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Neighbourhood search algorithms are often the most effective known approaches for solving partitioning 

problems. In this paper we consider the capacitated examination timetabling problem as a partitioning 

problem and present an examination timetabling methodology which is based upon the large 

neighbourhood search algorithm that was originally developed by Ahuja and Orlin. It is based on searching 

a very large neighbourhood of solutions using graph theoretical algorithms implemented on a so called 

improvement graph. In this paper, we present a tabu based large neighbourhood search, in which the 

improvement moves are kept in a tabu list for a certain number of iterations. We have drawn upon Ahuja-

Orlin’s methodology incorporated with tabu lists and developed an effective examination timetabling 

solution scheme which we evaluated on capacitated problem benchmark data sets from the literature. The 

capacitated problem includes the consideration of room capacities and, as such, represents an issue that is 

of particular importance in real world situations. We compare our approach against other methodologies 

that have appeared in the literature over recent years. Our computational experiments indicate that the 

approach we describe produces the best known results on a number of these benchmark problems. 
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Introduction 

This paper investigates a large neighbourhood solution approach based on tabu search 

and its application to capacitated examination timetabling. The objective is to see how the 

hybridisation of a large neighbourhood algorithm, a tabu list and adaptive memory can 

enhance the solution quality in capacitated examination timetabling. 

The idea of tabu search was proposed by Fred Glover (1987). Glover and Laguna 

define tabu search as: 

“a metaheuristic that guides a local heuristic search procedure 

to explore the solution space beyond local optimality” 

 The basic mechanism of a tabu search is to iteratively explore a subset of the 

neighbourhood of the current solution. The member of the neighbourhood that gives the 

minimum value the of cost function (assuming minimisation) becomes the new solution. 

However, to prevent the search from getting stuck in local optima, a so-called tabu-list is 

maintained i.e. a list that contains moves that satisfy some tabu restriction criterion. 

These previously visited moves are forbidden to be performed for a certain number of 

iterations (called the tabu tenure). The tabu tenure determines how long a move remains 

tabu-active. However, a mechanism called the aspiration-criterion is sometimes used to 

override the tabu status of a move. A common aspiration criterion is a better 

improvement of the cost function i.e. a tabu move is changed to a non-tabu move if it 

produces a better solution. A basic introduction to tabu search can be found in Gendreau 

and Potvin (2005) and a comprehensive treatment can be found in Glover and Laguna 

(1997). 

Schaerf (1999a) applies tabu search techniques in scheduling lectures to timeslots for 

a large high-school. A variable size of tabu list is used. Each move is added into the tabu 

list where the size of the tabu list is randomly selected from a pre-determined range. 

Therefore the tabu tenure varies for each move in the tabu list. A common aspiration 

criterion (as mentioned in the above paragraph) is employed. Experimental results show 

that the algorithm is able to produce a timetable that is able to schedule 90-95% of the 

lectures (and is better than the manual timetable). Di Gaspero and Schaerf (2001) present 

an examination timetabling algorithm that is based on tabu search and graph colouring 

heuristics. In order to guide the search to explore different areas of the solution space, 
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they modified the objective function by changing the weights. A dynamic size of the tabu 

list in the interval kmin – kmax is used to store the most recently accepted moves. The same 

aspiration criterion as in Schaerf (1999a) is employed and the algorithm is tested on 

standard benchmark and random instances on examination timetabling. 

White and Xie (2001) implemented a tabu search algorithm which is called 

OTTABU. It used both recency-based short-term memory and frequency-based longer-

term memory to improve the solution quality. Burke et al (2003a) applied a tabu search 

hyper-heuristic technique for nurse rostering and course timetabling problems (see Burke 

et al, 2003b for an overview of hyperheuristic approaches). In this algorithm, a set of low 

level heuristics are competing with each other. When a heuristic has been applied, the 

change in the cost function value from the previous to a new solution is noted. A variable 

length dynamic tabu list of low level heuristics is maintained which stops certain 

heuristics from being employed for a certain duration. The status of the heuristics in the 

tabu list will be changed from tabu active to non-tabu active if there is an improvement in 

the cost function. The authors believe that there is no point in keeping a heuristic tabu 

once the current solution has been updated. Experimental results show that this technique 

is capable of producing acceptable solution qualities across both nurse rostering and 

course timetabling problems.  

Kendall and Hussin (2004a) employed a tabu search based hyper-heuristic for 

examination timetabling. Their algorithm uses a fixed length of tabu list which is equal to 

the number of low-level heuristics. The heuristics that have been applied become tabu. 

Instead of adding moves in the tabu list, this algorithm stores information about each 

heuristic (i.e. heuristic number, recent change in cost function, CPU time taken to run the 

heuristic and how long the heuristic should remain tabu). Preliminary results reported that 

the method was unable to beat the best known results from the literature on standard 

benchmark problems but the algorithm can produce good quality solutions across a 

variety of problem instances. The authors continued this research (Kendall and Hussin, 

2004b) by exploring three different types of tabu-based hyper-heuristic (i.e. a simple tabu 

search hyper-heuristic that considers all non-tabu heuristics and applies the heuristic that 

has the best improvement only in the cost function, a tabu search hyper-heuristic with hill 

climbing and a tabu search hyper-heuristic with great deluge). They applied these 
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methods to a very large problem from the MARA University of Technology and standard 

benchmark examination timetabling datasets. Experimental results show that the 

algorithm can produce at least an 80% improvement compared to the manual solution for 

the MARA dataset and it can also improve the results obtained from Kendall and Hussin 

(2004a). Other examples of papers which discuss tabu search in timetabling are 

Dowsland (1998), White et al (2004), White and Xie (2001) and Wright (2001). 

In our paper, we use a fixed length of tabu list and we make tabu any examinations 

that have been involved in a move. A detailed implementation of our algorithm is 

presented in the search algorithm section. 

When we use the term large neighbourhood structure we refer to the size of the 

neighbourhood which is “very large” with respect to the size of the input data (see Ahuja 

et al, 2002). In this paper, we discuss a very large-scale neighbourhood partitioning 

problem approach for timetabling. The most popular neighbourhood for the partitioning 

problem is a two-exchange neighbourhood (see Ahuja et al, 2000). The cyclic-exchange 

neighbourhood which was proposed by Thompson and Orlin in 1989 is a generalization 

of the two-exchange neighbourhood. It has substantially more neighbours compared to 

the two-exchange neighbourhood. Generally, the quality of locally optimal solutions 

obtained from the larger neighbourhood structure is better than those obtained from a 

smaller neighbourhood structure (see Ahuja et al, 2000). However, the price to pay is the 

amount of computational time that is required. We shall see that this plays a role in 

capacitated examination timetabling. In order to balance the quality of solution and the 

computational time required and to demonstrate that the larger neighbourhood search 

produces a better quality of (local optimal) solution, Ahuja et al (2000) applied a network 

flow optimization methodology on the capacitated minimum cost spanning tree problem. 

Ahuja et al (2001) used a multiexchange neighbourhood structure for the same problem, 

and in 2003 (Ahuja et al, 2003) they explored a composite neighbourhood structure (a 

unification of a node-based and tree-based exchange), in which they found that the result 

obtained from the composite neighbourhood is better than a node-based neighbourhood 

structure alone. The interested reader can find more details on large neighbourhood 

methods in Ahuja et al (2000, 2001, 2002, 2003). 
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In this paper, we will concentrate on capacitated examination timetabling problems. 

A survey of examination timetabling in British universities conducted by Burke et al 

(1996b) concluded that examination timetabling software needs to cater for different 

demands that vary significantly from one institution to another. Carter and Laporte 

(1996) defined the examination timetabling problems as:  

“the assigning of examinations to a limited number of 

available time periods in such a way that there are no 

conflicts or clashes”. 

The above term “no conflict or clashes” from Carter and Laporte (1996) is an 

example of a hard constraint (i.e. one which should not be violated). A solution 

(timetable) that obeys all the hard constraints is often called a feasible solution. In this 

paper, we consider the following hard constraints: (1) no student can sit in two 

examinations simultaneously; and (2) the schedule examinations must not exceed the 

classroom capacity. There is no attempt to divide students between different classrooms 

that might be available for the examination. Soft constraints are those which are 

considered to be desirable but which can be violated if necessary. A particularly common 

soft constraint is the goal of spreading examinations as evenly as possible over the time 

schedule (see Burke et al, 1996a). The quality of the feasible solution can be measured by 

the degree to which these soft constraints are satisfied. Indeed, this is exactly the measure 

that we use in the experiments carried out in this paper.  

A comprehensive overview of the wide variety of approach and techniques that have 

been applied to examination timetabling over the years can be found by consulting de 

Werra (1985), Carter (1986), Bardadym (1996), Burke et al (1996b), Carter and Laporte 

(1996), Burke et al (1997), Schaerf (1999b), Burke and Petrovic (2002) and Petrovic and 

Burke (2004).  

In this paper, we treat the examination timetabling problem as a variant of the 

partitioning problem. We incorporate a tabu list with our large neighbourhood 

examination timetabling algorithm (as presented in Abdullah et al, 2006) for capacitated 

examination timetabling problems. This paper is organised as follows: The next section 

formally presents the description of the examination timetabling problem. The model 

adapted from Ahuja et al (2001) is outlined in the modelling section. The solution search 
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strategy that we employ is discussed in the search algorithm section. Our results are 

presented and evaluated in the experimental results and analysis section followed by 

some concluding remarks in the conclusion and future work section. 

 

Problem Description 

The description of the examination timetabling problem that we present here is adapted 

from the one given in Burke et al (2004). The input can be outlined as follows: 

• N is the number of examinations 

• Ei is the examinations, i ∈ {1,…,N} 

• B is the set of all N examinations, B = {E1,…,EN} 

• T is the given number of available timeslots 

• tk is the timeslot for examination k. The timeslots are denoted by positive integers. 

• C = (cij)NxN is a conflict matrix where each element denoted by cij, i,j ∈ {1,…,N} is 

the number of students taking both examinations i and j. 

We will be considering the capacitated version of the problem. As mentioned above, 

we are concerned with the following two hard constraints: (i) All assignments should be 

clash-free and (ii) the maximum capacity of a room cannot be violated. We assume that a 

weekly programme of examinations starts on Monday and is finished on Saturday with 

no examination on Sunday. A complete examination timetable will require a number of 

weeks (often 3 or 4). Each week day has 3 timeslots, Saturday has 1 timeslot and Sunday 

has none. We use the day vector representation that was employed in Abdullah et al 

(2006) as: 

(1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,15,15,15,…) 

The corresponding timeslot vector is (1,2,3,4,5,6,7,8,9,…,T). Note that the one “6” 

entry and the one “13” entry (see Figure 1) corresponds to the timeslot on the first 

Saturday and the timeslot on the second Saturday respectively. The entries corresponding 

to Sundays are missing altogether. The day for a particular timeslot t (where t ∈ 

{1,…,T}) is represented by dt. For example, d4 would be day 2, d7 would be day 3 and d17 

would be day 8.  
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We use the objective function as described in Burke et al (1996a) which minimizes 

the number of students having two examinations in a row on the same day. The symbolic 

representation of the relationship in our model is stated below. 

The objective function is to minimise: 
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Equation (1) represents our objective function to minimize the number of students 

having examinations in adjacent periods on the same day. Equation (2) represents a 

function which tells us if timeslots on the same day are adjacent and Equation (3) 

represents a clash-free requirement so that no student is asked to sit two examinations at 

the same time.  The objective function is also subject to  

Studentt ≤ Seats for t = 1,…,T      (4) 

 

where Studentt is the number of students taking examinations in timeslot t and Seats is the 

number of seats available in each timeslot. The inequality in (4) represents the room 

capacity for the total number of students in each timeslot. The total number of students 

taking examinations in each timeslot Studentt should be less than or equal to Seats. 

 

Modelling 

This section discusses the solution process we have developed for the capacitated 

examination timetabling problem. The process runs through several stages including the 

representation of the problem where we treat the problem as a variant of a partitioning 

problem. Secondly, we define our large neighbourhood structure through a cyclic 

exchange operation. Next, we proceed to a construction of the improvement graph that is 
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employed within the large neighbourhood search algorithm and lastly we describe how to 

determine the profitable moves in the improvement graph using a network flow 

optimisation technique. The details of each stage can be found in the following: 

 

Partitioning Problem 

Let {St: t ∈ {1,…,T}, St ⊆ B} denote a feasible partition of examinations that are to be 

scheduled at time t. The partition {St} divides the set B so that ∪t∈{1,…,T} St = B and Sq ∩ 

St = ∅ for all q, t ∈ {1,…,T}, q ≠ t. The partition subsets will be referred to as cells. 

 

Creating Neighbours 

We create a similar neighbourhood structure to that discussed in Abdullah et al. (2006).  

The process moves a single examination between a number q, of cells. Note that 1≤q≤T, 

where T is a given maximum on the number of cells (which is equal to the maximum 

number of timeslots). Such a move is known as a cyclic exchange neighbourhood. We 

use the following notation to denote this :  ir → is →it →… → iq → ir, where ir, is, it ,…, 

iq are examinations which belong to different cells and r,s,t,q are all ≤ T and are all 

distinct. The notation tells us that examination ir moves from its cell to the cell containing 

is and so on until iq replaces ir. We can define path exchanges in a similar manner but 

without returning to the starting cell. Both exchanges lead to the generation of a very 

large neighbourhood. Abdullah et al (2006) present more details and a simple illustrative 

example of the procedure.  

 

Improvement Graph 

The improvement graph, G was introduced in Thompson and Orlin (1989) and explored 

in Thompson and Psaraftis (1993). An improvement graph is constructed by taking every 

pair of examinations i1 and i2 from different cells as the nodes of the graph. Directed 

edges between i1 and i2 exist if and only if the new cell generated by i1 → i2 is feasible. A 

cell is called feasible if the hard constraints are not violated. The cost of a directed arc 

between i1 and i2 is defined as: 
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(cost of ((“examination i1” ∪ “cell to which examination i2 belongs”) \ “examination 

i2”)) – (cost of (“cell to which examination i2 belongs”)) 
The cost of “examination i1” is calculated using Expression (1). It represents the 

umber of students who are forced to take a conflicting examination in a period adjacent 

 “examination i1”. The cost of “examination i2” is calculated in the same manner. The 

st of the “cell to which examination i2 belongs” is a summation of the cost of all 

aminations in the cell. Note that the term “inserted examinations” is used in the search 

gortihm section to discuss a number of examinations rather than the single case 

examination i1”) here. Abdullah et al (2006) present a simple illustrative example of an 

provement graph in examination timetabling.  

entifying the Negative Cost Partition-disjoint Cycle 

 valid cycle (or valid path) in the improvement graph is referred to as a negative cost 

artition-disjoint cycle. It represents an improving move (or moves). In the context of 

amination timetabling, these improving moves represent (improving) exchanges of 

aminations (either a path or cycle exchange) from one timeslot to another. To 

etermine these exchanges, we draw upon a network flow optimization technique (as 

iscussed in Abdullah et al, 2006) by heuristically determining negative cost partition-

sjoint cycles for the improvement graph using a modified shortest path label-correcting 

gorithm (Ahuja et al, 1993).  

he Search Algorithm 

he pseudo code for our approach is illustrated in Figure 1 which is started with a 

asible solution Sol. Cells of examinations are produced based on timeslots (as 

entioned earlier) followed by the construction of the improvement graph where it is 

nstructed once. In the repetition loop, the negative cost partition-disjoint cycle for the 

provement graph is obtained by executing the modified shortest path label-correcting 

gorithm (Ahuja et al, 1993). It is run several times with a different source examination 

 the improvement graph, since the success of finding a valid cycle is related to the 

urce examination from which the search is initiated. The source examinations used are 
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chosen from the “inserted examinations” in the improvement graph because they have an 

out going directed arc. The out going directed arc is important to direct further search in 

finding a valid cycle. We re-evaluate the quality of the new solution f(Sol*) once the 

negative cost partition-disjoint cycle is obtained. The new solution is compared to the 

best solution and it is accepted if there is an improvement (including a zero 

improvement). The best solution Solbest is then replaced with Sol*. The reason we accept 

the zero improvement is because the new solution might be different from the best 

solution even though the cost function is producing the same result (i.e. the improvement 

is zero). The algorithm will always accept an improved solution and a worse solution is 

accepted with a certain probability with the aim to escape from local optima by using an 

exponential Monte Carlo acceptance criterion which has been shown to work well in the 

application of component placement sequencing for a multi head placement machine (see 

Ayob and Kendall, 2003). Exponential Monte Carlo is similar to the acceptance criterion 

in a simulated annealing approach. The difference is that no cooling schedule is required. 

It is only based on the solution quality where the new solution Sol* is accepted if the 

generated random number, RandNum, in [0,1] is less than the probability e-δ where δ is 

the difference between the old and new solutions (i.e. δ = f(Sol*) – f(Sol)). It will 

exponentially increase the acceptance probability if δ is small. If a worse solution is not 

accepted by the exponential Monte Carlo acceptance criterion for a certain number of 

iteration (which is equal to the not_improving_constant), then the algorithm will 

terminate. The details of the search algorithm are also discussed in more depth in 

Abdullah et al (2006). 

PUT FIGURE 1 HERE 

 Our tabu search algorithm uses only short term memory. We add any examinations 

that have been involved in a move to the tabu list, denoted as TabuListi  (i ∈{1,…,N}). 

These examinations are not allowed to be part of any exchange for a certain number of 

iterations (the tabu tenure) so that we can look at the possibility of other examinations to 

be considered in performing a cyclic exchange and constructing an improvement graph 

that may result in better profitable exchanges with respect to the objective function. The 

tabu tenure is decreased after each iteration until it reaches zero. All tabu examinations 

will change to non tabu status when the tabu tenure is zero. In these experiments, we set 
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the tabu tenure to be 2, 4 and 6. The determination of these values was based upon a 

series of experiments. 

  The improvement graph is updated after the cyclic (or path) exchange is performed. 

The cells which play a part in the process (referred to as the AffectedCells) can be 

determined by consulting the cyclic (or path) exchanges. So, the costs for all the directed 

arcs that are not connected to the AffectedCells remain unchanged. We refer to these arcs 

as OriginalArcs. This enables us to save the time taken to create and calculate the cost for 

OriginalArcs. We then proceed by creating the new directed arcs referred to as 

TNewDirArcs1 in case 1 (see Figure 2) by inserting an examination (from the 

AffectedCells) to another cell and ejecting one examination (the ejected examination 

should be different from the examinations in the TabuList) and by calculating the cost for 

the new directed arcs. The other new directed arcs in case 2 are referred to as 

TNewDirArcs2 (see Figure 2) and are created like the TNewDirArcs1 in case 1, but in the 

reverse way i.e. we insert an examination (which is not in the TabuList) from one cell to 

the AffectedCells and, at the same time, eject another examination from this AffectedCells 

and this ejected examination should not be in the TabuList. Then we calculate the cost for 

the TNewDirArcs2. The combination of the OriginalArcs, TNewDirArcs1 and 

TNewDirArc2 will form a new improvement graph G. Figure 2 shows the pseudo code 

for updating the improvement graph in our method. 

PUT FIGURE 2 HERE 

Experimental Results and Analysis 

The algorithm was tested on standard benchmark problems using the Carter et al. (1996) 

data collection and the University of Nottingham dataset which was introduced by Burke 

et al (1996a) and which also includes the room capacities requirement.  

The hybridised tabu search large neighbourhood method described in this paper was 

run on six datasets. For each dataset we experimented with tabu tenure 2, 4 and 6. The 

characteristics of the datasets used (taken from Carter et al, 1996 and Burke et al, 1996a) 

are presented in Table 1. The number of examinations which conflict with other 

examinations is summed up and divided by the total number of examinations, to give an 

average conflict matrix density for each dataset in Carter et al (1996). We used the same 
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formula as above to calculate the conflict density matrix for the nott-94 dataset (since it is 

not available in Burke et al, 1996a). 

PUT TABLE 1 HERE 

Our approach was implemented in Visual C++. We ran the experiment overnight 

(which takes approximately twelve hours) for each of the datasets on an Athlon machine 

with a 1.2 GHz processor and 256 MB RAM. Note that running a system overnight is not 

unreasonable in the context of examination timetabling where the timetables are usually 

produced months before the actual schedule is required. Table 2 shows the computational 

results of our algorithm compared to other published results for these benchmark 

datasets. The best results are shown in bold. We compare our results with results from: 

• Burke et al (1996a) which employed a memetic algorithm. 

• Caramia et al (2001) which implemented a greedy constructive heuristic with an 

optimisation step. 

• Di Gaspero and Schaerf (2001) which employed tabu search. 

• Merlot et al (2003) which applied a hybridization of constraint programming, 

simulated annealing and hill climbing. 

• Abdullah et al (2006) which employed large neighbourhood with a network flow 

optimization technique.   

PUT TABLE 2 HERE 

Our objective here is to demonstrate that the tabu based large neighbourhood search 

methodology is able to produce good results for capacitated examination timetabling 

problems. The method produces the best known result in the literature on two of the six 

problems (tieing with Merlot et al, 2003 on tre-s-92). Our results are better than Burke et 

al. (1996a) on all of the datasets. We have better results than Caramia et al (2001) in five 

of six datasets. Our results are better than Di Gaspero and Schaerf (2000) in three of the 

six datasets. However, we are better than Merlot et al (2003) in just one instance with a 

tie on the tre-s-92 dataset. 

We are particularly interested to compare our results with the results in Abdullah et 

al. (2006). In Abdullah et al (2006) we did not employ a tabu list. In that case, we can 

consider the tabu tenure to be zero. Since the tabu search based method is superior in four 

out of five problems there is evidence to suggest that we could use a tabu list to guide the 
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search process. Note that Abdullah et al (2006) do not attempt the nott-94 dataset. In our 

tabu based large neighbourhood search, we apply a tabu restriction where examinations 

will be tabu active if examinations in a cyclic (or path) exchange have been accepted to 

update the current solution. The examination(s) will remain tabu active for a number of 

iterations which is equal to the tabu tenure. We made the examinations in a cyclic (or 

path) exchange tabu because we want to direct the search to other parts of the search 

space in the improvement graph. The best results for four of the datasets (we do not 

consider the nott-94 dataset in this comparison since Abdullah et al, 2006 do not attempt 

this dataset) is when the value of TT (representing the tabu tenure) is 2 (ties with TT is 4 

on tre-s-92 and uta-s-92 datasets) and for the other dataset it is when TT is zero (from 

Abdullah et al, 2006). It is interesting to note that for the kfu-s-93 dataset, we obtain the 

best result when the value of TT is zero and that this problem instance has the lowest 

conflict matrix density (0.06). The lower conflict matrix density signifies that fewer 

examinations are conflicting with each other. This implies that we might have more 

feasible solution points in our search space. So, we do not need a tabu list to direct the 

search to other parts of the search space in the improvement graph. The higher the value 

of TT, the longer the examinations will remain in the tabulist. This limits the search 

space. We notice that a higher value of TT makes the solution considerably worse and 

thus more difficult to improve. Figures 3 and 4 show the performance of our algorithm 

with a different value of TT on two datasets (tre-s-92 and kfu-s-93). 

PUT FIGURES 3 AND 4 HERE 

This graph demonstrates how our algorithm explores the search space in the 

improvement graph. The x-axis represents the number of iterations while the y-axis 

represents the average penalty cost per student. The curves move up and down because at 

every iteration we accept a best solution (or worse solution with some probability). In 

Abdullah et al (2006), the solutions are trapped in a cycle. The use of the tabu list in this 

algorithm helps to avoid cycling during the search process. To show the effect of using 

the tabu based large neighbourhood search in avoiding cycling in the search process, we 

present the graph (see Figure 5) of the solution for the car-f-92 dataset and the solution 

taken from Abdullah et al. (2006) in which we consider the value of TT to be zero. The 
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tabu based large neighbourhood search can find the solutions (in most cases) with better 

local optima. 

PUT FIGURE 5 HERE 

Conclusions and Future Work 

In this paper, we modelled the capacitated examination timetabling problem as a variant 

of the partitioning problem consisting of cells of examinations that are scheduled in a 

number of timeslots. We created a neighbour through a cyclic exchange operation, in 

which the created neighbourhood structure is extremely large. We presented the hybrid 

tabu based large neighbourhood search in order to direct the search to other parts of the 

improvement graph and to avoid cycling during the search process. We identified 

negative cost partition-disjoint cycles in the improvement graph using a modified shortest 

path label-correcting algorithm. The experiments carried out showed that our algorithm 

performed competitively in comparison to the best published results in the literature and 

to our previous results in Abdullah et al (2006). Indeed, it is able to provide the best 

known results on two of the six standard benchmarks problems in this area. It shows that 

the hybridization of the meta-heuristic and network flow optimization technique is a very 

promising technique for tackling the capacitated examination timetabling problem. Since 

the neighbourhood structure generated through the cyclic exchanges operation 

highlighted in this paper increases exponentially with the size of the input, we found that 

the drawback of our algorithm is an expensive computational time in finding a valid cycle 

(or path) in the improvement graph. Although computational time is not a critical feature 

of examination timetabling, future work will aim to shorten the computational time. We 

also want to rigorously analyse the performance of this approach by varying the tabu 

tenure during the search process in order to provide a balance between intensification and 

diversification of the search space in the improvement graph or to apply a tabu relaxation. 

This would entail reinitialising the tabu list after a number of non-improving iterations 

and starting the search from an elite solution.  
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Obtain a feasible initial solution Sol; 
Calculate initial cost function f(Sol); 
Solbest ← Sol; 
Create partition; 
Define neighbourhood structures and construct the improvement graph, G; 
Set not impoving counter ← 0; 
do while (not termination-criterion) 

Find a negative cost partitiont-disjoint graph cycles for G using the modified 
shortest-path label correcting algorithm; 
Calculate the quality of a new solution f(Sol*); 
if (f(Sol*) ≤  f(Solbest))  

Sol ←  Sol*; 
Solbest ← Sol*; 
not improving counter ← 0; 

else 
                  /* Generate exponential monte carlo acceptance criterion as below: */ 

Calculate the difference between old and new solution, δ = f(Sol*) -  f(Sol)); 
Generate RandNum, a random number in [0,1]; 
if (RandNum < e-δ ) 

Sol ←  Sol*; 
not improving counter ← 0; 

   else increase not improving counter by 1; 
   if not improving counter == not_ improving_constant 
  exit; 

Add profitable or worse moves to the tabu list; 
Identify the cell for each move exams, given as AffectedCells; 
Calculate the number of AffectedCells, given as NumberOfAffectedCells; 
Recreate new cells from updated solution; 
Define neighbourhood structure and update G (see Figure 2); 

end do;  
 

Figure 1: Pseudo-code for the examination timetabling problem 
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Determine the cells that are involved in cyclic (or path) exchanges called 
AffectedCells; 
Determine the number of AffectedCells called NumberOfAffectedCells; 
Keep the directed arcs that are not connected to / from the AffectedCells called 
OriginalArcs; 
Case 1: 
 repeat 

Generate the directed arcs for every pair of exams from AffectedCells to 
other cells iff any of these pair of exams are not in the TabuList called 
TNewDirArcs1; 

  Calculate the costs for the TNewDirArcs1; 
 until (NumberOfAffectedCells) 
 
Case 2: 
 repeat 

Generate the directed arcs for every pair of exams from other cells to 
AffectedCells iff any of these pair of exams are not in the TabuList called 
TNewDirArcs2 ; 

  Calculate the costs for the NewArcs2; 
 until T 
Combine OriginalArcs, TNewDirArcs1 and TNewDirArcs2 to form a new G;  

Figure 2. Pseudo-code for updating the improvement graph 
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Figure 3: Performance of our algorithm with different TT on tre-s-92 dataset 
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Figure 4: Performance of our algorithm with different TT on kfu-s-93 dataset 
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Figure 5: The behaviour of car-f-92 dataset 
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Table 1: Capacitated Benchmarks 

 
Data 

Number of 
examinations

Number of 
Timeslots 

Room 
Capacity 

Conflict 
Matrix Density 

car-f-92 543 31 2000 0.14 

car-s-91 682 51 1550 0.13 

kfu-s-93 461 20 1955 0.06 

tre-s-92 261 35 655 0.18 

uta-s-92 622 38 2800 0.13 

nott-94 800 26 1550 0.03 
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Table 2: Results on Capacitated Problem 

Data Our tabu-based 
approach 

TT=2   TT=4    TT=6 

Abdullah 
et al, 
2006 

Merlot 
et al, 
2003 

Di Gaspero 
and Schaerf, 

2001 

Caramia 
et al, 
2001 

Burke et 
al, 

1996a 
car-f-92 278 284 314 525 158 242 268 331 

car-s-91 37 48 72 47 31 88 74 81 

kfu-s-93 548 616 569 206 247 512 912 974 

tre-s-92 0 0 1 4 0 4 2 3 

uta-s-92 300 300 346 310 334 554 680 772 

nott-94 18 21 32 - 2 11 44 53 

Note: TT = Tabu tenure 
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