

AN INVESTIGATION OF VARIABLE NEIGHBOURHOOD SEARCH
FOR UNIVERSITY COURSE TIMETABLING

SALWANI ABDULLAH1, EDMUND K. BURKE1 AND BARRY MCCOLLUM2

1Automated Scheduling, Optimization and Planning Research Group, School of Computer Science & Information

Technology, University of Nottingham, Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, United Kingdom.

{sqa@cs.nott.ac.uk,ekb@cs.nott.ac.uk}
2Department of Computer Science, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom

{b.mccollum@qub.ac.uk}

Abstract: The university course timetabling problem consists, in essence, of assigning lectures to a specific timeslot

and room. The goal is to satisfy as many soft constraints as possible while constructing a feasible schedule. In

this paper, we present a variable neighbourhood search approach with an exponential monte carlo acceptance

criteria. This heuristic search approach is based on random-descent local search. The solution returned after

exploring a neighbourhood structure is accepted based on the exponential monte carlo criteria. The approach

is tested over eleven established datasets. The results demonstrate that the variable neighbourhood search

approach is able to produce solutions that are competitive with state-of-the-art techniques from the literature.

Key words: Course Timetabling, Variable Neighbourhood Search

mailto:ekb@cs.nott.ac.uk
mailto:sqa@cs.nott.ac.uk

1. INTRODUCTION
Local search meta-heuristics are some of the most popular approaches in solving challenging

optimisation problems including course timetabling (see, for example, Burke et al. 2003, Socha et al.
2002 and Di Gaspero and Schaerf 2002). It is beyond the scope of this paper to review the extensive
literature on course timetabling but the interested reader can consult the following survey / overview
papers (de Werra 1985, Schaerf 1999, Bardadym 1996, Burke et al. 1997, Carter and Laporte 1998,
Burke and Petrovic 2002, Petrovic and Burke 2004 and Burke et al. 2004a). The success of finding
good solutions for these problems is determined by the technique itself and the neighbourhood
structure employed during the search. Ahuja et al. (2000) in their paper highlighted the importance of
the neighbourhood structure in the local or neighbourhood search. They said,

“A critical issue in the design of a neighbourhood search approach is the choice of

the neighbourhood structure that is the manner in which the neighbourhood is
defined.”

Some techniques in the literature, like simulated annealing and tabu search, generally use a single

neighbourhood structure throughout the search and focus more on the parameters that affect the
acceptance of the moves rather than the neighbourhood structure. Thompson and Dowsland (1996,
1998) discussed how the choice of the neighbourhood structure affects the quality of solutions
obtained for examination timetabling. The objective of this paper is to analyse the importance of
different neighbourhood structures for course timetabling problem. We present and discuss a Variable
Neighbourhood Search (VNS) approach to the problem.

In this paper, we consider the same course timetabling problem as described in Rossi-Dario et al.
(2002) and Socha et al., (2002). The problem consists of:
• A set of N courses
• 45 timeslots (5 days with 9 timeslots each day)
• A set of R rooms
• A set of F room features
• A set of M students.

It deals with a set of courses e = {e1,…,eN} that need to be mapped to 45 timeslots subject to a
variety of hard and soft constraints. Hard constraints should not be violated under any circumstances
and we call a timetable while satisfies all such constraints a feasible solution. Socha et al. (2002)
present the following hard constraints:
1. No student can be assigned to more than one course at the same time.
2. The room should satisfy the features required by the course.
3. The number of students attending the course should be less than or equal to the capacity of the

room.
4. No more than one course is allowed at a timeslot in each room.

Socha et al. (2002) present the following soft constraints that are penalised equally.
1. A student has a course scheduled in the last timeslot of the day.

2. A student has more than 2 consecutive courses.
3. A student has a single course on a day.

The objective of this problem is to minimize the number of soft constraint violations (i.e. a penalty
cost) in a feasible solution.

This paper is organised as follows: the basic algorithm of VNS is discussed in the next section.
The implementation of VNS to course timetabling is discussed in Section 3 followed by a discussion
on the experiments and results in Section 4. Brief conclusions are drawn in Section 5.

2. VARIABLE NEIGHBOURHOOD SEARCH (VNS)
VNS was introduced by Mladevonić and Hansen (1997). It is based upon the strategy of using

more than one neighbourhood structure and of changing those structures systematically during the
local search. This helps the VNS to explore neighbourhoods which are distant from the current
solution and to jump to new solutions.

The basic VNS is made up of three stages: shaking, local search and move. More details can be
found in Hansen and Mladenović (2001). A local search is applied repeatedly to obtain the local
optima from the current solution (Mladenović and Hansen, 1997). Originally the basic VNS approach
was a descent method. It does not accept a worsening solution to get out of local optima since the
neighbourhood structures are varied regularly. Since the local optima in one neighbourhood structure
is not necessarily a local optima in another neighbourhood structure, the change of the neighbourhood
structures can be undertaken during the search. The termination criteria may be selected as a
maximum number of iterations, the CPU time or a certain number of iterations without improvement.

Recently, research interest in the VNS approach has increased. For example Burke et al. (2004b)
investigated VNS for nurse rostering problems where they employed two different search algorithms
(steepest-descent and tabu search) implemented on a set of defined neighbourhood structures.
Avanthay et al. (2003) implemented an adaptation of VNS for the graph colouring problem using the
Tabucol algorithm (Hertz and Werra, 1987) as a local search employed on three neighbourhood
structures (vertex, class and non-increasing neighbourhood). Other related works on VNS applied on a
number of different problems can be found in Moreno Pérez et al. (2003), Mladenović et al. (2003),
Hansen et al. (2001) and Caporossi and Hansen (2000).

3. VNS FOR COURSE TIMETABLING
This section discusses the applications of the basic VNS (referred to hereafter as VNS-Basic) and

the modified VNS with exponential monte carlo acceptance criteria at the VNS level (referred to
hereafter as VNS-EMC). The motivation for applying a monte carlo acceptance criteria is to better
explore the search space.

3.1 Initial Solution: Constructive Heuristic
The initial solution is produced using a constructive heuristic which starts from an empty

timetable. This feasible solution is obtained by adding or removing appropriate events (courses) from
the schedule based on room availability (we attempt to schedule those courses with the least room

availabilities earlier on in the process), without taking into account any of the soft constraints, until the
hard constraints are met. This constructive heuristic behaves likes a saturation degree heuristic (see
Carter and Laporte, 1996). The schedule is made feasible before starting the algorithms.

3.2 Local Search
A local search heuristic explores the neighbourhood at the present solution by iteratively

performing local changes in order to improve the quality of a solution until a local optima (the best
solution(s) in the defined neighbourhood) is found. In this paper, we develop a random-descent local
search that only accepts an improved solution after exploring the nearest neighbours in the defined
neighbourhood structure.

3.3 Acceptance Criteria for VNS
In this work, we use two acceptance criteria to be applied at the VNS level. The motivation for

applying acceptance criteria at the VNS level is to jump to other distant solution points by accepting
worse solutions (i.e. case (b)).
a) Descent: It only accepts an improved solution.
b) Exponential monte carlo: This is quite similar to the acceptance criteria of simulated annealing but

we do not need a cooling schedule. Exponential monte carlo is only based on the solution quality
(no tuning parameters are needed). It accepts a worse solution with a certain probability. Let us
denote the old and new solutions by s and s’, respectively. The quality of the old and new
solutions can be represented as f(s) and f(s’), respectively. The new solution s’ is accepted if a
generated random number [0,1] is less than e-δ where δ = f(s’) – f(s). Increasing the value of δ will
decrease the probability of accepting a worse solution. More details on the exponential monte
carlo can be found in Ayob and Kendall (2003).

3.4 Neighbourhood Structures within VNS
We implemented the following neighbourhood structures to be used at the local search level:

(1) Move timeslot. Take 2 timeslots (selected at random), say ti and tj (where j>i) and the timeslots
are ordered t1, t2, …, t45. Take all the exams in ti and allocate them to tj. Now take the exams that
were in tj and allocate them to tj-1. Then allocate those that were in tj-1 to tj-2 and so on until we
allocate those that were in ti+1 to ti and terminate the process.

(2) Move the highest penalty course (i.e. a course with the highest number of soft constraint
violations). Take 10% of the courses at random. Then select the one with the highest penalty
cost and allocate it to the timeslot which generates the lowest penalty and which does not create
an infeasibility.

(3) Move the highest penalty course from a random 30% selection of the courses to a random
feasible timeslot.

(4) Move the highest penalty course from a random 20% selection of the courses to a random
feasible timeslot.

(5) Move highest penalty course from a random 10% selection of the courses to a random feasible
timeslot.

(6) Select a course at random and find another course at random which can swap timeslots.
(7) Choose single course at random and move to another random feasible timeslot.
(8) Move 2 courses to random feasible timeslots.
(9) Move 3 courses (as in (8)).
(10) Move 4 courses (as in (8)).
(11) Move 5 courses (as in (8)).
(12) Select two timeslots at random and simply swap all courses in one timeslot with all courses in

the other timeslot.
The neighbourhood structure described in (1) is implemented before we apply the VNS approach.

This neighbourhood structure allows courses to be moved relative to each other except for courses that
are scheduled in the same timeslot.

3.5 The VNS Algorithm
For the approach presented in this paper, we apply the set of neighbourhood structures as

presented in subsection 3.3. Hard constraints are never violated during the course of the timetabling
process.

Let nk (where k = 1,…,K) be a set of predefined neighbourhood structures. Note that K is the total
number of neighbourhood structures to be used in the search. Let f(s) be the quality of the solution s.
The local search starts by randomly generating a solution s’ from the kth neighbourhood. Starting from
the initial solution s’, the local search sequentially visits the kth neighbourhood of s’ until a local
optima s” is obtained. The solution s” is accepted if f(s”) is better than f(s). This algorithm will also
accept a worse solution with a certain probability that is generated from the exponential monte carlo
acceptance criteria. Whenever a neighbourhood structure generates a better solution (or an accepted
worse solution), the search starts over from the first neighbourhood. Otherwise, the next
neighbourhood is employed. Based on our initial tests with the neighbourhood ordering for the course
timetabling problem, we note that the best sequence of the neighbourhood structures is to order them
in an increasing size. An increasing size-based neighbourhood structure ordering has also been
experimented with in Burke et al. (2004b) where the authors claim that this ordering represents a
strong approach in VNS when applied to nurse rostering problem. Figure 1 shows a schematic
overview of the approach.

Initialisation:
(1) Select the set of neighbourhood structure nk, k=1,…,K

that will be used in the random descent local search;
find the initial solution s; choose a termination
criteria;

(2) Record the best solution sbest ← s and f(sbest) ← f(s);
Repeat until the termination criteria is met:
(1) Set k ← 1;
(2) Until k = K, repeat:
(a) Shaking: Generate a point s’ at random from the kth

neighbourhood of s (s’∈ n (s)); k
(b) Local search: Apply a random-descent local search with

s’ as an initial solution until local optima s” is
obtained.

(c) Move or not: Accept s” (s ← s”) if it is better than
incumbent solution s. Set sbest ← s and continue the
search with n1;

 otherwise,
 if f(s”) is accepted by the acceptance criteria,
then

s ← s”;
Continue the search with n1;

 otherwise
Set k ←k+1

Figure 1: Pseudo code of a modified VNS for course timetabling problem

 We further investigate the performance of VNS by adding a tabu list (Glover and Laguna 1993,
1997), to penalize neighbourhood structures that are not performed. We apply a tabu restriction where
the neighbourhood structure will be tabu active if the new solution obtained is greater than the old
solution and it is rejected by the exponential monte carlo acceptance criteria. The basic idea of the tabu
list is to prevent a neighbourhood structure that did not perform well recently from being chosen in the
next evaluations, so that we can direct the search to other possible areas of the search space. Based on
our preliminary tests, the tabu tenure is set to be 2. A higher value of the tabu tenure is not appropriate
in our case because we keep neighbourhood structures in the tabu list instead of moves. The higher the
value of the tabu tenure, the longer the neighbourhood structures remain tabu, which will limit the
number of the available neighbourhood structures to be used in the next evaluation in the VNS
approach. The neighbourhood structures will remain tabu active for a number of evaluations which is
equal to a tabu tenure. We call this approach VNS-Tabu. The pseudo code for VNS-Tabu is given in
Figure 2.

Initialisation:
(1) Select the set of neighbourhood structure nk, k=1,…,K

that will be used in the random descent local search;
find the initial solution s; choose a termination
criteria;

(2) Record the best solution sbest ← s and f(sbest) ← f(s);

Repeat until the termination criteria is met:
(1) Set k ← 1;
(2) Until k = K, repeat:
(a) Shaking: Generate a point s’ at random from the kth

neighbourhood of s (s’∈ nk(s));
(b) Local search: Apply a random-descent local search with

s’ as an initial solution until local optima s” is
obtained.

(c) Move or not:
if f(s”) is better then incumbent solution s or f(s”)
is accepted by the acceptance criteria, then

s ← s”
set k ← 1;
while k is in the tabulist

k ← k+1;
continue the search with nk;

otherwise
insert k to the tabulist;
set k ← k+1;
while k is in the tabulist

k ← k+1;

Figure 2: The pseudo code for VNS-Tabu

4 EXPERIMENTS AND RESULTS
The proposed method was tested on benchmark course timetabling problems from Socha et al.

(2002) that are grouped into 5 small (N = 100, R = 5, F = 5 and M = 80) and 5 medium (N = 400, R =
10, F = 10 and M = 200) problems. We did not apply our VNS approach to the large dataset (N = 400,
R = 10, F = 10 and M = 400) from Socha et al. (2002) since our constructive heuristic is unable to
produce a feasible solution for this dataset. In Table 1, the test results on the benchmark course
timetabling problems are presented for two types of variable neighbourhood search (i.e. VNS-Basic
and VNS-EMC) “with and without ordering” of the neighbourhood structure. For the case of “without
ordering”, the VNS will continue the search with the current neighbourhood if it yields an
improvement rather than going back to the first (set k = 1) neighbourhood structure (as in “with
ordering” VNS) each time an improvement is found (or if the worse solution is accepted by the
acceptance criteria). For instance, let k = 5 represent the current neighbourhood. The local optima
obtained from this neighbourhood structure will be compared to the incumbent solution. If there is an
improvement in the solution, then we repeat the search at k = 5. Otherwise we move to the next
neighbourhood structure (represented by k = 6). This allows the next neighbourhood to be simply
considered in the next search without needing to tune the sequence of the neighbourhood to determine

which neighbourhood will be employed. The motivation of this comparison is to see whether the
sequence of neighbourhood structures plays a role in the VNS approach. We also make a comparison
between the two VNS approaches to investigate the importance of accepting a worse move in order to
jump to another part of the search space to obtain a better solution.
 The approaches are coded in Microsoft Visual C++ version 6 under Windows. All experiments
were run on an Athlon machine with a 1.2GHz processor and 256 MB RAM running under Microsoft
Windows 2000 version 5. The number of evaluations for our approaches is 200000 (as in Socha et al.,
2002) and the best results out of 5 runs obtained are presented.

Table 1: Results on course timetabling problem

With ordering VNS Without ordering VNS
Dataset

Initial
Solution VNS-Basic VNS-EMC VNS-Basic VNS-EMC

small1 261 8 0 19 1
small2 245 12 0 7 1
small3 232 8 0 11 1
small4 158 15 0 19 0
small5 421 5 0 5 0
medium1 914 418 338 445 347
medium2 878 414 337 413 354
medium3 941 441 384 462 390
medium4 865 381 299 406 324
medium5 780 390 307 416 315
large 100%Inf. - - - -

From Table 1, we can see that the “with ordering” VNS is better than or equal to the “without

ordering” VNS for both VNS-Basic and VNS-EMC (except for small2 and medium2 datasets for
VNS-Basic which is slightly higher). This shows that the ordering of the neighbourhood structure in
the VNS approach and which neighbourhood the search will initiate after obtaining a better solution
(or a worse accepted solution) is important. We believe this is because we give a chance for the search
approach to explore by using different neighbourhood structures which can lead to different search
spaces rather than letting the search approach employ the same neighbourhood structure until no more
improvement on the solution quality is obtained (i.e. where the next neighbourhood structure only be
employed on an unimproved solution). The results obtained from VNS-EMC are better than VNS-
Basic for both the “with and without ordering” cases. This shows that accepting worse solutions (as a
diversification strategy) helps the VNS approach to better explore the search space as suggested by
Glover and Laguna (1997). Figures 3a and b show the behaviour of our approach applied to the
medium2 and medium3 datasets on “with and without ordering” for VNS-EMC (to show the
importance of ordering). Figures 4a and b show the behaviour of the VNS-Basic and VNS-EMC
methods (for the case of “with ordering” VNS) on the small4 and small5 problems which indicates the
importance of accepting worse solution in order to obtain a better final solution.

medium2 (VNS-EMC)

0

200

400

600

800

1000

1 212 423 634 845 1056 1267 1478

Evaluations (x102)

Pe
na

lty
 C

os
t

With ordering
Without ordering

medium3 (VNS-EMC)

0

200

400

600

800

1000

1 212 423 634 845 1056 1267 1478

Evaluations (x102)

Pe
na

lty
 C

os
t

With ordering
Without ordering

Figure 3a and b: The behaviour of medium2 and medium3 datasets, respectively

small 4 (with ordering VNS)

0
20
40
60
80

100
120
140
160
180

1 4105 8209 12313 16417 20521 24625 28729

Evaluations

P
en

al
ty

 C
os

t

VNS-Basic
VNS-EMC

small5 (with ordering)

0
50

100
150
200
250
300
350
400
450

1 1495 2989 4483 5977 7471 8965 10459

Evaluations

P
en

al
ty

 C
os

t
VNS-Basic
VNS-EMC

Figure 4a and b: The behaviour of small4 and small5 datasets, respectively

 In all the figures, the x-axis represents the number of evaluations while the y-axis represents the
penalty cost. Every point in the graphs corresponds to the penalty cost and number of evaluations of a
separate solution. These graphs show how our algorithm explores the search space. In Figures 3a and b
(and also for Figures 4a and b for VNS-EMC), the curves move up and down because we accept worse
solutions with a certain probability in order to escape from local optima. The analysis of the graphs in
Figures 3a and b show that the slope of the curves is relatively steep which indicates the high
improvement in the quality of the solutions at the beginning of the search for both the “with and
without ordering” cases of VNS-EMC. The improvement of the solution becomes slower as the search
time increases but, with a good sequence of neighbourhood structures, the “with-ordering VNS” is
able to find the better solution compared to the “without ordering VNS”. This shows the importance of
the sequence of neighbourhood. The graph in Figures 4a and b also illustrates the same behaviour as in
Figures 3a and b at the early stage of the search with a high improvement in the solution quality.
However, VNS-Basic gets stuck in the local optima after a certain number of evaluations. Whilst, by
accepting worse solutions, the VNS-EMC is able to make further improvements and obtain a better
solution (i.e. zero penalty cost). This indicates how a diversification strategy (i.e. accepting worse
solutions) efficiently helps the technique to explore the search space.
 Table 2 shows the comparison of our approach with other available approaches in the literature: A
local search method and ant algorithm by Socha et al. (2002); a tabu-search hyperheuristic and a graph
hyperheuristic by Burke et al. (2003) and Burke et al. (2005), respectively. Socha et al. (2002) present
the average results out of 50 runs on the small problems, 40 runs on the medium problems and 10 runs
on the large problem for their local search and ant algorithm. The term “x%Inf” in Table 2 indicates a
percentage of runs that failed to obtain feasible solutions. The number of evaluations for both local
search and the ant algorithm by Socha et al. (2002) was approximately 200000. The number of
evaluations for the tabu-based hyperheuristic by Burke et al. (2003) was 12000 for the small problems,
1200 for the medium problems and 5400 for the large problem. Burke et al. (2005) did not note the
number of evaluations in their approach.

Table 2: Comparison results on course timetabling problem

Dataset

VNS-
EMC

Local search
(Socha et al.,

2002)

Ant
Algorithm

(Socha et al.,
2002)

Tabu-based
hyperheuristic
(Burke et al.,

2003)

Graph
hyperheuristic
(Burke et al.,

2005)

small1 0 8 1 1 6
small2 0 11 3 2 7
small3 0 8 1 0 3
small4 0 7 1 1 3
small5 0 5 0 0 4
medium1 338 199 195 146 372
medium2 326 202.5 184 173 419
medium3 384 77.5% Inf 248 267 359
medium4 299 177.5 164.5 169 348
medium5 307 100% Inf 219.5 303 171
large 100%Inf 100% Inf 851.5 80% Inf 1166 1068

The best results are presented in bold. In terms of feasibility, we can see that our approach was able to
produce ten out of eleven feasible solutions, whereas local search only produced nine feasible
solutions (with two infeasible solutions for the medium4 and large datasets). Other approaches are
able to produce feasible solutions for all datasets. It can be seen that our approach produces better or
equivalent results on small datasets when compared against all the other methods. Indeed, it is the only
approach which can get zero penalty solutions on all 5 small problems. For the medium datasets, our
results are comparable to the other results published in the literature except on the medium3 and
medium5 datasets, where our method performs quite poorly. We believe that our approach performs
well for small datasets because we might have more feasible solution points in our search space
compared to medium datasets. We believe that we should be more selective in choosing the
neighbourhood structures while solving the medium datasets.
 Table 3 shows the comparison of the results obtained from VNS-Tabu, VNS-EMC and the best
known results.

Table 3: The results on VNS-Tabu

Dataset VNS-Tabu VNS-EMC Best known

small1 0 0 1
small2 0 0 2
small3 0 0 0
small4 0 0 1
small5 0 0 0
medium1 317 338 146
medium2 313 326 173
medium3 357 384 248
medium4 247 299 164.5
medium5 292 307 171
large 100% Inf 100%Inf 851.5

 We are interested to compare the results from VNS-Tabu with our previous results to show that
the tabu list can help to minimize the objective function for this problem. The results in Table 3 show
the best result obtained from five runs on the VNS-Tabu. It can be seen that there is no difference
between VNS-Tabu and VNS-EMC in terms of the penalty cost when applied to the small datasets.
However, there are slight changes in the penalty cost for the medium datasets (as shown in italics). The
percentage improvement (∆ %) obtained by applying the VNS-Tabu compared to VNS-EMC for the
medium dataset is computed as:

 ∆ % = (best VNS-EMC – best VNS-Tabu) * 100 / best VNS-EMC

This shows that the VNS-Tabu managed to reduce the penalty cost between 4.0% to 17.4%. Although
we cannot beat the best known results for the medium datasets, we are able to repair our results
especially for the medium3 and medium5 datasets. Figures 5a and b show the behaviour of the VNS-
Tabu when applied to the medium3 and medium5 datasets.
 We use the same representation as in Figures 3 and 4 where the x-axis represents the number of
evaluations while the y-axis represents the penalty cost. They show that the penalty cost can be
quickly reduced at the beginning of the search where there appears to be a lot of room for
improvement and this becomes less pronounced towards the end of the search (as in Figures 3a and b).
It can be seen from Figure 5a that the VNS-Tabu is better compared to VNS-EMC throughout the
search. However, in Figure 5b, the VNS-EMC is slightly better than VNS-Tabu in the early part of the
search. Note that, by prolonging the search process we can see that the pattern of the VNS-Tabu is
similar for both medium3 and medium5 datasets which show that the VNS-Tabu is able to find a good
solution if given more search time. We believe that with the help of the tabu list, the VNS-Tabu
performs better than VNS-EMC and we are able to find a better solution because the neighbourhood
structures that are not used will not be employed in the next evaluations (the algorithm will only be
supplied with the neighbourhood structures that are currently used) unlike the VNS-EMC approach.

medium3

0

200

400

600

800

1000

1 186 371 556 741 926 1111 1296 1481

Evaluations (x102)

Pe
na

lty
 C

os
t

VNS-Tabu
VNS-EMC

medium5

0
100
200
300
400
500
600
700
800
900

1 182 363 544 725 906 1087 1268 1449 1630

Evaluations (x102)

Pe
na

lty
 C

os
t

VNS-Tabu
VNS-EMC

Figures 5a and b: The behaviour of VNS-Tabu applied to medium3 and medium5 datasets, respectively

5 CONCLUSIONS
The overall goal of this paper was to investigate a modified VNS approach for the course

timetabling problem. Preliminary comparisons indicate that our VNS approach is competitive with
other approaches in the literature and is particularly suitable for small problems. On the five (out of
eleven) small benchmark problems, the VNS approach produced solutions that were better than or
equal to those published results (obtaining zero penalty cost for all five problems). Our future work
will try to intelligently select a subset of neighbourhood structures from a much larger pool of
neighbourhoods.

Acknowledgement
This work has been supported by the Public Services Department of Malaysia (JPA) and the
University Kebangsaan Malaysia (UKM).

References
Ahuja, R.K., Orlin, J.B. and Sharma, D. (2000) Very large scale neighbourhood search. International Transaction in

Operational Research 7, pp 301-317.

Avanthay, C., Hertz, A. and Zufferey, N (2003) A variable neighbourhood search for graph colouring. European Journal of

Operational Research 151, pp 379-388.

Ayob, M. and Kendall, G. (2003) A monte carlo hyper-heuristic to optimise component placement sequencing for multi head

placement machine. Proc. Of the International Conference on Intelligent Technologies, InTech’03, Chiang Mai,

Thailand, 17-19 Dec, pp 132-141.

Bardadym, V. (1996) Computer-Aided School and University Timetabling: The New Wave. In Edmund Burke and Peter

Ross, editors, The Practice and Theory of Automated Timetabling I: Selected papers from the 1st International

Conference, Springer Lecture Notes in Computer Science Vol 1153, pp 22-45.

Burke EK, Jackson KS, Kingston JH and Weare RF (1997) Automated Timetabling: The State of the Art. The Computer

Journal, Vol. 40, No. 9, pp 565-571

Burke EK and Petrovic S (2002) Recent Research Direction in Automated Timetabling. European Journal of Operational

Research 140, pp 266-280.

Burke, E.K., Kendall, G. and Soubeiga, E. (2003) A tabu search hyperheuristic for timetabling and rostering. Journal of

Heuristics 9(6), pp 451-470.

Burke EK, Kingston J and de Werra D (2004a) Applications to Timetabling. Handbook of Graph Theory, (editors, J. Gross

and J. Yellen), Chapman Hall/CRC Press, pp 445-474.

Burke, E. K., De Causmaecker, P. and Vanden Berghe, G.(2004b) Novel metaheuristic Apporoaches to Nurse Rostering

Problems in Belgian Hospitals, Ch. 44 in J. Leung: Handbook of Scheduling: Algorithms, Models and Performance

Analysis, CRC Press, pp 44.1-44.18.

Burke, E.K., Meisels, A., Petrovic, S. and Qu, R. (2005) A graph-based hyper heuristic for timetabling problems. Accepted

for publication in the European Journal of Operational Research.

Caporossi, G. and Hansen, P. (2000) Variable neighbourhood search for external graphs: I The AutoGraphiX system.

Discrete Mathematics 212, pp 29-44.

Carter, M.W. and Laporte, G. (1996) Recent developments in practical examination timetabling. In Edmund Burke and

Michael Carter, editors, The Practice and Theory of Automated Timetabling I: Selected Papers from the 1st International

Conference, Springer Lecture Notes in Computer Science Vol 1153, pp 3-21.

Carter, M.W. and Laporte, G. (1998) Recent developments in practical course timetabling. In Edmund Burke and Peter Ross,

editors, The Practice and Theory of Automated Timetabling II: Selected Papers from the 2nd International Conference,

Springer Lecture Notes in Computer Science Vol 1408, pp 3-19.

Di Gaspero, L. and Schaerf, A. (2002) Multi-neighbourhood local search with application to course timetabling. In Edmund

Burke and Patrick De Causmaecker, editors, The Practice and Theory of Automated Timetabling IV: Selected Papers

from the 4th International Conference, Springer Lecture Notes in Computer Science Vol 2740, pp 262-275.

de Werra D. (1985) An Introduction to Timetabling. European Journal of Operations Research, 19, pp 151-162.

Glover and Laguna (1997) Tabu search. Kluwer Academic Publisher, ISBN 0-7923-8187-4.

Glover, F and Laguna, M. (1993) Tabu Search. In Reeves, C.R. (eds.) Modern Heuristic Technique for Combinatorial

Problems. Scientific Publications, Oxford.

Hansen, P. and Mladenović, N. (2001) Variable neighbourhood search. European Journal of Operational Research 130, pp

449-467.

Hansen, P., Mladenović, N. and Perez-Britos, D. (2001) Variable neighbourhood decomposition search, Journal of Heuristics

7, pp 335-350.

Hertz, A. and de Werra, D. (1987) Tabu search techniques for graph colouring. Computing 39, pp 345-351.

Mladenović, N. and Hansen, P. (1997) Variable neighbourhood search. Computers and Operations Research 24(11), pp

1097-1100.

Mladenović, N., Petrović J., Kovačevič-Vujčić, V. and Čangalović, M. (2003) Solving spread spectrum radar polyphase code

design problem by tabu search and variable neighbourhood search. European Journal of Operational Research 151, pp

389-399.

Morena Pérez, J.A., Marcos Moreno-Vega, J. and Rodríguez Martín, I. (2003) Variable neighbourhood tabu search and its

application to the median cycle problem, European Journal of Operational Research 151, pp 365-378.

Petrovic S and Burke EK (2004) University Timetabling. Ch. 45 in the Handbook of Scheduling: Algorithms, Models, and

Performance Analysis (eds. J. Leung), Chapman Hall/CRC Press.

Rossi-Doria, O., Blum, C., Knowles, J., Samples, M., Socha, K. and Paechter, B. (2002) A local search for the timetabling.

Proceedings of the 4th International Conference on Practice and Theory of Automated Timetabling (PATAT), pp 124-

127.

Schaerf A (1999) A Survey of Automated Timetabling. Artificial Intelligence Review 13(2), pp 87-127.

Socha, K., Knowles, J. and Samples, M. (2002) A max-min ant system for the university course timetabling problem.

Proceedings of the 3rd International Workshop on Ant Algorithms, ANTS 2002, Springer Lecture Notes in Computer

Science Vol 2463 (10), pp 1-13.

Thompson, J. and Dowsland, K. (1996) General cooling schedule for a simulated annealing based timetabling system. In

Burke, E.K. and Ross, P. (eds). Practice and Theory of Autamated Timetabling: Selected Papers from the 1st

International Conference. Springer Lecture Notes in Computer Science Vol 1153, pp 345-363.

Thompson, J. and Dowsland, K. (1998) A robust simulated annealing based examination timetabling system. Computers and

Operations Research 25, pp 637-648.

	References

