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Extended Abstract 

1 Introduction 

The general course timetabling problem consists of assigning courses to a specific timeslot and 
room. The goal is to satisfy as many soft constraints as possible while constructing a feasible 
schedule (i.e. one that satisfies all the hard constraints). In this paper, we present a composite 
neighbourhood structure with a randomised iterative improvement algorithm. Many relevant 
publications can be found in the literature. For example, see the volumes of papers from the 
international conferences on the Practice and Theory of Automated Timetabling (in Burke and 
Ross 1996, Burke and Carter 1998, Burke and Erben 2001 and Burke and Causmaecker 2003). 
Comprehensive surveys on timetabling can be found in de Werra (1985), Burke et al. (1997), 
Schaerf (1999), Burke and Petrovic (2002) and Petrovic and Burke (2004). The approach that 
we present in this abstract is tested over eleven benchmark datasets. The results demonstrate that 
our approach is able to produce solutions that are better than others that appear in the literature. 

2 The Problem 

Course timetabling problem is subject to a variety of hard and soft constraints. Hard constraints 
need to be satisfied in order to produce a feasible solution. In this paper, we will test our 
approach on the problem instances introduced by Socha et al. (2002) who present the following 
hard constraints: 
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• No student can be assigned to more than one course at the same time. 

• The room should satisfy the features required by the course. 

• The number of students attending the course should be less than or equal to the 
capacity of the room. 

• No more than one course is allowed at a timeslot in each room. 

Socha et al. (2002) present the following soft constraints that are equally penalized and we aim 
to minimise the penalty: 

• A student has a course scheduled in the last timeslot of the day. 

• A student has more than 2 consecutive courses. 

• A student has a single course on a day. 

The problem has 

• A set of N courses, e = {e1,…,eN} 

• 45 timeslots (5 days with 9 timeslots each day) 

• A set of R rooms 

• A set of F room features 

• A set of M students. 

The objective of this problem is to satisfy the hard constraints and to minimise the violation of 
the soft constraints. This extended abstract is organised as follows: a problem description is 
presented in Section 2. The description of the composite neighbourhood structure applied to the 
randomised iterative improvement algorithm is presented in Section 3. The experiments and 
results are discussed in Section 4. Brief conclusions are drawn in Section 5. 

3 The Randomised Iterative Improvement Algorithm 

3.1 Initial Solution 

The initial solution is produced using a constructive heuristic which starts from an empty 
timetable. This feasible solution is obtained by adding or removing appropriate events (courses) 
from the schedule based on room availability (we attempt to schedule those courses with the 
least room availabilities earlier on in the process), without taking into account any of the soft 
constraints, until the hard constraints are met. This constructive heuristic behaves likes a 
saturation degree heuristic (see Carter and Laporte, 1996). The schedule is made feasible before 
starting the algorithms. 

3.2 The Neighbourhood Structures 

We implemented the following neighbourhood structures to be used in our algorithm. We first 
presented N1-N8 in Abdullah et al. (2005) but we reproduce them here (along with three extra 
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structures for completeness and clarity): 

N1: Select a course at random and find another course at random which can swap 
timeslots. 

N2: Choose a single course at random and move to another random feasible timeslot. 

N3: Select two timeslots at random and simply swap all courses in one timeslot with all 
courses in the other timeslot. 

 N4: Move a timeslot. Take 2 timeslots (selected at random), say ti and tj (where j>i) and 
the timeslots are ordered t1, t2, …, t45. Take all the exams in ti and allocate them to tj. 
Now take the exams that were in tj and allocate them to tj-1. Then allocate those that 
were in tj-1 to tj-2 and so on until we allocate those that were in ti+1 to ti and terminate 
the process.   

 N5: Move highest penalty course from a random 10% selection of the courses to a random 
feasible timeslot. 

 N6: Move highest penalty course from a random 20% selection of the courses to a random 
feasible timeslot. 

 N7: Move the highest penalty course (i.e. a course with the highest number of soft 
constraint violations). Take 10% of the courses at random. Then select the one with 
the highest penalty cost and allocate it to the timeslot which generates the lowest 
penalty and which does not create an infeasibility.   

N8: Move highest penalty course from a random 20% selection of the courses (as in (N7)). 

N9: Select one course at random, select a timeslot at random (distinct from the one that 
was assigned to the selected course) and then apply the kempe chain from Thompson 
and Dowsland (1996). 

N10: This is the same as N9 except we select the highest penalty course from 5% selection 
of the courses at random. 

N11: As N10 but with 20% of the courses. 

In order to maintain the feasibility of the solution, the room allocation of courses in each 
timeslot (after a kempe chain operation) cannot exceed the space available and, of course, 
courses in each timeslot should be scheduled in different rooms.  

3.3 The Algorithm 

For the approach presented in this paper, we apply a set of the neighbourhood structures as in 
subsection 3.1. The hard constraints are never violated during the course of the timetabling 
process. Figure 1 shows a schematic overview of the approach. The algorithm starts with a 
feasible initial solution which is generated by a constructive heuristic. Let K be the total number 
of neighbourhood structures to be used in the search (K is set to be 11 in this implementation) 
and f(Sol) is the quality measure of the solution Sol. At the start, the best solution, Solbest and the 
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previous solution, Solprev are set to be Sol. In a do-while loop each neighbourhood i where i ∈ 
{1,…,K} is applied to the Sol to obtain TempSoli. The best solution among TempSoli is identified, 
and is set to be the new solution Sol*. If Sol* is better than the best solution in hand Solbest, then 
Sol* is accepted. Otherwise the exponential monte carlo acceptance criteria is applied (see Ayob 
and Kendall 2003). Exponential monte carlo is only based on the solution quality. It accepts a 
worse solution with a certain probability. For example, given the old and new solutions as Sol 
and Sol*, respectively. The new solution Sol* is accepted if a generated random number in [0,1] 
is less than e-δ where δ = f(Sol*)–f(Sol). The increasing value of δ will decrease the probability 
of accepting worse solutions. The details on the exponential monte carlo can be found in Ayob 
and Kendall (2003).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The pseudo code for the randomised iterative improvement algorithm for course 
timetabling 

4 Experiments and Results 

The proposed method was tested on the benchmark course timetabling problems presented by 
Socha et al. (2002). They are grouped into 5 small (N = 100, R = 5, F = 5 and M = 80), 5 
medium (N = 400, R = 10, F = 10 and M = 200) and one large problems (N = 400, R = 10, F = 
10 and M = 400). The approach is coded in Microsoft Visual C++ version 6 under Windows. 
The experiments were run on the Athlon machine with a 1.2GHz processor and 256 MB RAM 
running under Microsoft Windows 2000 version 5. The number of evaluations for our approach 

Set the initial solution Sol by employing a constructive heuristic; 
Calculate initial cost function f(Sol); 
Set best solution Solbest ← Sol; 
do while (not termination criteria) 

for i = 1 to i= K where K is the total number of neighbourhood structures 
Apply neighbourhood structure on Sol, TempSoli; 
Calculate cost function f(TempSoli); 
Find the best solution among TempSoli where i ∈ {1,…,K} call new solution 
Sol*; 
if (f(Sol*) < f(Solbest)) 

Sol ←  Sol*; 
Solbest ← Sol*; 

else 
δ = f(Sol*) -  f(Sol)); 
Generate RandNum, a random number in [0,1]; 
if (RandNum < e-δ ) then Sol ← Sol*; 

end for 
end do; 
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is 200000 (as in Socha et al. 2002). The evaluation will terminate if the penalty cost is zero or 
the number of evaluations is 200000. The best and average results out of 5 runs obtained are 
presented. Table 1 shows the comparison of our approach with other available approaches in the 
literature i.e. a local search method and ant algorithm by Socha et al. (2002), a tabu-search 
hyperheuristic by Burke et al. (2003), a graph hyperheuristic by Burke et al. (2005) and a 
variable neighbourhood search (VNS) with a tabu list by Abdullah et al. (2005). The term 
“x%Inf” in Table 1 indicates a proportion of runs that failed to obtain feasible solutions.  

Table 1: Comparison results on course timetabling problem 

 
Our method 

 
 

 
Dataset 

 
 

Initial 
solution 

 
Best 

 
Average 

 
VNS with 

tabu list 
(Best) 

 
Local 

search 
(Average) 

 
Ant 

algorithm 
(Average) 

Tabu 
based hyper 

-heuristic 
(Best) 

Graph 
hyper 

-heuristic 
(Best) 

small1 261 0 0 0 8 1 1 6 

small2 245 0 0 0 11 3 2 7 

small3 232 0 0 0 8 1 0 3 

small4 158 0 0 0 7 1 1 3 

small5 421 0 0 0 5 0 0 4 

medium1 914 242 245 317 199 195 146 372 

medium2 878 161 162.6 313 202.5 184 173 419 

medium3 941 265 267.8 357 77.5% Inf 248 267 359 

medium4 865 181 183.6 247 177.5 164.5 169 348 

medium5 780 151 152.6 292 100% Inf 219.5 303 171 

large 100%Inf. 100%
Inf 

100%Inf 100%Inf 100% Inf 851.5 80% Inf 1166 1068 

 

In terms of feasibility, our approach is able to produce ten out of eleven feasible solutions (as in 
our previous paper in Abdullah et al., 2005), whereas Socha et al.’s local search only produced 
nine feasible solutions (with two infeasible solutions for the medium4 and large datasets). The 
best results are presented in bold. In general, we obtained better than or equal results on seven 
datasets. We believe that we can obtain better solutions in these experiments (particularly on the 
smaller problems) because the composite neighbourhood structures offer some flexibility for the 
search algorithm to explore different regions of the solution space.  

5 Conclusion and Future Work 

The overall goal of this paper was to investigate a composite neighbourhood structure with a 
randomised iterative improvement algorithm for the course timetabling problem. Preliminary 
comparisons indicate that our approach is competitive with other approaches in the literature. 
Our future work will try to tackle real world datasets in course timetabling. 
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