology and
algorithms used. For example, we will see that maximisation of utilisation alone is
a straightforward optimization problem often reducing to maximum weight bipartite
matching. Section 3 covers the algorithms, and the data instances. Section 4 displays
the threshold phenomena, and introduces the question of when a request for a specific
amount of utilisation of frequency is likely to be satisfied; which we will call safe vs.
unsafe requests. Section 5 introduces specific location and timetable penalties. Section 6
presents the Pareto fronts, or multi-objective trade-off surfaces, for utilisation, location
and timetabling objectives. Section 7 returns to the issue of safe or unsafe requests,
but this time in the presence of timetabling constraints. Section 8 covers safety in the
presence of location constraints.

2 Background and Basics

In this section we cover the basic background needed for the main results. We describe
the terminology of the domain, the constraints and the objective functions that measure
the space usage.

2.1 Basic Terminology and the Hard Constraints
For each teaching room, assume that we are given:

1. capacity : the maximum number of students that the room can accommodate

2. timeslots : the number of timeslots for which the room is available during the week
(or other relevant scheduling time period)

3. department : the department that “owns,” or is most closely associated with, the
room

An “event” requires the following information:

1. students : the number of students that must be accommodated
2. department : the owning/associated department

The primary task is to assign events to rooms so as to satisfy the following hard
constraints:

1. room capacity: the size of an event (students) must not exceed the room capacity
2. the number of events allocated to a room must not exceed the number of timeslots,
as events cannot share room timeslots.

Notice that there is no constraint saying that an event/course must be allocated to
some room (in contrast, such a constraint is usual within timetabling), instead it can
be part of the problem to find a set of events that are to be allocated. Also, at this



level, all the timeslots are indistinguishable; it does not matter exactly which timeslot
an event actually gets (again, unlike timetabling).

We believe that this model captures enough of the real world for the purposes
of this research study (our belief is based on our dealing with universities through
Realtime Solutions Ltd). A more complete model would include other effects such as
spacetypes and splitting. Rooms often have a “spacetype” that gives their intended
usage: lecture, seminar, workshop, etc, and a fuller model would allow the mixing of
spacetypes. Courses are typically not single “atomic” events, but instead might need
multiple timeslots. Also, courses can need splitting into smaller events, called sections,
because they are too large for the rooms or there is a recommended section size. We
study this “splitting problem” in [3].

2.2 Quantifying Space Usage

The simplest and most direct measure of the space usage is to take the sum over all
timeslots and rooms of the number of students allocated to that room-slot, which we
will refer to as ’seat-hours’ (though of course there is no implication that the timeslots
really need to be an hour long). The intent is that “Utilisation” measures the fraction
(typically expressed as percentages) of the total available (or maximum) seat-hours
that are actually used:

achieved seat-hours

Utilisation = 1
Hisation available seat-hours (1)

Let C; be the capacity of room %, and S;; the number of students allocated to room ¢
at timeslot t. Then the total number of seat-hours (denoted by B) is

B=Y Sis (2)
it
Since we enforce

Si,t < Cz for all i, t (3)

we then have B < By, where B); is the maximum number of seat-hours and is simply

defined as follows
By =Y Ci (4)
it

Generally, the utilisation is defined by means of “occupancies” and “frequencies” [24,
25]. The occupancy O;; of room 4 at time ¢ is the fractional usage at that time
Sit

O = —= 5

1,0 Cz ( )

The occupancy, O;, of a room, i, is defined as the mean of its occupancies over

all occupied timeslots. Suppose that for room ¢ the number of timeslots is ¢; and the
number of occupied timeslots is t¢°°. Then the occupancy for room ¢ is defined as

1
O; = joce ; Oi (6)

The frequency usage, F;, for a given room, i, is defined as the fraction of its timeslots

to which some event is assigned:
t(?CC
Fi = L (7)
(2

The utilisation, U;, of room i, is the product of its occupancy and frequency:




and so

o Zt Si,t
Zt Ci

that is, U; is simply the fraction of the room’s seat-hours potential that is actually

used. However, to obtain an overall utilisation we will need to combine the utilisations

from different rooms. We will take a weighted mean over the rooms

U; (9)

_ > Wil
Zi Wi

where W; is the weight assigned to room 4. Usually, one just finds an unweighted mean
UYW corresponding to the special case that W; = 1. However, a natural and simple
choice is that larger rooms have a larger weight; and so we take the weight to be the
room capacity, W; = C;. In this case, straightforward manipulation yields

_ XSt B
Zz’,t Ci Bu

uWv . (10)

U (11)

which is just the promised overall fractional usage of the seat-hours. In our view, U as
defined in 11 is preferable, as it is conceptually simpler than UY"W | at least as good a
measure, and that the practical differences will generally only be a secondary effect.
(In some experiments not presented here, we looked at both U and UY" and found
them to be tightly correlated anyway). We will also measure the overall frequency F

of a solution,
timeslots used

= 12
timeslots available (12)

We do not weight frequency by the size of rooms, because we want a measure that
is direct and simple to understand, and also because F' is a “counting measure” that
ought not in itself take account of room sizes. Again, in any case, we would expect
other frequency measures to give similar results.

3 Optimization Algorithms and Data

This paper focuses on the nature of the space of solutions rather than on the algorithms
that we employ. However, for completeness, we briefly describe them: firstly, we use
mathematical programming to exploit cases that reduce to a max-weight matching
problem, and secondly we employ a local search algorithm.

3.1 Mathematical Programming Methods

Suppose we call each (room,timeslot) pair a “room-slot”, then the event allocation
problem is to assign events to room-slots, and to maximise the allocated seat-hours. In
the absence of other constraints or objective functions, it is well-known that this is just
a standard assignment problem, and reduces to a maximum weight matching problem
in a bipartite graph (see for example [12]). The events are taken to correspond to one
set of nodes in the graph, and room-slots to the other set. The edges are the set of
possible assignments of events to room-slots for which the capacity is sufficient. The
weight, or value, of an edge is the contribution of the assignment to the total seat-hours,
hence, simply, the number of students in the event. We are forced to have a bipartite
matching because events can be assigned to at most one room-slot, and each room-slot
can have at most one event allocated to it. Max weight matching has polynomial time
complexity using the standard network flow algorithms. The simple optimisation of
utilisation for event-based assignment is not a hard problem. For simplicity, we instead



exploit this by converting the assignment problem to a mathematical programming
formulation. We encode it as an (binary) integer programming problem (see [27], or
see [5] for a recent brief introduction to mathematical programming), but then relax to
a linear programming (LP) problem, and will still expect to obtain integer solutions,
which are hence optimal for the integer program as well. We use use this to derive
optimal solutions when appropriate. This is used for checking that the local search is
working well.

In some cases, the problem reduces to the assignment problem but with just an extra
constraint which means that the solutions from the LP are not necessarily integer. We
exploit a “rounding” method as follows. We solve the problem as an LP and extract
the integer parts of the solution. The integer parts are then added as constraints to the
original problem, which is then generally small enough to be solved as an IP. That is,
we take the variables that are set to 0/1 in the LP, but leave the fractionally valued
ones to be determined by integer program.

3.2 The Local Search Algorithm

Local search is performed on solutions in which some events are allocated to room-slots
and others are unallocated. Operators are used that maintain feasibility (do not break
the hard constraints such as capacity), and are as follows

1-OPT-swap-rand: Select 2 different rooms at random, and from each room ran-
domly select an allocated event. If it maintains feasibility, then swap the two events
between the room-slots.

2-OPT-swap-rand: Similar to 1-OPT-swap-rand except select 4 rather than 2
events and swap them while maintaining feasibility of the given solution.

Move-exterior-rand: Randomly selects an allocated and an unallocated event.
If it maintains feasibility, then the allocated event is deallocated, and the previously
unallocated one given its room-slot.

Push-rand: Randomly select one unallocated event and one room. Try to allocate
the event to the room; selecting the timeslot at random from those (if any) that would
maintain feasibility.

Pop-rand: Randomly select one event from a randomly selected room and deallo-
cate it.

Move-inner: Swap the timeslots of two randomly selected events in a single ran-
domly selected room.

The operators use random sampling because the underlying neighborhoods tend to
be quadratic in the number of events and too large to be searched completely.

The search itself performed with either standard Hill-Climbing (HC) or simulated
annealing (SA) [22]. Each move operator is assigned a static probability for selection.
On each iteration, we first select an operator according to their probabilities. Multiple,
but limited (we use 10), attempts are then made to apply the operator in order to
generate an improving candidate move. An iteration ends when a move is accepted or
a pre-defined number of failures is reached. In simulated annealing worsening moves
can be accepted depending in standard fashion on the temperature. In experiments we
use standard geometric cooling with reheats.

When possible, the local search was compared against optimal solutions derived
from the LP solver. When this was not possible we would compare standard runs
of the simulated annealing against runs using much slower cooling, and many more
reheats. Our standard run using simulated annealing is 4 coolings, 4m iterations each,
cooling by a factor of 0.998 each 650 iterations, taking 20-60 minutes, and is chosen so
that the search seems to become static become the end of each cooling. We take the
best result obtained at the end of each cooling, and did find that the multiple reheats
do help. We have checked that even with much longer runs (10 coolings, 15m iterations



each, cooling of .9995 each 650 iterations, taking up to 3 hours) the graphs presented
do not change significantly. This gives us confidence that the results presented here are
a good reflection of the underlying properties of the solution spaces, and have not been
biased by the search methods.

3.3 Problem Instances

The real data set that we use arises from the “Appleby” building of a university in
Sydney, Australia. The data contains many different space types; lectures, workshops,
seminars, etc. However, for the purposes of this paper we are not covering the issues
of splitting and also seek clarity, and so we select only the lectures (and also eliminate
one lecture that is so large that it would need splitting). We have 20 rooms, and each
has 50 timeslots. This gives a total of 1000 timeslots, whereas the lecture courses only
have 608 events. Also, the total seat-hours demand from the lecture courses is 69983
whereas the total supply from the rooms is 202650. Hence, in the initial data set, the
lectures are substantially under-subscribed, in the sense that the total demand for seat-
hours and timeslots from the courses is much smaller than the supply of seat-hours and
timeslots from the rooms.

In order to explore a wider range of these supply-to-demand ratio we need to do
one or more of (i) add more courses, (ii) reduce the number of rooms, or (iii) have
fewer timeslots per room. We opt against creating more courses, as it would make
the problems unnecessarily large. The options of reducing rooms or reducing timeslots
are similar in that they reduce the available seat-hours. Eliminating rooms requires a
decision of which ones to remove, and it is hard to know what counts as a fair reduction,
especially as we suspect that it is the distribution of room and course sizes that is the
most important, and so do not want to change it accidentally (and this is also why
we do not attempt to use a random generator for instances). So instead we uniformly
reduce timeslots for all rooms. Hence, we create “Lecture Room” problem instances,
LR(T), with the timeslots per room reduced to T. In the original data T=50, but
we will also study T=10,18, and 30. The case T=18 is the smallest T in which the
seat-hours demand could potentially be still be met by the rooms.

We have now covered the basic terminology, algorithms and data sets used; and so
can commence the main results.

4 The Safety of Utilisation and Frequency Requests

Suppose that, we are carrying out space planning, and have a proposal for a set of rooms
and a reliable forecast for the expected demand for total seat-hours from courses. We
would like to know whether we can be confident that it will be possible to satisfy the
demand, but we do not yet know exactly how the demand for seat hours will break
down into actual courses. Instead we just expect that the demand will arise from a
subset of some much larger set of expected courses. Given the set of rooms and so
the supply of seat-hours, then the expected seat-hours demand can be converted to
a “requested” utilization, Ug. In the absence of low utilisations, then we could be
confident that as long as Ur < 100% then we would be able to satisfy all the demand;
that is, the “achieved” utilisation, U4 would equal Ug; but maybe this is no longer
true when U is expected to be low? Hence, in this section we build towards answering
the question

“Under what conditions is a request for utilisation fully satisfiable?”

We will work in terms of “Achievement Curves”. These will represent the quality
(either U or F) of valid solutions in terms of the quality requested, Ug or Fg, that is the



quality that would have been achieved if the entire request could have been satisfied,
and compare to the quality, U4 or Fjy, of the Achievable solutions
We find achievement curves using the following procedure:

for each value of probability p € [0.01,0.02,...,1.0]

S := a random subset of the courses; taking each course independently with
probability p.
1. sum the sizes of events in S to find the total requested seat-hours, Bp.
2. optimise the utilisation for S (using an appropriate solver) to determine the
achieved seat hours, B4

We repeat this many times to generate more points.

The requested and achieved values for seat-hours are converted into achieved and
requested Utilisations Ug and U 4. We also measure the total number of requested and
achieved events to give the requested frequency (Fgr) and achieved frequency (Fa).
Thus, each fixed, but randomly generated, subset S, generates data points (Ua,Ug)
and (Fa, Fr). Note that we can request a U (as total seat-hours), or an F' (as total
timeslots), but it does not seem to be useful to talk about a “Requested occupancy”.
Although we have three measures, U, F' and O, only two of them are independent,
as they are related by “U = FO”. It seems simplest and clearest to select the two
independent measures to be U and F.

Figure 1(a) presents the results of following the above procedure for the room
data LR(10). We find that as well as plotting U4 vs. Ug it is also helpful to plot the
“Fractional Achievement Ratio”; that is the fractions of the requested U or F that
turn out to be achievable. The results in terms of fractional achievement are given in
Figure 1(b).

The first, and crucial result, is that the values of achieved U and F, for given
corresponding requests, tend to be “grouped around the mean”. That is, the variation
of U4 between points near to some value of Ug is small compared to the value of Uyx
itself, and similarly for F4. This implies that properties of the system are statistically
predictable. In our case, take for example, Ugr = 80% then the mean value for the
achieved Ua = 70% but the variation between instances in that region of the curve is
relatively small. This is crucially important, because if the variation were very large
we would not be able to make reliable and fairly tight predictions of the achievable
utilisation or frequency.

The second, and also crucial result from figure 1, is that we see a threshold phe-
nomenon on U. There is a “critical value”, Ug, for the requested utilisation, Ug. In
this case, Ugc = 60%, and this value divides the results into two distinct regions:

SAFE: Ur < Uc. Requests for seat-hours are almost always totally satisfied.
UNSAFE: Ui > Uc. Requests for seat-hours are almost never totally satisfied.
Even in the cases when there are enough seat-hours available, it turns out that the
oversupply is actually unusable.

(Though with a narrow region close around Ug in which the situation is less pre-
dictable.)

This has important implications. When planning course offerings we cannot assume
that we can simply count seat-hours, but must account that we are unlikely to be able
to rely upon using more than 55% of the seats available (in this case). But for Ur > U
we will (almost) inevitably find that some of the events will need to be dropped.

We refer to a request for U as “safe” when statistically there is high probability
(for example, with better than 95% chance) that it will be possible to satisfy all of the
request. We use the terms “safe” to convey that it means low-risk but not an absolute
guarantee.
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Fig. 1. (a) Requested vs. Achieved percentages for U and F, for random subsets of the courses,
and with the rooms LR(10). The diagonal line, ’Achieved=Requested’, is given for reference
purposes. (b) Same data but for the “fractional achievement”, that is, the y-axis is Ua/Ugr or
Fa/Fr.
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Note that, in this case, the frequency is always maximally satisfiable. Obviously
requests Fgr > 100% are unachievable, but here all requests Fr < 100% are safe.
In this case, it turns out that the frequency seems to be the limiting factor. Even if
Fr = 100% and all of the events are allocated, F4 = 100%, and all the timeslots are
occupied then the overall utilisation is only around 50-60% because most of the rooms
are not fully filled. However, in general, maybe there are different regimes according to
the most important limiting resource, whether it be seats, or timeslots, or something
else.

The other interesting points on Figure 1(a) are the endpoints at the largest values
of requested U and F'. These correspond to taking all the courses, but allowing the
solver to make a free choice of which events are going to be allocated an room-slot.
This motivates us to introduce the terminology:

Fixed-Choice Mode. Given a fixed set of courses, the solver is not given freedom
to select those that should be allocated or not, but instead we want to know if we
can allocate them all.

Free-Choice Mode. The solver is allowed a free choice of which courses to allocate
when it is optimising U

The free-choice mode allows the solver to pick events that are better suited to the
room sizes, and so to increase U. From Figure 1(a), for this data set and no extra
constraints, with free choice we can reach U &~ 92% but with the “fixed choice” we are
only safe up to U = 57%. The real situation would probably be somewhere in between
these two extremes. If courses were selected from the pool with no regard to overall
utilisation, then the safe choice would be limited to U < 57%. However, in practice,
there probably is an effect (that accrues from term-to-term) that the sizes of the courses
will evolve towards being a better fit to the rooms. So, arguably, a natural evolution
might push us a little above the safe point. However, it seems unlikely that such natural
evolution would be so strong as to achieve the highest ends of the utilisation values.

The “grouping about the mean” and thresholds observed here are fairly common
properties of problem classes in which instances are selected from a large set of possi-
bilities (It is important to remember that the number of subsets is exponentially large:
with n courses there are 2™ possible subsets.) The phenomena is analogous to that of
phase transitions in physical systems (such as water into ice), and in computer science
is best known in the context of random graphs [4]. For example, a standard distribu-
tion for random graphs is to take n nodes and add every potential edge independently
with probability p. In this case, many properties of the graphs become statistically
predictable from the values of n and p, and boolean properties, such as “the graph
is connected”, will exhibit a threshold at some critical values of p. Another example
is that the chromatic number for random graphs is statistically predictable for such
random graphs.

Practical Usage of the Critical Value The intention is that such results can be used in
order to generate a set of rooms with the appropriate safety margins for space planning.
However, one might be tempted to adopt the following method: pick a “just-fit” set of
rooms for which the requested utilisation would be 100%, find its critical value of Ug,
and use 1/Uq as a safety margin. Although probably fine in practice, this would not
be strictly correct as the scaling of Ux with the problem size is not necessarily linear.
Instead, one should pick a “safe-fit” set of rooms for which the requested U would be
just Ue.

5 Introducing Location and Timetable Objectives

In the previous section we obtained the safety requirements F < 100% and U <
57%. However, even this value for U is still unrealistically high. We suspect that,
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in practice, the need to take account of other objectives and constraints will drive
down the achievable U and F'. Hence, in this section we introduce specific “location”
and “timetabling” penalties in order to investigate the effects of physical location and
timetabling requirements.

Location Penalty (L) The intention of the location penalty is to model how well the
rooms match the events allocated to them in terms of physical location. Here, this
means that the allocation of an event E to a room R should receive a penalty depend-
ing on the perceived distance between E and R; the distance between the department
owning the room, and the department owning the event allocated to it. (We will treat
minimisation of the L penalty as an objective; or specifically will be maximising —L.)
In the absence of any data for physical distances we have arbitrarily selected a set of
penalties based purely on the departments involved. An event E is owned by a depart-
ment, and this is assumed to be its natural home. The L penalty is non-zero only if the
event is owned by a department different from that which owns the room. Basically,
this just encourages events to be placed within their owning department. (Such location
penalties are also likely to be fairly natural even if the allocation decisions are made be
a central administration: lecturers and students will generally prefer to remain close to
their “home” department.)

Note such a location matching is a common desire within course timetabling. For
example, after their conclusion that “the university is not using all of its classroom
space as efficiently as it might”, Fizzano and Swanson [17] continue: “Our results do
not guarantee that there are practical schedules that use the number of classrooms we
determined because our process does not consider things like teachers’ room preferences
or class location requirements (English classes might not end up near the English
department).”

Notice that the penalty depends only on the room and event, and so if we take
a linear combination with utilisation it can also be modelled within the framework
of maximum weight bipartite matching; the L. penalty and seat-hours score together
generate a new set of edge weights. However, if L and U are treated as independent
objectives we end up with a bi-criteria matching problem which is harder due to the
presence of unsupported solutions [35, 36].

Timetable Penalty (TT) In order to take some account of the effects of timetabling we
introduce a conflict graph between events. Again, in the absence of data we have used
various simple randomised generators for the timetable conflict matrix. Our model is
again based on the owning department for the each event. Specifically, we generate
conflict matrices using recipes denoted by “TT(p,q)”, and according to

1. conflicts between events from the same department are generated randomly with
probability p

2. conflicts between events from different department are generated randomly with
probability ¢

The case p = q corresponds to ignoring the department, that is, a standard random
graph [4], and will refer to this as simply TT(p). Another simple case is TT(100,0): the
conflict graph that has edges between any two events in the same department but none
otherwise. This corresponds to expecting that events from the same department are
more likely to have students in common, or simply that departments strongly prefer
that their own events do not clash. We expect that the timetabling constraints of this
form will capture some of the broad effects of real problems. A similar structure was
used in [31] where they had a “probability p,,, for within-clump constraints, or p; for
between-clump constraints”. Their motivation was that “Real timetabling problems
are typically clumped rather more clumped than homogeneous. For example, exams
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within an arts faculty may typically form a distinct clump, largely separate from those
within a science faculty.”

Note that the departmental owner of an event is fixed, and is not necessarily the
same as its allocated location, though in cases of a mismatch the assignment would
generate a location penalty as explained earlier.

6 Multi-Objective Optimisation in the Free-Choice Mode

Adding L or TT penalties to a problem cannot increase utilisation; instead it is likely
that they will drive it down. However, the issue is the magnitude of such an effect,
and in particular whether the effects can be large enough to be responsible for the low
values seen in practice.

In this section, we are interested in reducing the upper estimates on utilisation, and
will use the free choice mode: take all the events, and allow the solver to select those
that will be allocated. We will treat the system as a multi-objective problem using the
utilisations, and (the negatives of) the location penalty L, and timetable penalty, TT,
and determine the appropriate (approximate) Pareto fronts (see [35, 14] for descriptions
of the concepts of Pareto optimisation). Let’s first consider the simpler two-objective
sub-cases.

6.1 Bi-objective Problems: U vs. L and U vs. TT

0 S5 ‘
L LP:Scan @

LP: Rounding
-1000 LS:Scan x
-2000 E
-3000 % E
< -4000 | &o 1
-5000 %x E

'b\
-6000 - "\ -
-7000 ;‘ k
w000 A
40 50 60 70 80 90 100

U

Fig. 2. L vs. U for LR(10). LP-Scan and LP-Rounding use the LP solver. LS uses the local
search method.

To find trade-off surfaces, or (approximate) Pareto fronts, we follow the standard
procedure of generating points by taking many possible linearisations of the problem;
data points are generated by running the solver(s) for for each of many different choices
for the relative weights of objectives. Figure 2 shows the results of such an exploration.
Note that in fact we plot — L rather than the location penalty L itself, merely so that we
meet the convention that all axes correspond to maximisation problems, i.e., “better”
means towards to the top right. Also, for clarity, in all such plots we remove all Pareto
dominated points.
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The first set of points are obtained by taking a linear combination of the weights,
solving using linear programming, as discussed in subsection 3.1. Each such solution is
hence Pareto Optimal. However, some Pareto optimal solutions might not be reachable
in this way (that is, “unsupported” solutions [35,36]), and this leaves some gaps in
the experimental Pareto Front. To remedy this we also generate a second set of integer
solutions using the rounding method of subsection 3.1. In practice, the number of
non-integer assignments is very small and so the IP problem is then very small (5-10
variables, instead of thousands). As is evident from the figure, the difference between
the LP and the rounding is very small. This indicates that the underlying problem
is rather easy in this case. It was also observed in very early days of the office space
allocation problem [30] that the IP formulations can result in very few non-integer
variables, and so the problems are relatively tractable for their size. The final set of
points in Figure 2 are obtained using our local search method (simulated annealing).
It gives points that are also very close to optimal — the difference being small enough
so as to not significantly change the shape of the curve. This gives us confidence that
our local search method will not be distorting later results.

-50 oy E
.

-100 | —

-150 T .

-200 * k

-TT

-250 | * b

-300

-350

-
TR

400 | | | |
0 20 40 60 80 100

U

Fig. 3. The trade-off between Utilisation, U, and Timetable Objectives, -TT, for the rooms
LR(10).

The primary result from Figure 2 is that incorporating the location objective can
sharply reduce the utilisation: driving it down to about 50% from 93%.

We also consider utilisation and timetabling alone. This time we do use an exact
method, but just the local search. Figure 3 shows the resulting trade-off curve when
using TT(100,0). The introduction of the timetabling objective can drastically reduce
utilisation, this time to about 32%.

6.2 Three-objective Problems: U vs. L vs. TT

For the combination of three objectives, we fix the weight for the U objective and
produce points by scanning many different weights for L and TT (again meaning
TT(100,0)), and optimising each one separately. The results of this for the rooms
LR(10) are given in Figure 4. As explained in the caption, the 3 dimensional data is
converted to 2-dimensional by giving U and -L to the x and y axes. The timetable
objective is represented by grouping points into different sets according to their TT



15

O T T T
- [inf,200)
) B [100,10)
*
* )
- L K i
2000 ”;i% s T [10,0) ©
9%3* **
ok
-4000 o « .
%
- +
< 6000 - . ;;’2 .
¥
%
#
-8000 | 1
#
-10000 | + .
S
-12000 ' ' ' '
0 20 40 60 80 100
U

Fig.4. U vs. L vs. TT for LR(10). The x and y axes are utilisation, U, and the location
objective, -L, respectively. The third dimension of TT is represented by selecting the colour
(or type) of the point based on the TT penalty as given in the key, e.g. [200,100) means
200 > TT > 100, and inf means infinity. Only Pareto non-dominated points are included.

penalty, and plotting using different point types (and colours). Sets further down the
key correspond to being better for the TT. We see that the maximal U is 92% but this
is reduced to 29% if the L and TT penalties are forced down to zero.

Figure 5 gives results for LR(18) and LR(50). Notice that as we increase the numbers
of timeslots, then utilisations decrease, but this is merely because the seat hours needed
by the courses is less than the available seat-hours as soon as timeslots is greater than
18.

Notice that that L and T'T are having a significant effect even for the case of LR(50).
There are sufficient seats available that in the absence any L and TT constraints all
events can be allocated, and this leads to the value of U=44% on the righthand edge.
However, such complete allocations have large L and TT penalties. If the L and TT
penalties are forced down then U is also forced down significantly. That is, even when
the available seat-hours is twice that requested, L and TT can mean some events must
remain unallocated.

These results support our hypothesis that the location and timetable penalties have
the potential dramatically drive down utilisations, and so are a reasonable candidate
to explain low utilisations in the real world.

7 Fixed Choice with Various Timetabling Models

In the previous section we found that the location and timetable requirements can sig-
nificantly reduce utilisations within the free-choice mode. In this section we investigate
the effect of timetabling within the fixed-choice mode. In particular, we look at the
effects of timetabling on the safety of requests for utilisation and frequency. The basic
procedure is the same as in Section 4, except that for each selected subset of the courses
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Fig. 5. The same as Figure 4 except for the room

sets (a) LR(18), and (b) LR(50).
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Fig. 6. Requested vs. Achieved: (a) U and (b) F. In presence of various hard timetabling

constraints from TT(p,0) with p=100%,90% and 80% (and no L).
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Fig. 7. Requested vs. Achieved: (a) U and (b) F. In presence of various TT with TT(p,p)
conflicts with densities p=0%,10%,20% and 30% (and no L).

we also generate a corresponding random graph to be used as the conflict graph, and
then solve treating the T'T conflicts as hard constraints.

Figure 6 shows the effect on the achievement curves of enforcing hard TT(p,0)
constraints.

On comparing with Figure 1, we see that the safe region for U is greatly reduced.
More noteworthy, is that previously all ' < 100% were safe, but this is no longer
true. The hard timetabling penalty means that some timeslots remain unfilled. Also
note that the difference between TT(100,0) and TT(90,0) is quite large, indicating that
safety regions can be fairly sensitive to the details of the model.

Figure 7 shows the effects on the achievement curves of enforcing hard TT(p)=TT(p,p)
constraints; the conflicts are independent of the owning departments of the events. Per-
haps most notable from Figure 7(b) is that conflict densities of 10% do not lower the
safe region. It appears that the safe region for F only starts to become reduced when the
conflict density reaches about 15%. Apparently, in some cases the timetable conflicts
have no effect on the safe regions until the conflict density exceeds some critical level.
Presumably, the details will depend on the particular problem instance; but it does
seem that safe regions may well be insensitive to the imposition of “small” amounts of
other objectives.
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8 Fixed-Choice Together With Both Hard L and TT

In this final section of results, we briefly study the effects of demanding that the
assignments totally match the location; that is, we treat location as a hard constraint
(L = 0). This might correspond to an institution with very localised control of rooms
or no sharing between departments.

Figure 8 shows the achievement curves with a hard L constraint, and a hard
timetabling, TT(90,0), constraint as well. Again the achieved U and F are statisti-
cally predictable in that they are “clustered about the mean”. At first sight, it seems
that the hard L constraint has merely reduced the safe regions. However, closer inspec-
tion of the achievement ratio, Figure 8(b), reveals that the effect is more extensive.
There is no safe region in which we are almost always sure of satisfying all of the re-
quest. Instead we get a “weakly-safe” region, a region in which we are “only” almost
always sure of satisfying a large fraction of the request. In particular, if we request any
F less than about 40% then we are very likely to be able to satisfy about 95-98% of
the request, but not the 100% we would expect in a safe region. We suspect that this
indicates that there is a mismatch between rooms and events, and will explore such
cases in future work.
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9 Related Work

Room minimisation As mentioned in the introduction, Fizzano and Swanson [17] also
studied space usage within a university. They do room minimisation by the simple
procedure of removing rooms whenever doing so would not results in the problem no
longer being solved by their algorithm. After removing unneeded rooms the overall
frequency increases correspondingly. For example, in one case the number of rooms
could be reduced from 51 to 38, and then the frequency increases from about 60%
to about 83%, but note that it still does not become 100%. (Unfortunately, they do
not give information on sizes of rooms and classes and so we were unable to infer the
corresponding occupancies and utilisations.) However, they do not perform our multi-
objective or phase transition studies. Also, the constraints used within are substantially
different from the majority of the course timetabling literature. Their time restrictions
arise because courses consisting of multiple events must take place on some specified
subset of the days of the week and with the restriction that the course events must take
place as the same time of day. That is, they have links between events that say they
must be at the same time of day, but they do not have the usual “conflict matrix” of
pairwise constraints that events must take place at different times. This changes their
underlying methods from be variants of graph colouring to being variants of graph
matching. Also, as mentioned in Section 5, they do not include the effects of location
objectives. The difference in their constraints means that direct comparison is not
meaningful.

Computational Hardness and Phase Transitions Phase transitions in the area of course
timetabling were studied in [31]. However, this was from the point of view of the com-
putational hardness rather than the positions of the phase transition (as a function
of the controlling parameters such as conflict density). Many systems have a thresh-
old, and it is well-known that the computationally difficult decision problems, “hard
problems”, typically occur at the threshold; that is, at the phase transition between
“almost always yes” and “almost always no” regions [10]. Possibly one of the most
well-studied thresholds, and associated hard problems, is the satisfiability transition in
the “Random 3SAT” domain [26]. (In a study, [28], of the scaling properties of a local
search near the satisfiability threshold it was found that scaling of average run-times
was polynomial until getting very close to the phase transition itself.) However, in [31]
the instances themselves are generated in such a fashion as to guarantee that they solv-
able; by construction, there cannot be a satisfiability threshold. Their focus is instead
on the hardness of the instances for a solver, and they do indeed observe transitions in
hardness. We differ in that we are not investigating the hardness but rather the actual
satisfiability of a request for a particular overall utilisation.

In our case, although we have not studied it in detail as yet, it is reasonable to
expect that there will be a peak in hardness for the satisfiability decision problem near
the transition from safe to unsafe utilisation requests. Exact location of the transition
point could be difficult. However, conversely, since we can expect the hardness to drop
rapidly as move away from the threshold, it makes it likely that a good approximation
of the threshold location is computationally relatively easy. In the random 3-SAT work,
the solvers have improved by many orders of magnitude over the decade it has been
studied, but the estimate of the threshold location has changed very little. This gives
us confidence that any inadequacy of our solver is unlikely to have a significant effect
on our results.

10 Summary and Conclusions

The issues of space allocation, space management and space planning, are crucially
important to universities in general, and to Realtime Solutions Ltd in particular. Ac-
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cordingly, we have studied teaching space allocation with two goals in mind. Firstly, we
aimed to understand the factors that have the potential to explain the low utilisations
and frequencies observed in real world institutions. Secondly, a requirement was to
start to devise methods to determine the safety margins that must be included within
space planning methods in order to compensate for the expected low utilisation figures
when space is actually put into use.

In preliminary studies, it was clear that considering utilisation alone gives unrealistic
results, in the sense that the realized utilization was too close to the maximum possible
utilisation. However, if we also include objectives to mimic the effects of timetabling
and physical location, and plot the resulting multi-objective trade-off surfaces, then
in some regions the utilisation falls to much more realistic and observed levels, in the
range of 20-40%.

Equally importantly, we find that when selecting courses at random from a pool
then whether or not the selections are fully achievable (“safe”) becomes statistically
predictable. This means that the typical behaviour of different instances can be pre-
dicted. Also, the behaviour displays threshold phenomena: There is a critical value of
requested utilisation below which there is a high probability of satisfying it all, but
above which the probability drops sharply.

The intended usage of the results are (i) to build a better understanding of the
factors that affect utilisation and frequency, a necessary first step to being able to
improve them in practice, (ii) to use the statistical predictions of safe regions of U
and F in order to give better, more cost-effective, safety margins to be used in space
planning

Perhaps we should emphasize that, after removal of irrelevant event IDs and so
forth, the input data needed for the results in this paper consists only of: a set of
department IDs; for each a multi-set (a set that allows duplicate entries) of event sizes
and a multi-set of room sizes; a location penalty matrix for [dept(event),dept(room)];
and a method to generate a conflict matrix over [event,event] pairs.

This work has provided an important foundation for a range of research issues that
need to be explored. We emphasise that we are developing a methodology, and it is
not the details of the algorithm or the exact detailed numbers in the results that are
important. For example, we believe that the universality of threshold phenomena in
large systems [4, 21, and others] will lead to wide applicability.

Perhaps, the most important follow-up is to find a better stand-in for timetabling,
that is, (statistical) ways to characterize the timetabling problem in an institution, and
to do this without relying on details that will not be available at the space planning
stage. That is, possibly, the greatest challenge is to see whether useful statistical in-
formation can be produced without having to resort to full simulations. Simulations
are conceptually straightforward, but often difficult in practice because of the lack of
relevant data.

Other important aspects of future work will be to carry out a comprehensive series
of comparisons against other real problems. Also, an important aspect of space plan-
ning is to determine how “room size profiles” — the distribution of room sizes — affect
these results. Finally, we note that our current implementations are rather inefficient
— the graphs here needed many thousands of hours of CPU time — and so we will be
implementing more efficient methods to produce the trade-off surfaces and achievement
vs. request curves, for example, to use the methods of [18] for finding Pareto fronts.
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