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Abstract. The space allocation problem within UK universities is highly 
constrained, has multiple objectives, varies greatly among different institutions, 
requires frequent modifications and has a direct impact on the functionality of the 
university. As in every optimisation problem, the application of different 
advanced search methodologies such as local search, metaheuristics and 
evolutionary algorithms provide a promising way forward. In this paper we 
discuss three well-known methods applied to solve the space allocation problem: 
hill-climbing, simulated annealing and a genetic algorithm. Results and a 
comprehensive comparison between all three techniques are presented using real 
test data. Although these algorithms have been extensively studied in different 
problems, our major objective is to investigate the application of these techniques 
to the variants of the space allocation problem, comparing advantages and 
disadvantages to achieve a better understanding of the problem and propose 
future hybridisation of these and additional methods.  
Keywords: space allocation, neighbourhood search, metaheuristics. 

1   Introduction 

The space allocation problem in academic institutions is described as the allocation of 
resources to areas of space such as rooms, satisfying as many requirements and 
constraints as possible. Resources are staff, students, meeting rooms, lecture rooms, 
special rooms, etc. Requirements are certain conditions to be fulfilled such as the 
amount of space needed for each resource. Constraints (see section 2.3) are rules that 
cannot be violated (hard constraints) or ones that can be broken but penalised (soft 
constraints).  

The aims of our research are to carry out a complete and detailed investigation of 
the space allocation problem, to produce a model of this problem and to propose a set 
of well studied techniques to find solutions for the different forms of the space 
allocation problem not only in academic institutions, but also in commercial and 
industrial areas. Developing hybrid metaheuristic techniques and focusing on 
initialisation, decomposition and multicriteria decision-making, we expect to provide 
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fast and high quality solutions to large space allocation problems in universities and 
other environments. 

In its simplest form, space allocation can be regarded as a bin packing or knapsack 
problem [2]. These two optimisation problems are frequently used to describe a wide 
range of industrial and commercial problems. Finding a new set of metaheuristics to 
solve the space allocation problem may well benefit these related applications. The 
space allocation problem is also related to scheduling, which is defined by Wren [19] 
as “the arrangement of objects into a pattern in time or space in such a way that some 
goals are achieved, or nearly achieved, and that constraints on the way the objects may 
be arranged are satisfied, or nearly satisfied”. Research work within the Automated 
Scheduling, Optimisation and Planning group has demonstrated that the use of hybrid 
metaheuristic approaches in real applications of scheduling-related problems, offers a 
significant opportunity of success [4], [5], [6], [9], [10].  

Some approaches have been proposed for solving space allocation and space 
planning problems related to teaching facilities [1], [3], [13], [18]. In [7], the results of 
a survey on the space allocation problem within UK universities were published. A 
detailed description of the variety, complexity, characteristics of the problem and 
available solutions in each institution was obtained. Later, in [8] it was stated that the 
implementation of metaheuristic methodologies is a promising way to tackle the space 
allocation problem in universities and that the more highly constrained a real situation 
is, the less likely it is that we can ensure an acceptable level of space utilisation. 

In this paper, we summarise the problem domain and define what a good solution is 
in terms of our evaluation function. Then we discuss the performance of three well-
known techniques applied to the space allocation problem: hill-climbing, simulated 
annealing and genetic algorithms and present a detailed comparison between these 
three approaches. Finally, some conclusions are established and future research 
directions are suggested. 

2   Problem Description 

2.1   Problem Domain 

The problem of allocating resources into rooms in UK universities can be summarised 
as follows: the process of assigning rooms or areas of space for specific resources, 
ensuring the efficient utilisation of the space and satisfying as many requirements and 
constraints as possible. Types of rooms considered here are non-residential, i.e. 
focusing on academic-related space. Resources are considered to be staff, students, 
laboratories, storage areas, common rooms, lecture theatres, etc. Requirements and 
constraints vary from one university to another, so for each problem instance different 
requirements and constraints exist. However, most of those requirements and 
constraints are considered here as a result of our previous work [7]. Solving real 
instances of the space allocation problem is a multicriteria decision-making process 
because to determine the quality of an allocation it is necessary to consider different 
objectives such as: achieve an efficient space utilisation, maximise the satisfaction of 
constraints, minimise costs and guarantee people’s satisfaction. 



  

2.2   Phases and Modes of the Process 

The process of allocating rooms in UK universities can be performed in three stages: 
1. The centralised office allocates space to faculties and assigns common areas 
2. Faculties assign areas to schools and departments 
3. Departments allocate specific rooms to resources 

During these three phases, the problem can be solved in different ways at each stage: 
• Fitting all resources into a limited amount of space 
• Minimising the amount of space required to allocate a set of resources 
• Reorganising because of the addition or removal of space and/or resources 
• Reorganising/optimising the current allocation due to the possible variation of 

requirements and/or constraints 

2.3   Types of Constraint  

Constraints considered so far in the domain of this problem, can be any of the 
following classes: 

• Sharing restrictions, e.g. head of department does not share a room 
• Proximity/adjacency requirements, e.g. secretary must be adjacent to the head of 

school 
• Grouping requirements, e.g. people in a research group must be in the same room  
• Requirements and limits for wastage and overuse of space, e.g. research students 

require 6m2, but it is acceptable to assign 15% more (6.9m2) or less (5.1m2) space 
• Requirements for staff sharing between different departments, e.g. a lecturer 

working for two different departments should share a room 
• Resource specific location, e.g. network technician must be adjacent to the 

networking laboratory or in a specific room 
 

These constraints are divided into two groups. The first and basic group consists of: 
space overuse, space wastage, unallocated resources, sharing and grouping restrictions. 
The second group consists of constraints that are required to be satisfied in each 
specific case, e.g. technical services coordinator in the School of Computer Science 
and IT at the University of Nottingham must be in a non shared room in the 2nd floor, 
adjacent to other members of the technical services group, and all of them should be 
close to the networking laboratory. Any constraint can be either hard or soft according 
to the real problem. For example, in some universities it is strongly required that no 
member of staff shares an office, while in others this requirement is only desirable. 
Additional constraints can be added as required. 

2.4   Fitness Evaluation of an Allocation 

The allocation of all resources may be a hard constraint (a feasible solution must have 
all resources allocated) or a soft constraint (some resources may be unallocated but a 
penalty is applied). A feasible solution must satisfy all the hard constraints in the 



  

specific space allocation problem. The quality of a feasible allocation is measured 
using the aggregating function (1). This function is a sum of the penalty due to 
unallocated resources, the penalty due to inefficient space utilisation and the penalty 
due to unsatisfied soft constraints. If any of these is a hard constraint or requirement in 
the problem instance, the corresponding penalty in a feasible solution must be equal to 
zero. The lower the total penalty value, the higher the quality of the allocation. 
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UP is the penalty applied to the resource ri if it has not been allocated, WP is the 
penalty applied to the room si if there is space wastage, OP is the penalty applied to 
the room si if there is space overuse, SCP is the penalty applied if there is a soft 
constraint violation for the resource ri, N is the total number of resources to be 
allocated in the problem and M is the total number of rooms to be used in the 
allocation process. 

We calculate the penalties for violated soft constraints using weights and exponents 
according to each specific scenario (for our experiments these values are included in 
the test data sets available in [11]). The penalty for each violated soft constraint is 
equal to (violation level x weight )exponent, where the violation level is a measure of the 
soft constraint violation. Suppose we have a space allocation problem in which the 
allocation of all resources is a soft constraint and a feasible solution has the following 
constraint violation levels: 6 resources are not allocated, three rooms have space 
wasted (4.6 m2, 0.6 m2 and 2.7 m2 respectively), one room has space overuse equal to 
2.4 m2, 2 sharing restrictions and 5 adjacency constraints are not satisfied.  Assume the 
following values for weights and exponents: 
 

Contraint Weight Exponent 
wastage 2 1 
overuse 2 2 

unallocated 5000 1 
sharing 2000 1 

adjacent to 500 1 
 
For the example described above the total penalty is calculated using (1) as follows: 
 
total penalty = (6x5000)1 + ((7.9x2)1 + (2.4x2)2) + ((2x2000)1 + (5x500)1) = 36538.84 
 

The weight is a measure of the impact in the penalty value of the unsatisfied 
constraints, while the exponent penalises the degree to which the soft constraints are 
violated. 



  

3   Three Methods to Automate Space Allocation 

3.1   Neighbourhood Exploration 

The methods we have implemented to approach the space allocation problem are: hill-
climbing, simulated annealing and a genetic algorithm. The three algorithms attempt to 
find the global optimum in the solution space, but while the first one is well known as 
a search heuristic that may become stuck in poor local optima, simulated annealing 
and genetic algorithms attempt to avoid this by performing a wider exploration of the 
solution space [14], [15], [16], [17]. 

An allocation is represented using the structure shown in Fig. 1 below. A solution is 
coded using a string that contains one element for each resource in the problem. Each 
resource is associated with the room to which the resource has been allocated. If 
unallocated resources are permitted in a feasible solution, those resources have a bin 
room associated. If the same room is associated to more than one resource then those 
resources are sharing the specified room. 

 
 

 
 

Fig. 1. The structure used to represent an allocation in the space allocation problem.  
 

Three moves are used to modify an allocation and therefore explore the search 
space: ALLOCATE, RELOCATE and SWAP. The ALLOCATE move selects an 
unallocated resource and finds a room to allocate to it. The RELOCATE move 
changes the assigned room for one allocated resource. Finally, the SWAP move selects 
two rooms and interchanges the allocated resources between them. The construction of 
an initial solution is done by means of the ALLOCATE move. During the construction 
of the initial solution and also during the space exploration, the following parameters 
are used to modify the searching process: resource search, room search, space 
deviation and termination criteria. In our experiments (see section 4) these parameters 
were investigated to determine the appropriate neighbourhood exploration in each 
algorithm. 

• Resource search. The selection of the resource for the ALLOCATE and 
RELOCATE moves can be: random or the worst offender. In the first case, the 
resource to be allocated or relocated is randomly selected from the corresponding 
list (unallocated or allocated resources). Selecting the worst offender means that 
the move is evaluated for each resource in the corresponding list and the resource 
that causes the least penalty is chosen. Obviously, the second option takes more 
time to select the resource because it performs a wider search attempting to make a 
better resource selection. 

• Room search. To select the room for the ALLOCATE and RELOCATE moves, or 
a pair of rooms for the SWAP move, two options are possible: random or the best 
of NB rooms. In random selection, we choose at random, one resource 
(ALLOCATE or RELOCATE moves) or two rooms (SWAP move). In the second 

   Lab B     Mr Lee       Store      Director    Catering  Ms Shang    Lab A     Mr Khan   
1B01 1B04 1B08 1B17 1B10 1B07 bin 1B04 



  

case, NB random rooms (ALLOCATE or RELOCATE moves) or NB random pairs 
(SWAP move) of rooms are evaluated and the best room or pair of rooms is finally 
chosen to implement the move. If NB equals the total number of rooms M, then all 
rooms are tested and the best is used. Random selection permits faster construction 
and neighbourhood exploration, but the second strategy performs a more thorough 
search. 

• Space deviation. When selecting the room for an ALLOCATE or RELOCATE 
move or the pair of rooms for the SWAP move, it is possible to perform or skip an 
evaluation of the percentage of space that can be wasted or overused. If this space 
deviation is not evaluated, the selected room will be used even if it is too big or too 
small for the selected resource. If this space deviation is evaluated, then the 
percentage of space wastage or space overuse in the selected room must be within 
the problem requirements. 

• Termination criteria. To investigate the performance of the three algorithms, two 
termination criteria are available: a fixed number of iterations or no improvement 
in the allocation after a certain number of iterations. 

3.2   Hill-Climbing and Simulated Annealing 

The standard hill-climbing strategy is based on the inspection of the neighbourhood in 
the solution space, so that by means of moves in the existing solution, progressive 
improvements can be achieved to reach the local optima. The most important part of 
this algorithm is the heuristic used to explore the neighbourhood using the three 
possible moves: ALLOCATE, RELOCATE and SWAP. This strategy is shown below: 
 

If all N resources are allocated 
Select a random move between RELOCATE and SWAP 

If not all N resources are allocated 
If  NA ≥ MA 

If last move was ALLOCATE 
 Select a random move between RELOCATE and SWAP 

If last move was not ALLOCATE 
 Select ALLOCATE move 

NA ← 0 
If  NA < MA 

If last move was not ALLOCATE 
Select a random move between RELOCATE and SWAP 

 
where, N is the total number of resources, NA is the number of failed (i.e. non-
improving) move attempts and is incremented after one move attempt has failed, MA 
is the maximum number permitted of failed move attempts, and there is an equal 
probability of choosing either the RELOCATE or the SWAP move. 
 

The strategy shown above to select a move, takes into account the current state of 
the allocation and the viability of accomplishing a certain type of move. In this sense, 
the type of move that is undertaken in each iteration, depends on the number of 



  

allocated resources and the number of prior failed attempts to find a feasible move. 
When all resources in the current problem are already allocated, the algorithm explores 
the neighbourhood using the moves RELOCATE and SWAP to improve the solution. 
In the case that not all resources are allocated, a certain number of attempts (MA) 
normally set to N/5, is given to either the ALLOCATE or the RELOCATE and SWAP 
moves. Our experiments have shown that it is likely to find a move when one-fifth of 
the number of resources is evaluated for the required move. The heuristic tries to 
ALLOCATE as many resources as required to produce a feasible solution, but also 
attempts to avoid getting stuck by examining the RELOCATE and SWAP moves. For 
example, suppose that in the current solution there are still 5 unallocated resources 
from a total of 100 in the allocation problem. Then, if after 20 failed attempts none of 
these resources have been successfully allocated, the algorithm examines the 
feasibility of modifying the solution using the RELOCATE and SWAP moves up to a 
maximum of 20 failed attempts. The number of failed modification attempts is set to 
zero when an improving move has been found. 

The simulated annealing algorithm is a well-known method where new solutions 
are accepted during the process with a probability that varies according to a 
temperature parameter [16], [17]. Our simulated annealing and hill-climbing 
algorithms use the same heuristic to select the type of move to improve the current 
solution. The temperature is reduced slowly starting from a random search at high 
temperature and carrying out pure hill-climbing at zero temperature. The goal of the 
temperature variation process is to combine random selection with the local search 
heuristic to find global optima. When the current allocation is improved by trying the 
moves ALLOCATE, RELOCATE or SWAP, a high temperature corresponds to 
random movements and other solutions are visited even if their fitness is not better 
than the current solution. Low temperature corresponds to little randomness and worse 
solutions are not visited. The temperature is set to a high value when the algorithm 
starts, then it is decreased after a fixed number of iterations. The parameters used in 
our simulated annealing algorithm are explained in section 3.4. The acceptance or 
rejection of the selected move in the current solution is controlled as follows: 

 
If the selected move improves the current solution 

Accept move and new solution 
Else 

If current temperature = 0 
Reject move and new solution 

If current temperature > 0 
Probability of acceptance = exp( − delta / current temperature ) 
If probability of acceptance ≥ random number 

Accept move and new solution 
Else 

Reject move and new solution 
 
Delta is the fitness variation due to the proposed move and a value greater than zero 
means an improvement in the existing solution (decrease in the total penalty value). 



  

3.3   Genetic Algorithm 

The genetic algorithm that was implemented for this problem is shown below, where 
each chromosome is a possible allocation as shown in Fig. 1.  
 

Create Initial Population 
Calculate Fitness (Initial Population) 
Current Population = Initial Population 
while Termination Criteria Not Satisfied 
  For OffspringNo = 0 to OffspringNo = PopulationSize do 
   Parent1 = Roulette_Wheel_Selection (Current Population) 
   Parent2 = Roulette_Wheel_Selection (Current Population) 
   Heuristic_Crossover (Parent1,Parent2,New Population) 
  Mutate Population (New Population) 
  Calculate Fitness (New Population) 
  Replace_Population (Current Population, New Population) 

 
The construction of each individual in the initial population is carried out using the 

heuristic explained in section 3.2 with the moves ALLOCATE, RELOCATE and 
SWAP. Our genetic algorithm evaluates the fitness of each solution using the penalty 
function (1) presented in section 2.4. Using Roulette_Wheel_Selection, two parents 
are selected from the current population. In the roulette wheel operator, the probability 
of selecting each individual is proportional to its fitness [12]. Here, the sum of the 
fitness (Fsum) for all chromosomes is obtained, then a random number n between 0 and 
Fsum is generated. The first individual whose fitness added to the fitness of the 
preceding population members, is greater than or equal to n, is selected as a parent. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. In the four-point crossover operator, the section in the chromosome with the highest 
penalty is chosen, so the size of this section varies accordingly. 

A  B    C      D         E            F G   H 

New individuals

A  B    C      D         E            F G   H 

A  B    C      D         E            F G   H 

GB01 1B04 1B08 1B17 1B17 1B08 Bin 1B07 

GB01 1B04 1B08 1B08 1B17 1B08 Bin 1B10 

GB01 1B04 1B08 1B17 Bin 1B07 Bin 1B07 

GB01 1B02 1B07 1B08 1B17 1B08 Bin 1B10 

Selected individuals

A  B    C      D         E            F G   H 



  

Our crossover operator works as illustrated in Fig. 2 using the chromosome string 
representation shown in Fig. 1. This four-point crossover strategy identifies, in each 
parent, the chromosome section that contains the group of resources (adjacent in the 
chromosome representation) whose penalty values are the greatest. After detecting 
these sections, the group of highest penalty in each parent is replaced with the 
corresponding substring in the other parent. 

The mutation operator consists of a random change of the assigned room for a 
randomly selected resource. In Replace_Population, the new population replaces the 
current population and elitism is applied to guarantee the selection of the fittest 
individual so that this solution is preserved between generations. Here, elitism consists 
of substituting the worst individual in the new population with the best individual in 
the previous generation. 

3.4   Selection of Search Parameters 

Making modifications to the searching parameters described in section 3.1, we 
obtained the variants of the algorithms shown in Table 1.  These twelve variants are 
different heuristics that were tested to find the set of parameters that produce the best 
solutions in each type of space allocation problem. Our goal is to investigate the effect 
of these parameters to design a heuristic for neighbourhood exploration in the space 
allocation problem. 
 
Table 1. Variants of the three algorithms. Parameters for simulated annealing are: initial 
temperature 2000, decrement value 100 and decrement interval 300. Parameters for the genetic 
algorithm are: population size 20, crossover probability 80%, mutation probability 5%. NB, the 
neighbourhood size, is replaced by a number according to each problem instance in the results 
described in Section 4. 

 
 Algorithm Searching Options 

Algorithms 
Variants HC SA GA Random 

Room 
NB Best 
Room 

Worst Resource 
Offender 

Space 
Deviation 

Check 
HCRand √   √    

HCRandChk √   √   √ 
HCRandWrst √   √  √  
HCNBRms √    √   

HCNBRmsChk √    √  √ 
SARand  √  √    

SARandChk  √  √   √ 
SARandWrst  √  √  √  
SANBRms  √   √   

SANBRmsChk  √   √  √ 
GANBRms   √  √   

GARandWrst   √ √  √  



  

After examining the performance of each of the 12 variants of algorithms presented 
in Table 1, the parameters for our algorithms are those that produce the best results in 
terms of the penalty function (1) described in section 2.4. The values shown for these 
parameters have been set up according to the problem size in our problem instances. 
For simulated annealing we found that the best decrement interval size is around twice 
the number of resources (150 resources in average for these test problems). Decrement 
value is the best when it is set to 1/10 of delta, the fitness variation after implementing 
a move in the current solution (delta is in the range of 800 to 1500 on these problems). 
The initial temperature of 2000 is the value that produced the best fitness in these 
problems. For the genetic algorithm we tested the range of parameters that are 
proposed by Goldberg [14], and we found that with a population of about 1/10 of the 
number of resources, 80% crossover probability and 5% mutation probability we 
obtain the best results. 

In the next section we give a description of the five data sets that were used in our 
experiments. We show how the conditions differ from one problem to another due not 
only to the fact that each university imposes its own requirements and standards, but 
also to the different available information to specify the problem and then construct 
the solution. For example while some universities provide information about space 
requirements for resources, adjacency and proximity between rooms and constraints to 
be satisfied, others simply do not use any standard data and the acceptance/rejection of 
the solution depends only on space utilisation and some vague sharing restrictions. 

4   Results 

4.1   The Experiments 

All variants of the three algorithms were tested with different real data obtained from 
three universities in the UK. As we stated before in section 2.2, space allocation can be 
applied in four ways. We use two of them that represent real situations in academic 
institutions: optimisation/reorganisation and construction of a complete allocation. 
Optimisation is when the existing allocation, with all the resources already allocated, 
must be improved using the same set of rooms and constraints. Reorganisation means 
that a subset of the resources (some specific rooms, like laboratories, common rooms 
or strategic offices) has been previously allocated and then all remaining resources are 
allocated to construct a solution. A complete allocation refers to the situation where all 
resources are unallocated, and a solution involving all resources must be found.  Each 
algorithm variation was tested 40 times with all data sets, and then we selected the 
ones that produced the best results for each case. Since in this paper we attempt to 
determine an efficient strategy for the neighbourhood exploration, the best 
performance of each algorithm is compared. The computational times required in our 
tests are shown as a reference to compare them with the time taken to construct a 
manual solution (weeks or months). A manual solution is constructed by the space 
officers and varies from university to university [7]. The best solutions shown in tables 
2 to 6 were selected according to the total penalty value obtained using a PC Pentium 
300MHZ with 64MB RAM. In all tables, the last column shows the total penalty for 
the manually constructed allocation as implemented in each case. We present the 



  

solutions in tables to facilitate the analysis of the algorithms’ performance not only 
according to total penalty but also for each different evaluation criteria (space 
utilisation, unallocated resources penalty and soft constraints penalty). 

4.2   The University of Nottingham Data 

The School of Computer Science and IT recently moved to a new building, so it was 
necessary to obtain a new allocation. There are 90 rooms of different sizes and 117 
resources distributed according to their level, indicating sharing and space 
requirements: 6 professors, 9 laboratories, 9 meeting rooms, 10 technical staff, 5 
storage rooms, 1 teaching assistant, 3 senior lecturers, 7 secretaries, 47 researchers, 19 
lecturers and 1 visiting lecturer. For these problems we have the 5 basic constraints, 8 
specific groups of people, 30 specific resource locations and 8 particular 
proximity/adjacency requirements. Data sets used are: 
 
CSBuildingAllocatedIdeal. This is the real allocation at the Computer Science and IT 
Building in this university. All 117 allocated resources and 90 rooms are used. The 
goal is fitness improvement using all constraints specified by the problem, i.e. an 
optimisation problem. Results obtained for this case are shown in table 2 compared 
with the real allocation. 

 
Table 2. Results for optimising the current allocation, University of Nottingham data 
 

CSBuldingAllocatedIdeal Fitness 
Statistics HC30Rms HCRand SARandWrst SA30Rms GARandWrst Real Allocation 

Resources 
Allocated 117 117 117 117 103 117 

Rooms Used 90 90 90 90 78 90 
Space 
Utilisation 82.45% 81.56% 81.32% 78.27% 63.69% 77.99% 

Constraints 
Penalty 714.87 1094.93 4221.15 1264.21 71284.91 1264.21 

Space Wastage 
Penalty 479 487.4 535.9 624.8 859.6 639.8 

Space Overuse 
Penalty 403.26 1314.51 2225.76 14666.52 8290.07 17400.27 

Total Penalty 1597.13 2896.84 6982.82 16555.53 80434.48 19304.28 
Time taken 
(h:m:s) 0:29:53 0:19:46 0:23:04 0:14:30 0:45:06 ----- 

Iterations 20000 50000 5000 5000 15 ----- 
  

CSBuildingReorganiseIdeal. This has 21 allocated resources (laboratories, meeting 
rooms, storage rooms), 96 resources to be allocated (researchers, secretaries, lecturers, 
senior lecturers, professors, technical staff, teaching assistants, visiting lecturers) and 
21 used rooms. The goal is to reorganise the allocation using all requirements for the 
problem and focusing on staff accommodation. Table 3 shows results for this data set. 

 



  

Table 3. Results for reorganising the current allocation, University of Nottingham data 
 

CSBuldingReorganiseIdeal Fitness 
Statistics HCRandWrst HC30Rms SARandWrst SA30Rms GA117Rms Real Allocation 

Resources 
Allocated 117 117 117 117 117 117 

Rooms Used 90 90 90 90 90 90 
Space 
Utilisation 79% 79.99% 81.65% 89.16 75.52% 77.99% 

Constraints 
Penalty 8500 13000 13343.146 6500 62083.78 1264.21 

Space Wastage 
Penalty 477.2 464 594.2 476.6 521.1 639.8 

Space Overuse 
Penalty 403.26 99.51 2293.9 404.07 12133.97 17400.27 

Total Penalty 9380.45 13563.51 16231.24 7380.67 74738.85 19304.28 
Time taken 
(h:m:s) 0:26:19 0:41:36 0:06:18 0:34:54 3:15:23 ----- 

Iterations 5000 20000 1000 20000 13 ----- 
 

 
CSBuildingNewIdeal. All 117 resources are to be allocated and all rooms are 
available. The goal is to fit all resources into the limited amount of space, using all 
constraints for the problem and studying the impact of allocating all resources in one 
stage. The current allocation in the CSBuilding has been evaluated with the penalty 
function and compared with the allocations obtained with the algorithms, as shown in 
table 4. 

 
Table 4. Results for creating a new allocation, University of Nottingham data 
 

CSBuldingNewIdeal Fitness 
Statistics HCRandWrst HC30Rms SARandWrst SA30Rms GA117Rms Real Allocation 

Resources 
Allocated 113 115 116 115 117 117 

Rooms Used 86 89 87 90 90 90 
Space 
Utilisation 62.67% 62.98% 70.56 77.65% 60.27% 77.99% 

Constraints 
Penalty 21979.086 32309.801 40526.35 29895.5 53530.54 1264.21 

Space Wastage 
Penalty 1529.4 1354.6 1247.8 1098.4 512 639.8 

Space Overuse 
Penalty 336.41 4617.88 7514.32 11346.32 8573.22 17400.27 

Total Penalty 43962.48 48309.28 54369.49 52340.22 62615.76 19304.28 
Time taken 
(h:m:s) 0:03:15 0:57:47 0:08:27 0:05:30 2:34:07 ----- 

Iterations 1000 50000 5000 10000 11 ----- 



  

4.3   University of Wolverhampton Data 

The Estates department at the University of Wolverhampton, provided us with 
information about the SC Building in the Telford University Campus. In this case 
there are 115 rooms and 115 resources, which are classified in 13 different levels but 
not all of them with standard defined space, sharing or special requirements. In this 
university, the Estates department labels each room with a specific use (for example 
staff working room), then depending on the actual size of the room, its shape, and the 
resource standard space requirement, the capacity is determined for that room. The 
types of resources are laboratories, staff working rooms, computer rooms, teaching 
rooms, store rooms, common rooms, toilets, etc. The interest here is to automate 
allocation of staff working rooms, teaching rooms, and some specific laboratories or 
computer rooms, and to improve the distribution of these resources. We have a set of 8 
constraints, the 5 basic ones and 3 that specify grouping requirements. An important 
note is that there is no available information about proximity/adjacency between 
rooms. This condition gives us the opportunity to evaluate the algorithm’s 
performance with missing information.  
 
WolverhamptonReorganiseIdeal. There are 71 allocated resources (special purpose 
rooms like laboratories, computer rooms, store rooms, common rooms, toilets, etc.), 
44 resources to be allocated (staff working rooms, teaching rooms, some specific 
laboratories or computer rooms) and 71 used rooms. The goal is to fit all resources 
into the available space, using specified requirements for the problem and focusing on 
academic related room’s accommodation. Table 5 shows results for this case and as 
with the previous data set, the current allocation in the SC Building at the University 
of Wolverhampton has been evaluated with the penalty function and compared with 
the allocations obtained with the three algorithms. 
 
Table 5. Results for reorganising the current allocation, University of Wolverhampton data 
 

WolverhamptonReorganiseIdeal Fitness 
Statistics HC30Rms HCRand SARandChk SA20Rms GA117Rms Real Allocation 

Resources 
Allocated 115 113 114 114 115 115 

Rooms Used 96 102 103 100 114 115 
Space 
Utilisation 65.34% 58.21% 64.52% 61.54% 65.34% 65.33% 

Constraints 
Penalty 6171.316 11297.45 51726.85 11384.28 15915.08 16044.82 

Space Wastage 
Penalty 1959.994 2369.063 2083.78 2419.06 2218.15 2407.37 

Space Overuse 
Penalty 0 1815.066 6349.94 212.95 0 0 

Total Penalty 8359.67 25824.67 65541.09 19268.68 18133.23 18452.20 
Time taken 
(h:m:s) 0:14:07 0:01:16 0:01:00 0:02:10 0:56:42 ----- 

Iterations 10000 20000 50000 10000 12 ----- 



  

4.4   Nottingham Trent University Data 

This data set is the one with the least information available about requirements for 
each different resource level, and there is no information available about 
proximity/adjacency between rooms. Initially, the University did not specify standard 
sharing, space or grouping requirements. We have 151 resources classified in 7 levels, 
74 rooms and the basic constraints. There are 32 administrative assistants, 7 
administrators, 9 coordinators, 81 lecturers, 7 managers, 6 professors and 9 
technicians. After defining some space requirements and evaluating the actual 
allocation, the goal here is to improve it using our heuristics. 
 
TrentAllocatedBasic. This is the real allocation at the Chaucer Building in 
Nottingham Trent University. All 151 allocated resources and 74 rooms are used. The 
goal is optimisation using only the basic constraints for this problem. 
 
Table 6. Results for optimising the current allocation, Trent University data 
 

TrentAllocatedBasic Fitness 
Statistics HCRand HC20Rms SARand SA20RmsChk GARandWrst Real Allocation 

Resources 
Allocated 151 151 151 151 95 151 

Rooms Used 74 74 74 74 64 74 
Space 
Utilisation 80.6% 80.6% 80.6% 80.6% 65.65% 75.36% 

Constraints 
Penalty 0 0 0 4000 324800 58000 

Space Wastage 
Penalty 573 573 573 573.4 3467.78 727.88 

Space Overuse 
Penalty 0 0 0 0.015 68768.30 220738.90 

Total Penalty 573 573 573 4573.41 397036.08 279466.75 
Time taken 
(h:m:s) 0:01:59 0:00:24 0:05:43 0:12:59 1:47:12 ----- 

Iterations 50000 5000 10000 20000 15 ----- 

4.5   Selection of the Search Strategy 

For tables 2 to 6 presented in the last sections, we selected the best options for each 
algorithm using the information obtained from graphs like the ones in figures 3 to 7. In 
the graphs we indicate the best performance obtained by the selected variants of the 
hill-climbing algorithm included in the tables 2 to 6. We observe that hill-climbing 
variants produce the best results when applied to optimisation problems (Fig. 3 and 
Fig. 7), i.e. when there is an existing allocation and it should be improved. In these 
cases (CSBuildingAllocatedIdeal and TrentAllocatedBasic problems) all variants 
obtain substantial improvement over the real allocation. We observe from Fig. 3 and 
Fig. 7 that the variants HCRandChk, HCNBRmsChk and HCRand provide poor 
solutions in the first iterations, but find considerable improvement after 5000 



  

iterations, while the variants HCRandWrst and HCNBRms produce high quality 
solutions even with just a few iterations. This means that all our hill-climbing 
heuristics effectively take an existing allocation provided by the user and find good 
local optima, obtaining a substantial improvement measured with the penalty function 
(1) described in section 2.4.  
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Fig. 3. Hill-Climbing variants for the CSBuildingAllocateIdeal data set. 
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Fig. 4. Hill-Climbing variants for the CSBuildingReorganiseIdeal data set. 
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On the other hand, when our hill-climbing is applied to reorganisation problems 
(CSBuildingReorganiseIdeal and WolverhamptonReorganiseIdeal), three variants 
produce competitive results. This can be noted in Fig. 4 and Fig. 6, where the variants 
HCRandChk and HCNBRmsChk offer poor solutions compared with the existing one. 
HCRand again produces low quality solutions at the beginning, but after 5000 
iterations, the allocation obtained is highly competitive. Here, HCNBRms and 
HCRandWrst are the best options since both are equal to or even improve the current 
solution in the first iterations. 
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Fig. 5. Hill-Climbing variants for the CSBuildingNewIdeal data set. 
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If our hill-climbing heuristics are applied to construct a completely new solution 
(CSBuildingNewIdeal) then none of the variants produce a better solution than the 
solution generated by a human expert measured with the penalty function described in 
section 2.4. In Fig. 5 we observe that HCRandChk and HCNBRmsChk offer their best 
performance after 5000 iterations but the solutions produced have low fitness (high 
total penalty value).  

If HCRand after 5000 iterations together with HCRandWrst and HCNBRms are 
compared with the existing solution, then we can say that these variants produce 
allocations with a total penalty that is slightly greater. If we also consider that the 
existing solution was constructed by the experts using all their knowledge and that this 
allocation is the best one using the traditional and non automated method, then 
allocations provided here by hill-climbing achieve a reasonable quality. In all test 
problems, the variants of the hill-climbing algorithm that produce the best results are 
HCNBRms and HCRandWrst. The HCRand variant offers an interesting option while 
HCRandChk and HCNBRmsChk are the worst of all.  

Note that in these graphs, comparison has been made using only the total penalty 
of an allocation, but there are several aspects to consider before establishing final 
conclusions about our heuristic’s performance. Further analysis with information from 
the best variants of the three algorithms and additional fitness measures is presented in 
section 4.6 using tables 2 to 6. Similar analyses were achieved for simulated annealing 
and genetic algorithm variants, but as we stated before, only the best results are 
presented here in section 4. In the next section we analyse the searching strategy and 
the performance of our implemented algorithms for the space allocation problem. 
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4.6   Discussion on the Algorithms’ Performance 

We observe from tables 2 to 6 that the best results in terms of the allocation quality 
measured with the aggregating penalty function (1) are produced by the hill-climbing 
variants (we are comparing our variants of these algorithms on the space allocation 
problem but there are other successful implementations of these three algorithms [16], 
[17]). The simulated annealing variants produce good results when the problem is not 
highly constrained (TrentAllocatedBasic). The genetic algorithm implemented here 
did not produce improvements over the current allocation. Both hill-climbing and 
simulated annealing strategies, reach the goal of improving an existing allocation. 
When reorganising an allocation, hill-climbing and simulated annealing variants 
obtain the best results, as can be noted in tables 3 and 5. Our genetic algorithm has a 
good performance in reorganising problems (WolverhamptonReorganiseBasic) if there 
are only basic constraints. An important observation here is that in reorganising 
problems (CSBuildingReorganiseIdeal and WolverhamptonReorganiseBasic) where 
the allocation process is centred on the staff and certain specific and conflicting rooms 
were allocated previously, both hill-climbing and simulated annealing are capable of 
allocating all resources and improving the manual solution, i.e. these algorithms find a 
locally optimal solution that is better that the manual solution (here the quality of 
solutions is measured with the penalty function described in section 2.4). Our genetic 
algorithm performs better (allocates all resources) in the situation in which the initial 
population is originated from a partially constructed allocation. 

In table 4 we observe that if the problem is to construct a completely new 
allocation for all resources, none of our algorithms produced a better solution than the 
manual approach. The hill-climbing and simulated annealing strategies constructed 
allocations that correspond to local optima, which do not match the quality of the 
manual solution. For example, HCRandWrst produced solutions with 4 unallocated 
resources and SA30Rms obtained allocations with 2 unallocated resources. In the 
same case, our genetic algorithm produced a set of solutions which have a competitive 
quality compared with hill-climbing and simulated annealing, but neither provided a 
better solution than the one obtained manually. This genetic algorithm performs well 
for this type of problem compared to the optimisation and reorganisation cases, 
because the algorithm constructs all individuals from scratch and is then capable of 
accomplishing a wide exploration of the solution space. 

In all variants of our algorithms, a completely random searching strategy can be 
seen as one that uses only random selection of rooms and resources without any space 
deviation check. A steepest descent searching strategy would be one that always 
selects the pair resource/room that provides the highest improvement in the current 
solution. We observe from tables 2 to 6 and figures 3 to 7 that the three algorithms 
achieve the best performance when the searching strategy is partially heuristically 
directed (i.e. a random selection of the resource with NB rooms evaluated) and space 
deviation checking is not performed. 
 



  

5   Conclusions 

The problems that space managers face most often are the reorganisation and 
optimisation of the current allocation. The time required for constructing an allocation 
varies from weeks to months [7]. Our heuristics offer a promising alternative to 
automate the space allocation process in a shorter time. From the approaches 
investigated so far, hill-climbing appears to be the best for optimisation problems, 
using the strategy of selecting the best among NB rooms in the neighbourhood 
exploration heuristic. For reorganising situations, both simulated annealing and hill-
climbing strategies produce their best performance using the strategy of selecting the 
best among NB rooms. The reason why these strategies have a good performance in 
optimising and reorganising problems might be that the most conflicting resources are 
already allocated and that the improvement of these solutions can then be 
accomplished using these local search strategies. In constructing a complete allocation, 
our hill-climbing and simulated annealing variants construct good solutions but do not 
match the quality of the manually constructed allocation. Constructing a completely 
new allocation is not a frequently needed task, but the experts spend days, even 
months, on it, while our heuristics produce competitive initial solutions in minutes or 
hours. The implemented genetic algorithm is capable of producing acceptable results 
in terms of time when constructing complete allocations. It produces a set of solutions 
that can be improved using a local search heuristic. We observe that the 
neighbourhood exploration in these problems produces the best results using our 
algorithms when: a random selection of the resource is performed, NB rooms are 
evaluated and the best of them is chosen and no space deviation checking is done.  

One future research direction is to modify the neighbourhood search heuristic to 
construct a completely new solution allocating the most conflicting resources at the 
beginning of the process. It is also important to investigate the hybridisation of genetic 
algorithms and local search operators in order to produce a robust solution. The effect 
of the evaluation method to establish the quality of an allocation will also be 
considered in future research work. This paper shows that the space allocation process 
in UK universities can effectively be developed in a better way using the algorithms 
presented. We have studied how some modifications to three well known approaches 
can be used to tackle the different instances of the space allocation problem within 
universities, helping us to construct both a comprehensive model for the problem and a 
well studied set of techniques to solve it. 
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