
MIC2005: The Sixth Metaheuristics International Conference ???-1

 Vienna, Austria, August 22–26, 2005

A Randomised Iterative Improvement Algorithm with

Composite Neighbourhood Structures for University Course

Timetabling

Salwani Abdullah* Edmund K. Burke* Barry McCollum†

*Automated Scheduling, Optimisation and Planning Research Group, School of Computer
Science & Information Technology, University of Nottingham, Jubilee Campus, Wollaton Road,

Nottingham NG8 1BB, United Kingdom
��������	
�������������

†Department of Computer Science, Queen’s University Belfast, Belfast BT7 1NN United
Kingdom

 ����������
����������

Extended Abstract

1 Introduction

The general course timetabling problem consists of assigning courses to a specific timeslot and
room. The goal is to satisfy as many soft constraints as possible while constructing a feasible
schedule (i.e. one that satisfies all the hard constraints). In this paper, we present a composite
neighbourhood structure with a randomised iterative improvement algorithm. Many relevant
publications can be found in the literature. For example, see the volumes of papers from the
international conferences on the Practice and Theory of Automated Timetabling (in Burke and
Ross 1996, Burke and Carter 1998, Burke and Erben 2001 and Burke and Causmaecker 2003).
Comprehensive surveys on timetabling can be found in de Werra (1985), Burke et al. (1997),
Schaerf (1999), Burke and Petrovic (2002) and Petrovic and Burke (2004). The approach that
we present in this abstract is tested over eleven benchmark datasets. The results demonstrate that
our approach is able to produce solutions that are better than others that appear in the literature.

2 The Problem

Course timetabling problem is subject to a variety of hard and soft constraints. Hard constraints
need to be satisfied in order to produce a feasible solution. In this paper, we will test our
approach on the problem instances introduced by Socha et al. (2002) who present the following
hard constraints:

???-2 MIC2005: The Sixth Metaheuristics International Conference

Vienna, Austria, August 22–26, 2005

• No student can be assigned to more than one course at the same time.

• The room should satisfy the features required by the course.

• The number of students attending the course should be less than or equal to the
capacity of the room.

• No more than one course is allowed at a timeslot in each room.

Socha et al. (2002) present the following soft constraints that are equally penalized and we aim
to minimise the penalty:

• A student has a course scheduled in the last timeslot of the day.

• A student has more than 2 consecutive courses.

• A student has a single course on a day.

The problem has

• A set of N courses, e = {e1,…,eN}

• 45 timeslots (5 days with 9 timeslots each day)

• A set of R rooms

• A set of F room features

• A set of M students.

The objective of this problem is to satisfy the hard constraints and to minimise the violation of
the soft constraints. This extended abstract is organised as follows: a problem description is
presented in Section 2. The description of the composite neighbourhood structure applied to the
randomised iterative improvement algorithm is presented in Section 3. The experiments and
results are discussed in Section 4. Brief conclusions are drawn in Section 5.

3 The Randomised Iterative Improvement Algorithm

3.1 Initial Solution

The initial solution is produced using a constructive heuristic which starts from an empty
timetable. This feasible solution is obtained by adding or removing appropriate events (courses)
from the schedule based on room availability (we attempt to schedule those courses with the
least room availabilities earlier on in the process), without taking into account any of the soft
constraints, until the hard constraints are met. This constructive heuristic behaves likes a
saturation degree heuristic (see Carter and Laporte, 1996). The schedule is made feasible before
starting the algorithms.

3.2 The Neighbourhood Structures

We implemented the following neighbourhood structures to be used in our algorithm. We first
presented N1-N8 in Abdullah et al. (2005) but we reproduce them here (along with three extra

MIC2005: The Sixth Metaheuristics International Conference ???-3

 Vienna, Austria, August 22–26, 2005

structures for completeness and clarity):

N1: Select a course at random and find another course at random which can swap
timeslots.

N2: Choose a single course at random and move to another random feasible timeslot.

N3: Select two timeslots at random and simply swap all courses in one timeslot with all
courses in the other timeslot.

 N4: Move a timeslot. Take 2 timeslots (selected at random), say ti and tj (where j>i) and
the timeslots are ordered t1, t2, …, t45. Take all the exams in ti and allocate them to tj.
Now take the exams that were in tj and allocate them to tj-1. Then allocate those that
were in tj-1 to tj-2 and so on until we allocate those that were in ti+1 to ti and terminate
the process.

 N5: Move highest penalty course from a random 10% selection of the courses to a random
feasible timeslot.

 N6: Move highest penalty course from a random 20% selection of the courses to a random
feasible timeslot.

 N7: Move the highest penalty course (i.e. a course with the highest number of soft
constraint violations). Take 10% of the courses at random. Then select the one with
the highest penalty cost and allocate it to the timeslot which generates the lowest
penalty and which does not create an infeasibility.

N8: Move highest penalty course from a random 20% selection of the courses (as in (N7)).

N9: Select one course at random, select a timeslot at random (distinct from the one that
was assigned to the selected course) and then apply the kempe chain from Thompson
and Dowsland (1996).

N10: This is the same as N9 except we select the highest penalty course from 5% selection
of the courses at random.

N11: As N10 but with 20% of the courses.

In order to maintain the feasibility of the solution, the room allocation of courses in each
timeslot (after a kempe chain operation) cannot exceed the space available and, of course,
courses in each timeslot should be scheduled in different rooms.

3.3 The Algorithm

For the approach presented in this paper, we apply a set of the neighbourhood structures as in
subsection 3.1. The hard constraints are never violated during the course of the timetabling
process. Figure 1 shows a schematic overview of the approach. The algorithm starts with a
feasible initial solution which is generated by a constructive heuristic. Let K be the total number
of neighbourhood structures to be used in the search (K is set to be 11 in this implementation)
and f(Sol) is the quality measure of the solution Sol. At the start, the best solution, Solbest and the

???-4 MIC2005: The Sixth Metaheuristics International Conference

Vienna, Austria, August 22–26, 2005

previous solution, Solprev are set to be Sol. In a do-while loop each neighbourhood i where i ∈
{1,…,K} is applied to the Sol to obtain TempSoli. The best solution among TempSoli is identified,
and is set to be the new solution Sol*. If Sol* is better than the best solution in hand Solbest, then
Sol* is accepted. Otherwise the exponential monte carlo acceptance criteria is applied (see Ayob
and Kendall 2003). Exponential monte carlo is only based on the solution quality. It accepts a
worse solution with a certain probability. For example, given the old and new solutions as Sol
and Sol*, respectively. The new solution Sol* is accepted if a generated random number in [0,1]
is less than e-δ where δ = f(Sol*)–f(Sol). The increasing value of δ will decrease the probability
of accepting worse solutions. The details on the exponential monte carlo can be found in Ayob
and Kendall (2003).

Figure 1. The pseudo code for the randomised iterative improvement algorithm for course
timetabling

4 Experiments and Results

The proposed method was tested on the benchmark course timetabling problems presented by
Socha et al. (2002). They are grouped into 5 small (N = 100, R = 5, F = 5 and M = 80), 5
medium (N = 400, R = 10, F = 10 and M = 200) and one large problems (N = 400, R = 10, F =
10 and M = 400). The approach is coded in Microsoft Visual C++ version 6 under Windows.
The experiments were run on the Athlon machine with a 1.2GHz processor and 256 MB RAM
running under Microsoft Windows 2000 version 5. The number of evaluations for our approach

Set the initial solution Sol by employing a constructive heuristic;
Calculate initial cost function f(Sol);
Set best solution Solbest ← Sol;
do while (not termination criteria)

for i = 1 to i= K where K is the total number of neighbourhood structures
Apply neighbourhood structure on Sol, TempSoli;
Calculate cost function f(TempSoli);
Find the best solution among TempSoli where i ∈ {1,…,K} call new solution
Sol*;
if (f(Sol*) < f(Solbest))

Sol ← Sol*;
Solbest ← Sol*;

else
δ = f(Sol*) - f(Sol));
Generate RandNum, a random number in [0,1];
if (RandNum < e-δ) then Sol ← Sol*;

end for
end do;

MIC2005: The Sixth Metaheuristics International Conference ???-5

 Vienna, Austria, August 22–26, 2005

is 200000 (as in Socha et al. 2002). The evaluation will terminate if the penalty cost is zero or
the number of evaluations is 200000. The best and average results out of 5 runs obtained are
presented. Table 1 shows the comparison of our approach with other available approaches in the
literature i.e. a local search method and ant algorithm by Socha et al. (2002), a tabu-search
hyperheuristic by Burke et al. (2003), a graph hyperheuristic by Burke et al. (2005) and a
variable neighbourhood search (VNS) with a tabu list by Abdullah et al. (2005). The term
“x%Inf” in Table 1 indicates a proportion of runs that failed to obtain feasible solutions.

Table 1: Comparison results on course timetabling problem

Our method

Dataset

Initial
solution

Best

Average

VNS with

tabu list
(Best)

Local

search
(Average)

Ant

algorithm
(Average)

Tabu
based hyper

-heuristic
(Best)

Graph
hyper

-heuristic
(Best)

small1 261 0 0 0 8 1 1 6

small2 245 0 0 0 11 3 2 7

small3 232 0 0 0 8 1 0 3

small4 158 0 0 0 7 1 1 3

small5 421 0 0 0 5 0 0 4

medium1 914 242 245 317 199 195 146 372

medium2 878 161 162.6 313 202.5 184 173 419

medium3 941 265 267.8 357 77.5% Inf 248 267 359

medium4 865 181 183.6 247 177.5 164.5 169 348

medium5 780 151 152.6 292 100% Inf 219.5 303 171

large 100%Inf. 100%
Inf

100%Inf 100%Inf 100% Inf 851.5 80% Inf 1166 1068

In terms of feasibility, our approach is able to produce ten out of eleven feasible solutions (as in
our previous paper in Abdullah et al., 2005), whereas Socha et al.’s local search only produced
nine feasible solutions (with two infeasible solutions for the medium4 and large datasets). The
best results are presented in bold. In general, we obtained better than or equal results on seven
datasets. We believe that we can obtain better solutions in these experiments (particularly on the
smaller problems) because the composite neighbourhood structures offer some flexibility for the
search algorithm to explore different regions of the solution space.

5 Conclusion and Future Work

The overall goal of this paper was to investigate a composite neighbourhood structure with a
randomised iterative improvement algorithm for the course timetabling problem. Preliminary
comparisons indicate that our approach is competitive with other approaches in the literature.
Our future work will try to tackle real world datasets in course timetabling.

???-6 MIC2005: The Sixth Metaheuristics International Conference

Vienna, Austria, August 22–26, 2005

References

[1] Abdullah S, Burke EK and McCollum B (2005) An investigation of variable
neighbourhood search for university course timetabling. Accepted for publication in The
2nd Multidisciplinary International Conference on Scheduling: Theory and Applications
(MISTA 2005).

[2] Ayob M and Kendall G (2003) A monte carlo hyper-heuristic to optimise component
placement sequencing for multi head placement machine. Proc. Of the International
Conference on Intelligent Technologies, InTech’03, pp 132-141.

[3] Burke EK and Ross P, editors, (1996) Practice and Theory of Automated Timetabling I,
volume 1153 of Lecture Notes in Computer Science. Springer-Verlag.

[4] Burke EK, Jackson KS, Kingston JH and Weare RF (1997) Automated timetabling: The
state of the art, The Computer Journal, volume 40, No. 9, pp 565-571.

[5] Burke EK and Carter MW, editors, (1998) Practice and Theory of Automated Timetabling
II, volume 1408 of Lecture Notes in Computer Science. Springer-Verlag.

[6] Burke EK and Erben W, editors, (2001) Practice and Theory of Automated Timetabling III,
volume 2079 of Lecture Notes in Computer Science. Springer-Verlag.

[7] Burke EK and De Causmaecker P, editors, (2003) Practice and Theory of Automated
Timetabling IV, volume 2740 of Lecture Notes in Computer Science. Springer-Verlag.

[8] Burke EK and Petrovic S (2002) Recent research direction in automated timetabling.
European Journal of Operational Research 140, pp 266-280.

[9] Burke EK, Kendall G and Soubeiga E (2003) A tabu search hyperheuristic for timetabling
and rostering. Journal of Heuristics 9(6), pp 451-470.

[10] Burke EK, Meisels A, Petrovic S and Qu R (2005) A graph-based hyper heuristic for
timetabling problems. Accepted for publication in the European Journal of Operational
Research.

[11] Carter, M.W. and Laporte, G. (1996) Recent developments in practical examination
timetabling. In [3], pp 3-21.

[12] de Werra D (1985) An introduction to timetabling. European Journal of Operations
Research 19, pp 151-162.

[13] Petrovic S and Burke EK (2004) University timetabling, Ch. 45 in the Handbook of
Scheduling: Algorithms, Models, and Performance Analysis (eds. J. Leung), Chapman
Hall/CRC Press.

[14] Schaerf A (1999) A survey of automated timetabling. Artificial Intelligence Review 13(2),
pp 87-127.

[15] Socha K, Knowles J and Samples M (2002) A max-min ant system for the university course
timetabling problem. Proceedings of the 3rd International Workshop on Ant Algorithms,
ANTS 2002, Lecture Notes in Computer Science 2463 (10), pp 1-13.

[16] Thompson J and Dowsland K (1996) Various of simulated annealing for the examination
timetabling problem. Annals of Operational Research 63, pp 105-128.

