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Abstract

In this paper, we present an investigation into using fuzzy methodologies to guide
the construction of high quality feasible examination timetabling solutions. The pro-
vision of automated solutions to the examination timetabling problem is achieved
through a combination of construction and improvement. The enhancement of so-
lutions through the use of techniques such as metaheuristics is, in some cases, de-
pendent on the quality of the solution obtained during the construction process.
With a few notable exceptions, recent research has concentrated on the improve-
ment of solutions as opposed to focusing on investigating the ‘best’ approaches to
the construction phase. Addressing this issue, our approach is based on combining
multiple criteria in deciding on how the construction phase should proceed. Fuzzy
methods were used to combine three single construction heuristics into three differ-
ent pair wise combinations of heuristics in order to guide the order in which exams
were selected to be inserted into the timetable solution. In order to investigate the
approach, we compared the performance of the various heuristic approaches with
respect to a number of important criteria (overall cost penalty, number of skipped
exams, number of iterations of a rescheduling procedure required and computational
time) on twelve well-known benchmark problems. We demonstrate that the fuzzy
combination of heuristics allows high quality solutions to be constructed. On one
of the twelve problems we obtained lower penalty than any previously published
constructive method and for all twelve we obtained lower penalty than when any of
the single heuristics were used alone. Furthermore, we demonstrate that the fuzzy
approach used less backtracking when constructing solutions than any of the single
heuristics. We conclude that this novel fuzzy approach is a highly effective method
for heuristically constructing solutions and, as such, has particular relevance to real-
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world situations in which the construction of feasible solutions is often a difficult
task in its own right.

Key words: examination timetabling, fuzzy methodologies, sequential construction

1 Introduction

Examination timetabling is a significant administrative issue that arises in
academic institutions. Timetabling problems are well studied in the academic
literature and are well known to represent difficult problems to solve [1]. In
general, the problem is concerned with the goal of allocating a time slot for all
exams within a limited number of time slots subject to certain constraints. Ba-
sically there are two types of constraints - hard constraints and soft constraints.
Hard constraints need to be satisfied under any circumstances, whereas the
satisfaction of soft constraints is desirable but not absolutely necessary. Differ-
ent universities emphasise different sets of constraints that reflect their needs.
Burke et al. reported a variety of constraints that have been implemented by
universities in the United Kingdom [2].

In the literature, there has been a wide investigation of automated timetabling
approaches from across the artificial intelligence and operational research com-
munities. Approaches such as Evolutionary Algorithms [2–5], Tabu Search [6–
9], Simulated Annealing [10], Constraint Programming [11–13], Case Based
Reasoning [14,15] and Fuzzy Methodologies [16,17,14] have been successfully
applied to timetabling problems. For more details about the variety of ap-
proaches that have been investigated, the interested reader can consult a num-
ber of survey and overview articles [1,18–24].

In our previous work [16], we investigated the use of fuzzy techniques to con-
sider two pairs of heuristics simultaneously, by using these combinations of
heuristics to order exams based on an assessment of how difficult they are to
schedule. This ordering was then used to construct timetable solutions through
a sequential constructive algorithm. We demonstrated that certain fuzzy com-
binations could outperform any single heuristic ordering on the benchmark
data sets used.

Encouraged by the findings, we now extend this work in order to explore
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all three pair-wise combinations of the same three heuristics. Furthermore,
we investigate the effect of combining these multiple heuristics by consider-
ing three criteria in the construction phase which reflect the effectiveness of
the construction technique. These are the computational time, the number
of ‘skipped exams’, and the number of times a rescheduling procedure is re-
quired. As the algorithms include a stochastic element, the experiments were
repeated a number of times in order to gain a representative view of the differ-
ent approaches. These experiments have provided more evidence to support
our hypothesis that considering multiple heuristic orderings simultaneously
can guide a sequential constructive algorithm towards better solutions. Note
that techniques for the iterative improvement of the solutions that are con-
structed are not covered in this work. However, the method that we present
does represent a quick and effective procedure for producing the initial solu-
tions for such approaches.

The rest of this paper is organised as follows. Firstly, a formal description
of the specific examination timetabling problem considered in this paper is
given. Then, in Sections 3 – 5, the sequential constructive algorithm and fuzzy
approach are explained. The computational experiments, including description
of the data sets used, experimental methods and results, are given in Section 6.
In Section 7, discussion and analysis of the results are presented. Finally, the
conclusions are given in Section 8.

2 Problem Description

Examination timetabling is essentially the problem of allocating exams to a
limited number of time periods in such a way that none of the specified hard
constraints are violated. A timetable which satisfies all hard constraints is
termed a feasible timetable. In addition to the hard constraints, there are
often many soft constraints whose satisfaction is desirable (but not essential).
The set of constraints which need to be satisfied is usually very different from
one institution to another, as reported by Burke et al. [25]. In practice, each
institution usually has a different way of evaluating the quality of a feasible
timetable. In many cases, the measure of quality is calculated based upon a
penalty function which represents the degree to which the soft constraints are
violated. Details of constraints for examination timetabling can be found in
[25] and [6], for example.
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2.1 Problem Formulation

Several models and formulations for timetabling problems have been presented
by various researchers. The formulation used in this research is as follows.

Indices:
m,n = 1, ..., N examination indices;
p, q = 1, ..., P period (time slot) indices.

Decision Variables:

tnp =

 1, if exam n is scheduled in period p

0, otherwise.

Parameters:
N = number of examinations;
P = number of periods (time slots) available;
S = total number of students;

snm =

 number of students sitting both exam n and m, n 6= m

0, n = m.

Objective function:
Minimise the penalty for examinations in close proximity, denoted as

1

S

N−1∑
n=1

N∑
m=n+1

P∑
p=1

min(p+5,P )∑
q=max(1,p−5)

25−|p−q| snm tnp tmq → min! (1)

Subject to the constraints that:
Each exam must be assigned to exactly one period

P∑
p=1

tnp = 1, ∀n. (2)

No student is able to attend more than one exam at the same time

tnp + tmp ≤ 1, ∀n, m where snm > 0, ∀p. (3)
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2.2 The Objective Function

There are many different criteria that can be included when evaluating the
quality of examination timetables, so the definition of the objective function
is dependent on which criteria are to be used for the particular educational
institution. The objective function specified in Equation 1 is widely used in
timetabling research to measure the timetable quality (e.g. [26]). It is often
termed the ‘proximity cost function’, as it captures the notion of trying to
spread out each student’s schedule. It is often expressed (e.g. [27]) in the form

1

S

N−1∑
n=1

N∑
m=n+1

25−|pn−pm| snm, ∀n,m where |pn − pm| ∈ {1, ..., 5}

where pn is the period in which exam n is scheduled (i.e. tnpn = 1) and pm

is the period in which exam m is scheduled. In this paper, minimising this
function is the objective in producing a ‘good’ solution; the solution with the
lowest value of the objective function is considered to be the ‘best’ and the
model producing this solution is the ‘best model’. Only feasible timetables
were accepted.

3 Timetable Construction

In this paper, we investigate algorithms for constructing high quality solu-
tions to the examination timetabling problem as specified above. We investi-
gate variations of an algorithm which utilises fuzzy methodologies to combine
various well-established heuristics for ordering the placement of examinations
during construction. Note that finding feasible solutions is not necessarily a
difficult task, given this problem formulation, but trivially constructed solu-
tions may be of poor quality. In contrast, we aim to construct good quality
solutions. Clearly, any iterative improvement technique could subsequently be
applied to the timetable solutions constructed using the fuzzy approach de-
tailed here or any other construction technique. A goal is to move closer to
mimicking the real-world situation in which the human process of timetabling
is largely centred around constructing the best ‘initial’ timetable possible.

3.1 The Basic Sequential Constructive Algorithm

The sequential constructive algorithm is amongst the earliest approaches that
has been used to tackle the examination timetabling problem in an automated
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way [28–30]. In this approach, the concept of ‘failed first’ is implemented. The
basic idea is to first schedule the exams that might cause problems if they
were to be scheduled later on in the process. By doing so, it would appear to
be more likely that we can avoid the assignment of exams to time slots which
might later lead to an infeasible solution. An infeasible solution is reached
when several exams remain unscheduled because exams placed earlier have
invalidated all the potentially valid time slots for the remaining exams.

Essentially, the sequence of exams assigned to the timetable will affect the
solution quality. To quote [12]:

“... one important issue is the ordering in which the variables are selected
and the ordering in which the values are assigned to each variables. Different
orderings affect the efficiency of the search strategies significantly.”

3.2 Graph Based Heuristic Orderings

Usually, the unscheduled exams are ordered in a sequence that represents how
difficult it is thought likely to be to schedule the exams (most difficult first).
One type of ordering strategy that has widely been accepted in the timetabling
literature has evolved from the graph colouring problem. The timetabling
problem in it simplest form (without soft constraints) can be represented as
a graph colouring problem, in which the nodes represent the exams, colours
represent the time slots and the edges represent the conflict between exams.
The following list describes the three graph colouring based heuristic orderings
implemented in this research:

Largest Degree (LD) First. Exams are ranked in descending order by the
number of exams in conflict — i.e. priority is given to exams with the
greatest number of exams in conflict.

Largest Enrollment (LE) First. Exams are ranked in descending order by
the number of students enrolled in each of the exam — i.e. exams with the
highest number of students are given the highest priority.

Least Saturation Degree (SD) First. Exams are ranked in increasing or-
der by the number of valid time slots remaining in the timetable for each
exam — priority is given to exams with fewer time slots available.

In general, heuristic orderings are divided into two categories: static and dy-
namic. Static heuristic orderings are predetermined before the start of the
assignment process and their values remain the same throughout the process.
For the heuristic orderings described above, LD and LE are categorized as
static heuristic orderings. The number of exams in conflict with each exam
and the number of students enrolled for each exam only need to be calculated
once by analysing the specific problem structure. On the other hand, SD is
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Phase 1 : Sequential Constructive Algorithm

Constructive 
Initial 

Solution

Process 3:
Get next event on 
unscheduled list

Yes

No

No

Yes

YesNo
Process 4:
Add event 
to skipped 
list

Process 2:
Calculate events ’
difficulty to be 
scheduled

‘Acceptable’
Solution

Phase 2 : 
Iterative 

improvement

Process 1:
Choose heuristic ordering

No

Yes

Any more 
events?

Valid time 
slot 

available?

Process 5:
Assign 
event to the 
time slot

Process 6:
Perform 
‘rescheduling 
procedures’

Skipped 
event=0?

Dynamic 
heuristic?

Problem 
Definitions

Fig. 1. A general framework for producing timetabling solutions

considered to be a dynamic heuristic ordering because the number of valid
time slots available for unscheduled exams may change every time an exam is
assigned to a valid time slot; in which case, the unscheduled exams need to be
reordered.

3.3 Construction and Improvement

Figure 1 depicts a general framework for finding acceptable solutions to a
timetabling problem, in which the construction process is termed ‘Phase 1’ and
the improvement process ‘Phase 2’. Normally, in Phase 1, an initial solution
is constructed by using the sequential construction algorithm. The sequential
constructive algorithm requires the following steps to assign all exams to time
slots:

Process 1 Choose heuristic ordering
In order to determine the sequence in which exams are scheduled to a valid
time slot, we have to decide what heuristic ordering is to be employed.
Usually, any of the heuristic orderings described earlier can be employed
on its own to measure the exams’ difficulty to be scheduled. In this paper,
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we describe an alternative in which two heuristic orderings are considered
simultaneously to measure the exams’ difficulty.

Process 2 Calculate exams’ difficulty to be scheduled
Having chosen a heuristic ordering to be implemented, the calculations of
heuristic assessment of difficulty are performed and the exams are ordered
in the specified sequence.

Process 3 -Process 5 Sequentially assign exams to time slots
For each exam in turn (starting with the most difficult to schedule) the
following is carried out. The free time slots are examined in turn to find
valid ones, and for each the penalty that would result from placement of
the exam in this slot is calculated. After examining each of the time slots,
the exam is scheduled into the available slot incurring the least penalty
(if two or more slots share the lowest penalty cost, the exam is scheduled
into the last such time slot). If no valid time slot is available, the exam is
not assigned and is recorded on a ‘skipped list’. If a dynamic heuristic is
being used, the remaining exams’ difficulties are updated and the exams are
reordered accordingly.

Process 6 Perform a ‘rescheduling procedure’
This process is only performed when there is at least one exam that could
not be scheduled because no valid time slot was available — i.e there are
skipped exam(s) from Process 3 . The process for scheduling the skipped
exams is shown in Figure 2.

These processes continue until all the exams are scheduled, i.e. until a feasible
solution is constructed. Although in some approaches infeasible solutions are
initially accepted (usually to be later ‘corrected’ during an iterative improve-
ment phase), only feasible solutions are accepted in our implementation.

In Phase 2, the initial solution is modified in order to improve the solution.
The improvements can be implemented by using any meta-heuristic search
algorithm such as Genetic Algorithms, Tabu Search, Simulated Annealing [31]
or the Great Deluge Algorithm [32] (to name just a few approaches).

In this research, we focus only on constructing a feasible solution. Our main
aim was to investigate the implementation of a fuzzy approach in considering
multiple heuristic orderings for measuring the difficulty of scheduling exams
into time slots. A previous study by Carter [26] has shown that using different
heuristic orderings in the constructive algorithm will affect the performance
of the construction algorithm. Their study indicated that it is not easy to
determine which heuristic ordering is the most appropriate (to construct an
initial solution that leads to the best iterative improvement) for any given
problem in hand.
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while there exist unscheduled events

E* = next event that needs to be scheduled;
find time slots where event E* can be inserted which have the minimum number of

scheduled events that need to be removed from the time slot;

if more than one time slot is found with the same number of scheduled events to be removed

select a time slot t randomly from the candidate list;
end if

while there exist events that conflict with event E* in time slot t
Et = next conflicted event in time slot t;
if another time slot found with same minimum penalty cost as event Et

move event Et to that time slot;
else

bump back event Et to unscheduled events list;
end if

end while

insert event E* to time slot t;
remove event E* from unscheduled event list;
if dynamic ordering is in use

sort unscheduled events using selected heuristic ordering;

end if

end while

Fig. 2. Pseudo code for the rescheduling procedure, used if ‘skipped’ exams are
present

4 Combining Heuristic Orderings

4.1 The Need to Combine Ordering Heuristics

As stated in the previous Section, when deciding the order of exams to be
placed in a timetable, we are dealing with a decision making problem based
on more than one attribute (or factor). The problem lies in deciding which
attribute should be emphasized in order to obtain the best decision. Often
it is difficult to resolve conflicting attributes. Consider the example shown in
Figure 3. In this example, there are 10 exams (e1, e2, e3, e4, e5, e6, e7, e8, e9,
e10) with the given LD and LE values. Figure 3(a) shows the 10 exams in an
unordered list, Figures 3(b) to (f) show the results of using different heuristic
orderings to order the 10 exams. It can be seen that when two different heuris-
tic orderings are used individually, the orderings are different (see Figure 3(b)
and Figure 3(c)).

The simplest method to handle such multiple attribute decision making is just
to multiply the value of each attribute by a weighting factor and summate (i.e.
form a simple linear combination) In this example, the formulation is just:

weight(ej) = wlLDj + weLEj

where j = 1, 2, ...n; n is the number of exams; and wl and we are the weight-
ing factors (any real number) for LD and LE respectively. Using a simple
combination to represent the relative importance of both attributes can result
in quite a different ordering (see Figure 3(e) where weights wl = 0.45 and
we = 0.55 have been used as an arbitrary example). In effect, neither the LD
nor LE attributes alone control the exam ordering; it is determined by con-
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Unordered
exams list

Ordered by LD only Ordered by LE only

exams LD LE exams LD LE exams LD LE

e1 30 40 e3 50 20 e6 10 43

e2 10 30 e10 45 30 e1 30 40

e3 50 20 e5 39 10 e4 20 35

e4 20 35 e1 30 40 e2 10 30

e5 39 10 e9 27 15 e10 45 30

e6 10 43 e4 20 35 e8 19 25

e7 10 20 e8 19 25 e7 10 20

e8 19 25 e2 10 30 e3 50 20

e9 27 15 e6 10 43 e9 27 15

e10 45 30 e7 10 20 e5 39 10

(a) (b) (c)

Ordered by LD
and then LE

Ordered by LE and
then LD

Ordered by linear combination
of both attributes

exams LD LE exams LD LE exams LD LE weight

e3 50 20 e6 10 43 e10 45 30 36.8

e10 45 30 e1 30 40 e1 30 40 35.5

e5 39 10 e4 20 35 e3 50 20 33.5

e1 30 40 e10 45 30 e4 20 35 28.3

e9 27 15 e2 10 30 e6 10 43 28.2

e4 20 35 e8 19 25 e5 39 10 23.1

e8 19 25 e3 50 20 e8 19 25 22.3

e6 10 43 e7 10 20 e2 10 30 21.0

e2 10 30 e9 27 15 e9 27 15 20.4

e7 10 20 e5 39 10 e7 10 20 15.5

(d) (e) (f)

Fig. 3. Example of examinations ordered by various combinations of heuristics.

sidering both attributes simultaneously. However, the problem then becomes
that of needing to search for the appropriate values of wl and we to be used.
Johnson implemented the formula above [33] for constructing initial solutions
although he actually set the wl weight to a constant value (wl = 1) while vary-
ing the we value. The aim of this was simply to produce a range of alternative
initial solutions which were then subjected to iterative improvement.

4.2 The Fuzzy Approach

Heuristic orderings are based on assumptions such as, for example, an exam
is more difficult to schedule if it has a ‘large’ number of other exams in con-
flict or if it has a ‘small’ number of valid time slots available. This is dealing
with linguistic terms, where no exact values for ‘large’ and ‘small’ have been
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Rule base

Inference 
Engine

Membership Functions

DefuzzificationFuzzificationinput
output

Fig. 4. The components of a fuzzy inference system

defined. The general framework of fuzzy reasoning facilitates the handling of
such uncertainty. Since being first introduced by Zadeh in 1965 [34], fuzzy
logic approach has been widely used in variations of real world problem do-
mains. Fuzzy systems are used for representing and employing knowledge that
is imprecise, uncertain, or unreliable. Thus, our original hypothesis was that
this problem might be one where fuzzy techniques fit well. In essence, fuzzy
methodologies allow non-linear combinations of multiple heuristics to be con-
sidered.

Figure 4 shows the interconnected components of a fuzzy inference system. The
fuzzification component computes the membership grade for each crisp input
variables based on the membership functions defined. The rule base component
consists of a set of rules that connect input variables to output variables in
‘IF ... THEN ...’ form. These are used to describe the desired system response
in terms of linguistic variables (words) rather than mathematical formulae.
The ‘IF’ part of the rule is referred to as the ‘antecedent’, the ‘THEN’ part is
referred to as the ‘consequent’. The number of rules depends on the number of
inputs and outputs, and the desired behaviour of the system. Once the rules
have been established, such a system can be viewed as a non-linear mapping
from inputs to outputs. The inference engine then conducts the fuzzy reasoning
process by applying the appropriate fuzzy operators in order to obtain the
fuzzy set to be accumulated in the output variable. The defuzzifier transforms
the output fuzzy set to crisp output by applying the specific defuzzification
method.

More formally, a fuzzy set A of a universe of discourse X (the range over which
the variable spans) is characterised by a membership function µA : X → [0, 1]
which associates with each element x of X a number µA(x) in the interval
[0, 1], with µA(x) representing the grade of membership of x in A. The precise
meaning of the membership grade is not rigidly defined, but is supposed to
capture the ‘compatibility’ of an element to the notion of the set. There are
many alternatives for implementing the general fuzzy reasoning methodology.
In our implementation, the common Mamdani style fuzzy inference was used
with standard Zadeh (min-max) operators. In Mamdani inference [35], rules
are of the following form:
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Ri : if (x1 is Ai,1) and (x2 is Ai,2) ... and (xr is Ai,r)

then (y is Ci) for i = 1, 2, ..., L

where L is the number of rules, xj (j = 1, 2, 3, ..., r) are input variables, y
is output variable, and Aij and Ci are fuzzy sets that are characterised by
membership functions Aij(xj) and Ci(y), respectively. The final output of a
Mamdani system is one or more arbitrarily complex fuzzy sets which (usually)
need to be defuzzified. We applied a common form of this process, termed
‘centre of gravity defuzzification’, as it is based upon the notion of finding the
centroid of a planar figure, as given by:

∑
i

µ(xi) · xi

µ(xi)

It is not appropriate to present a full description of the functioning of fuzzy
systems here; the interested reader is referred to [35] for a simple treatment or
[36] for a more complete treatment. An introductory tutorial on fuzzy mod-
elling for the novice can be found in [37].

5 A Fuzzy Model for Timetable Construction

This Section presents the development of our particular fuzzy model. Consid-
ering the three single heuristic orderings explained in Section 3.2, there are
three alternatives in which two single heuristic orderings can be simultaneously
combined. The possible combinations are:

• Largest Degree (LD) and Largest Enrollment (LE ), referred to as the Fuzzy
LD+LE Model in the rest of this paper

• Saturation Degree (SD) and Largest Enrollment (LE ), referred to as the
Fuzzy SD+LE Model in the rest of this paper

• Saturation Degree (SD) and Largest Degree (LD), referred to as the Fuzzy
SD+LD Model in the rest of this paper

As mentioned earlier, these three heuristic ordering combinations provide al-
ternative ways for ordering the exams. Therefore, in Process 1 (see Figure 1),
instead of simply choosing any one of the single heuristic orderings to be im-
plemented, we need to modify/improve the process so that the fuzzy approach
can be incorporated. Accordingly, the extended version of Process 1 is shown
in Figure 5. It is worth mentioning that fuzzy methodologies are only em-
ployed in Process 1 ; the other processes in the dotted-box of Figure 1 remain
the same.
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Fuzzy Modeling (Process 1)

Choose heuristic ordering combination from 
heuristic ordering list – SD, LD and LE

Define fuzzy rules that related to the 
heuristics chosen.

Define fuzzy membership functions for 
each heuristic combination

Fig. 5. The steps involved in a fuzzy version of Process 1 (from Fig. 1)

x0

0.5

1

0 0.2 0.4 0.6 0.8 1

small medium high
µ(x)

Fig. 6. Illustration of the default membership functions used in each linguistic vari-
able

Fuzzy modeling can be thought of as the task of designing the fuzzy inference
system specific to the particular application area. The selection of important
parameters for the inference system is crucial, as the overall system behaviour
is highly dependent on a large number of factors such as how the membership
functions are chosen, the number of rules involved, the fuzzy operators used,
and so on. As we are combining two heuristics into a single overall heuristic, a
fuzzy system with two inputs and one output is developed. The input variables
used are dependent on the heuristic combinations selected. Three pairs of input
variables are possible, namely LD and LE , SD and LE , or SD and LD . In
any pair of input variables, an output variable called examweight is generated.
This output variable, examweight represents the overall difficulty of scheduling
an exam to a time slot. Each of the input and output variables are associated
with three linguistic terms: small, medium and high. Each linguistic term is
represented by a fuzzy membership function. Although, in general, any shape
of fuzzy membership function is possible, triangular ones are popular due to
their relative simplicity. We used triangular membership functions for this
reason — a thorough investigation of alternative membership functions would
be a major undertaking in its own right and is beyond the scope of the present
paper. The basic triangular membership functions implemented are shown in
Figure 6.

The range of each input and output variable was defined to be between 0 and
1. This means that the actual input value needed to be transformed into a
new value in the range [0, 1]. In general, this can be achieved using a simple
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Table 1
The fuzzy rule set for the Fuzzy LD+LE Model .

LE VS: very small

S M H S: small

S VS S M M: medium

LD M S M H H: high

H M H VH VH: very high

linear transformation:

v′ =
(v −minx)

(maxx −minx)

where v is the actual value in the initial range [minx, maxx]. In our case, minx,
was set to zero for each of LD , LE and SD . The maximum values were set by
inspection of each problem instance: maxx(LD) was set to the largest number
of conflicts found for any exam in the problem instance; maxx(LE) was set
to the maximum number of students enrolled to any exam in the problem
instance; and maxx(SD) was set to the total number of time slots available
in the problem instance.

For each heuristic ordering combination, a fuzzy rule set connecting the input
variables (any two of LD , LE or SD) to the output variable, examweight was
constructed. All three fuzzy rule sets were motivated by the assumption that
exams should be placed into a timetable in order of how difficult they are
to schedule (most difficult first) in accordance with the respective heuristics
LD , LE and SD . These assumptions were used in order to get a symmetric,
balanced set of fuzzy rules for each heuristic ordering combination, to ensure
that all possible input values were covered. Note that the interpretation of the
SD heuristic (smaller is more difficult) is linguistically opposite to that of LD
and LE (larger is more difficult). Thus, care must be taken when considering
SD as one of the heuristic orderings in a combination.

The fuzzy rules sets for the Fuzzy LD+LE Model , Fuzzy SD+LE Model and
Fuzzy SD+LD Model are shown in Tables 1 to 3, respectively. For simplic-
ity, the fuzzy rules are expressed as a linguistic matrix (see [38]). In such a
linguistic matrix, the left-most column and the first row denote the variables
involved in the antecedent part of the rules. The second column contains the
linguistic terms applicable to the input variable shown in the first column;
those in the second row correspond to the input variable shown in the first
row. Each entry in the main body of the matrix denotes the linguistic values
of the consequent part of a rule.
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Table 2
The fuzzy rule set for the Fuzzy SD+LE Model .

SD VS: very small

S M H S: small

S M S VS M: medium

LE M H M S H: high

H VH H M VH: very high

Table 3
The fuzzy rule set for the Fuzzy SD+LD Model .

SD VS: very small

S M H S: small

S M S VS M: medium

LD M H M S H: high

H VH H M VH: very high

Note that, in addition to the three basic terms, the hedge ‘very’ was utilised
to create two extra terms for the output variable. The ‘very’ hedge squares
the membership grade µ(x) at each x of the fuzzy set for the term to which
it is applied. Thus the membership function of the fuzzy set for ‘very small’
is obtained by squaring the membership function of the fuzzy set ‘small’. For
instance, the bottom-right entry in Table 1 is read as “IF LD is high AND LE
is high THEN examweight is very high”. For an illustrative example of how
these initial fuzzy models were tuned to best measure the difficulty of schedul-
ing exams to time slots by considering two heuristic orderings simultaneously,
the interested reader is referred to our previous paper [16].

6 Computational Experiments

6.1 Methods

Due to the randomness in the rescheduling procedure, a different timetable may
be constructed each time the algorithm is run. Therefore, in order to determine
and compare the performance of the various fuzzy heuristic orderings, repeated
runs were performed to generate 30 solutions with each fuzzy multiple heuristic
ordering model and each of the single heuristic orderings (LD , LE and SD),
for each of the 12 data sets mentioned in Section 2.
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Fig. 7. The fuzzy membership functions were tuned by adjusting the cp parameter
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Fig. 8. Example of graphical representation of fuzzy membership functions when
implemented in the Fuzzy SD+LE Model

For fuzzy multiple heuristic orderings, the ‘best’ fuzzy models that had been
identified during the membership functions tuning phase were utilised. In the
tuning phase, the membership functions were refined by adjusting them until
the best possible system performance was achieved. In brief, a parameter cp
was used to represent (simultaneously) the right-hand edge of the ‘small’ term,
the middle of the ‘medium’ term and the left-hand edge of the ‘large’ term for
each of the two inputs and the output variable (see Figure 7). The three cp
parameters were systematically altered while assessing the performance of the
system. For a detailed description of the fuzzy membership function tuning
process, please refer to our previous paper [16]. Table 4 shows the values of the
cp parameter obtained for each of the fuzzy heuristic ordering combinations
for each data set. Graphical representations of the membership functions for
some of the ‘best’ fuzzy models generated when the Fuzzy SD+LE Model was
implemented are depicted in Figure 8.

6.2 Problem Instances

The examination timetabling problem data sets which were made publicly
available by Carter [26], were used in these experiments. The 12 instances in
this benchmark data sets with different characteristics and various levels of
complexity are shown in Table 5. For all data sets, it is required to satisfy the
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Table 4
Values for cp parameters obtained from the fuzzy tuning process.

Fuzzy Fuzzy Fuzzy

Data Set LD+LE Model SD+LE Model SD+LD Model

LD LE exam
weight

SD LE exam
weight

SD LD exam
weight

CAR-F-92 0.00 0.50 0.50 0.50 0.25 0.25 0.50 1.00 1.00

CAR-S-91 0.50 0.00 0.25 0.25 0.00 0.50 0.75 0.75 0.75

EAR-F-83 0.40 1.00 0.30 0.50 1.00 0.50 0.80 0.40 0.20

HEC-S-92 0.40 0.20 0.40 0.40 1.00 1.00 0.20 0.40 0.00

KFU-S-93 0.75 0.00 0.00 0.50 1.00 0.50 0.50 1.00 0.50

LSE-F-91 0.75 0.50 0.25 0.25 1.00 0.25 0.25 0.75 0.50

RYE-F-92 0.75 0.25 0.00 1.00 0.00 0.00 0.75 1.00 0.50

STA-F-83 0.60 0.70 0.90 0.20 0.30 0.00 0.60 0.80 0.50

TRE-S-92 0.00 0.50 0.40 0.60 1.00 0.20 0.20 0.30 0.10

UTA-S-92 0.00 0.50 0.75 0.25 0.00 0.50 0.50 0.50 0.75

UTE-S-92 0.30 0.60 0.00 0.30 0.90 0.70 0.40 0.00 0.50

YOR-F-83 0.90 1.00 0.00 0.60 0.80 0.70 0.00 0.00 0.50

defined hard constraint that no student can attend more than one exam at
the same time. In addition, the solution must be developed in such a way that
it promotes the spreading out of each student’s exams so that students have
as much time as possible between exams.

6.3 Experimental Results

Table 6 shows a comparison of the cost penalties obtained based on 30 runs of
each data set. The best results among the different heuristic orderings used are
highlighted in bold font. It is evident that, overall, the fuzzy multiple heuristic
orderings have outperformed any of the single heuristic orderings in that,
for each data set, a fuzzy ordering obtained the best constructed timetable
quality. Specifically, the Fuzzy SD+LE Model obtained 10 best results and
the Fuzzy LD+LE Model and Fuzzy SD+LD Model each obtained one best
result. Amongst the single heuristic orderings, LE is the most effective on
these benchmarks in that it obtained 8 best results, followed by SD with 3
best results (HEC-S-92 , LSE-F-91 and UTA-S-92 ) and lastly LD with only
one best result (EAR-F-83 ).
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Table 5
Examination timetabling problem characteristics.

Data Set Number
of slots

Number
of exams

Number of
students

Conflict
density

CAR-F-92 32 543 18419 0.14

CAR-S-91 35 682 16925 0.13

EAR-F-83 24 190 1125 0.27

HEC-S-92 18 81 2823 0.42

KFU-S-93 20 461 5349 0.06

LSE-F-91 18 381 2726 0.06

RYE-F-92 23 486 11483 0.08

STA-F-83 13 139 611 0.14

TRE-S-92 23 261 4360 0.18

UTA-S-92 35 622 21266 0.13

UTE-S-92 10 184 2750 0.08

YOR-F-83 21 181 941 0.29

Table 7 shows a comparison of the best result obtained for each data set by
the fuzzy approach detailed here with the best results in the literature for
other purely constructive methods (marked with a †) and the best current
iterative improvement approaches. We define a purely constructive approach
as one which stops as soon as a feasible solution has been created. However,
recall that we aim to construct a good quality solution, rather than just con-
structing any solution. It can be seen that for one data set, YOR-F-83 , the
fuzzy approach obtains the best overall result for any constructive approach.
Whilst it can also be seen that our methodology does not produce any best
overall results, we reiterate that any iterative improvement technique could
subsequently be applied to the timetable solutions constructed using the fuzzy
approach detailed here.

Table 8 shows the number of skipped exams obtained before the rescheduling
procedure was called. Recall that the number of skipped exams is the number
of exams that could not be scheduled after the completion of the initial phase
of the constructions process (i.e. after Process 2 to Process 5 had been com-
pleted). It is simply the number of exams added to the ‘skipped list’ due to
the fact that no valid time slot was available. It can be seen that SD often
(7 out of 12 data sets) produced solutions without any skipped exams. This
behaviour (most data sets resulting in no skipped exams) is also seen in the
fuzzy multiple heuristic orderings that used SD . However, this was not true
for two data sets (RYE-F-92 and STA-F-83 ) when the Fuzzy SD+LD Model
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Table 6
The penalty costs obtained by the different heuristic orderings on each of the 12
benchmark data sets. In each case the best result, the worst result, the average
result and the standard deviation obtained over 30 repeated runs are given.

Data Set Single Heuristic Ordering Fuzzy Fuzzy Fuzzy

LD LE SD LD+LE SD+LE SD+LD

Model Model Model

CAR-F-92 Best 5.51 4.86 5.50 4.62 4.54 4.62

Average 6.10 5.42 5.74 4.63 4.54 4.62

Worst 6.81 6.40 7.25 4.64 4.54 4.62

Std. Dev. 0.41 0.38 0.43 0.01 0.00 0.00

CAR-S-91 Best 6.13 5.89 5.91 5.57 5.29 5.77

Average 6.66 6.36 5.91 5.67 5.29 5.77

Worst 7.40 6.89 5.91 5.88 5.29 5.77

Std. Dev. 0.31 0.26 0.00 0.08 0.00 0.00

EAR-F-83 Best 40.58 44.86 48.99 42.61 37.02 40.85

Average 42.05 51.06 51.49 45.16 37.02 42.16

Worst 45.09 59.14 54.79 49.90 37.02 44.46

Std. Dev. 1.03 2.99 1.67 1.52 0.00 1.27

HEC-S-92 Best 14.73 14.41 14.23 12.43 11.78 12.55

Average 16.25 16.98 16.36 14.25 11.78 12.55

Worst 18.70 21.40 20.80 18.18 11.78 12.55

Std. Dev. 1.31 1.76 1.86 1.74 0.00 0.00

KFU-S-93 Best 18.38 16.46 18.62 16.45 15.81 15.80

Average 19.53 16.47 18.62 17.84 15.81 15.80

Worst 21.81 16.50 18.62 21.75 15.81 15.80

Std. Dev. 0.94 0.01 0.00 1.64 0.00 0.00

LSE-F-91 Best 14.79 14.41 13.46 12.35 12.09 12.95

Average 17.12 16.45 13.46 12.35 12.09 12.95

Worst 19.70 18.79 13.46 12.35 12.09 12.95

Std. Dev. 1.37 1.20 0.00 0.00 0.00 0.00

RYE-F-92 Best 13.02 11.22 11.60 11.75 10.38 12.71

Average 14.54 12.86 11.60 12.47 10.38 13.92

Worst 17.38 14.60 11.60 13.70 10.38 15.42

Std. Dev. 1.10 0.84 0.00 0.52 0.00 0.69

STA-F-83 Best 173.09 171.80 178.24 160.42 160.75 171.42

Average 173.09 172.22 178.24 160.42 160.75 171.42

Worst 173.09 172.57 178.24 160.42 160.75 171.42

Std. Dev. 0.00 0.23 0.00 0.00 0.00 0.00

TRE-S-92 Best 10.65 9.92 10.81 9.05 8.67 9.80

Average 11.42 10.73 10.81 9.05 8.67 9.80

Worst 12.32 12.02 10.81 9.05 8.67 9.80

Std. Dev. 0.43 0.49 0.00 0.00 0.00 0.00

UTA-S-92 Best 4.26 4.63 3.83 3.86 3.57 3.86

Average 5.14 5.31 3.83 4.03 3.57 3.86

Worst 6.28 6.32 3.83 4.30 3.57 3.86

Std. Dev. 0.49 0.33 0.00 0.13 0.00 0.00

UTE-S-92 Best 35.19 28.79 33.26 28.65 28.07 31.05

Average 35.51 28.93 33.61 28.68 28.07 31.05

Worst 36.10 29.63 34.43 28.74 28.07 31.05

Std. Dev. 0.26 0.20 0.28 0.03 0.00 0.00

YOR-F-83 Best 45.32 43.33 45.26 41.02 39.80 44.70

Average 46.27 45.75 46.57 43.05 39.80 44.70

Worst 47.91 49.12 48.53 47.95 39.80 44.70

Std. Dev. 0.79 1.81 1.01 1.40 0.00 0.00

was implemented — i.e. for these two data sets the SD heuristic alone resulted
in no skipped exams, but when combined with the LD heuristic in the fuzzy
approach some exams were skipped. The number of skipped exams determines
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Table 7
A comparison of results obtained using different approaches. Constructive ap-
proaches are marked with a dagger (†). The last three columns show the best current
iterative improvement techniques. Bold font indicates the best result achieved by
any method; underlined text indicates the best result achieved by a constructive
method; italic font indicates results of our method that beat our previously pub-
lished work [16].

Data Set †Carter
et al.,
1996
[26]

†Burke
et al.,
2004
[39]

†Burke
et al.,
2007
[40]

†Asmuni
et al.,
2005
[16]

†Fuzzy
Multiple
Heuristic

Caramia
et al.,
2001
[42]

Yang &
Petrovic,

2005
[14]

Burke
et al.,
2006
[43]

CAR-F-92 6.2 4.32 4.53 4.56 4.54 6.6 4.50 4.6

CAR-S-91 7.1 4.97 5.36 5.29 5.29 6.0 3.93 4.0

EAR-F-83 36.4 36.16 37.92 37.02 37.02 29.3 33.70 32.8

HEC-S-92 10.8 11.61 12.25 11.78 11.78 9.2 10.83 10.0

KFU-S-93 14.0 15.02 15.20 15.81 15.80 13.8 13.82 13.0

LSE-F-91 10.5 10.96 11.33 12.09 12.09 9.6 10.35 10.0

RYE-F-92 7.3 – – 10.38 10.38 6.8 8.53 –

STA-F-83 161.5 170.35 158.19 160.42 160.42 158.2 158.35 159.9

TRE-S-92 9.6 8.38 8.92 8.67 8.67 9.4 7.92 7.9

UTA-S-92 3.5 3.36 3.88 3.57 3.57 3.5 3.14 3.2

UTE-S-92 25.8 27.42 28.01 28.07 28.07 24.4 25.39 24.8

YOR-F-83 41.7 40.77 41.37 40.66 39.80 36.2 36.35 37.3

whether it is necessary to invoke the rescheduling procedure or not. Obviously,
it is not necessary to invoke the rescheduling procedure if there are no skipped
exams.

Table 9 shows a comparison of the number of iterations of the rescheduling
procedure required. This table shows the number of iterations of the loop in the
rescheduling procedure that were required by each heuristic ordering in order
to produce the solutions. As mentioned earlier, the number of skipped exams
has an effect on the number of iterations of the rescheduling procedure that
are required. In our approach, the rescheduling procedure is invoked at least
once for every exam in the unscheduled list, so that the number of iterations of
the rescheduling procedure required is equal to or greater than the number of
skipped exams (although this need not necessarily be the case in general). For
example, when LD ordering was applied to the YOR-F-83 data set, it caused
5 skipped exams (see column 2 of Table 8). However, on average, 27 iterations
of the rescheduling procedure were required (see column 2 of Table 9) in order
to produce the solutions.

Finally, Table 10 shows a comparison of the computational time required to
construct the solutions for each of the heuristic ordering methods for each
data set. As might be expected, when dynamic heuristic ordering was used,
much longer times were required in order to produce the solutions, because
each time around the loop the heuristic needed to be recalculated and the
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Table 8
The number of skipped exams obtained due to the fact that there was no valid time
slot available in the first attempt to assign the exam into the time slots — i.e. the
number of exams in the skipped list after Process 5 .

Data Set Single Heuristic Ordering Fuzzy Fuzzy Fuzzy

LD LE SD LD+LE SD+LE SD+LD

Model Model Model

CAR-F-92 12 11 1 1 0 0

CAR-S-91 10 15 0 3 0 0

EAR-F-83 3 8 1 7 0 1

HEC-S-92 2 6 2 5 1 0

KFU-S-93 4 4 0 8 0 0

LSE-F-91 3 5 0 0 0 0

RYE-F-92 2 5 0 1 0 2

STA-F-83 24 2 0 7 0 24

TRE-S-92 6 7 0 1 0 0

UTA-S-92 7 13 0 2 0 0

UTE-S-92 2 3 1 1 1 1

YOR-F-83 5 10 3 13 0 0

exams reordered. This happened when either a single or a multiple heuristic
ordering was implemented.

7 Discussion

When constructing solutions for examination timetabling problems, one of the
most important aspects that will affect the solution quality is the sequence
in which the events should be selected to be scheduled [12]. Many ordering
strategies have been implemented by other researchers. One of the strategies
that is widely used is to base various heuristics on graph theory [39]. However,
to the best of our knowledge, although there are many such criteria derived
from graph theory that could be used as ordering heuristics, only one criterion
has been used on its own at any single step of the construction process (ex-
cept the work of Johnson [33] where the LE and LD heuristic were employed
simultaneously simply to construct a number of alternative initial solutions).
Another similar approach is one recently published by Burke et al. [40] (in
press) in which different graph colouring heuristics are applied in sequence to
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Table 9
The number of iterations of the rescheduling procedure required for each data set.

Data Set Single Heuristic Ordering Fuzzy Fuzzy Fuzzy

LD LE SD LD+LE SD+LE SD+LD

Model Model Model

CAR-F-92 Smallest 58 31 5 1 0 0

Average 204 81 58 1 0 0

Worst 459 223 261 1 0 0

CAR-S-91 Smallest 39 34 0 4 0 0

Average 99 70 0 10 0 0

Worst 287 152 0 33 0 0

EAR-F-83 Smallest 4 17 7 11 0 2

Average 7 95 49 24 0 12

Worst 12 265 167 57 0 53

HEC-S-92 Smallest 8 19 9 6 1 0

Average 29 41 39 22 1 0

Worst 101 80 121 115 1 0

KFU-S-93 Smallest 6 4 0 10 0 0

Average 13 4 0 29 0 0

Worst 80 4 0 117 0 0

LSE-F-91 Smallest 13 24 0 0 0 0

Average 59 71 0 0 0 0

Worst 182 181 0 0 0 0

RYE-F-92 Smallest 9 9 6 0 6

Average 88 28 0 22 0 59

Worst 365 86 0 73 0 217

STA-F-83 Smallest 24 2 0 7 0 24

Average 24 2 0 7 0 24

Worst 24 2 0 7 0 24

TRE-S-92 Smallest 12 13 0 1 0 0

Average 38 31 0 1 0 0

Worst 121 67 0 1 0 0

UTA-S-92 Smallest 37 65 0 4 0 0

Average 186 239 0 34 0 0

Worst 413 543 0 82 0 0

UTE-S-92 Smallest 3 3 3 1 1 1

Average 9 3 9 1 1 1

Worst 66 11 32 1 1 1

YOR-F-83 Smallest 8 18 11 14 0 0

Average 27 60 50 33 0 0

Worst 65 181 142 107 0 0

construct solutions for both the examination and course timetabling problem,
but only one heuristic is used at any given time.

This paper presents a new heuristic ordering method in which two heuristic
orderings are considered simultaneously using a fuzzy methodology to com-
bine them. The experimental results shown in Table 6 indicate that this new
approach is promising. Concentrating on the quality of the solutions, it can
be seen in Table 6 that all the best results were obtained when fuzzy multiple
heuristic orderings were implemented. This indicates that, in these timetabling
problems, determining the difficulty of scheduling exams into time slots by
taking into account multiple heuristic orderings simultaneously has resulted
in solutions with better quality. The results in Table 7 show that, for the
data set YOR-F-83 , the fuzzy approach obtains the best overall result for any
constructive approach.
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Table 10
A comparison of the computational time required to construct the solutions for each
heuristic ordering methods for each data set (seconds).

Data Set Single Heuristic Ordering Fuzzy Fuzzy Fuzzy

LD LE SD LD+LE SD+LE SD+LD

Model Model Model

CAR-F-92 Shortest 45.09 20.50 396.30 2.13 442.98 725.08

Average 185.27 70.50 446.86 2.18 446.77 733.13

Worst 440.08 216.67 666.81 2.67 458.31 763.75

CAR-S-91 Shortest 47.16 36.08 922.58 6.06 1006.70 1620.36

Average 135.72 87.14 965.61 14.16 1023.50 1653.55

Worst 403.24 197.70 1161.44 49.66 1055.53 1767.08

EAR-F-83 Shortest 0.41 1.13 12.61 0.83 19.34 33.34

Average 0.63 8.26 16.62 1.88 19.38 34.82

Worst 1.13 23.74 27.70 4.88 19.47 40.77

HEC-S-92 Shortest 0.11 0.22 0.95 0.11 2.28 2.27

Average 0.37 0.52 1.29 0.32 2.36 2.36

Worst 1.33 1.03 2.36 1.45 3.49 3.49

KFU-S-93 Shortest 1.17 0.89 64.28 2.05 112.44 179.50

Average 2.74 0.91 64.54 7.77 113.92 182.91

Worst 17.19 0.97 67.03 31.64 115.30 187.50

LSE-F-91 Shortest 1.77 3.24 37.92 0.52 70.27 114.55

Average 8.25 9.77 38.00 0.53 70.57 118.33

Worst 27.50 24.33 38.61 0.58 70.88 136.47

RYE-F-92 Shortest 2.94 2.84 149.94 2.11 215.24 333.50

Average 22.68 7.54 150.44 6.01 221.01 359.11

Worst 96.94 22.64 151.75 19.55 246.77 417.64

STA-F-83 Shortest 0.19 0.05 3.33 0.16 6.58 7.66

Average 0.21 0.06 3.34 0.16 6.59 9.72

Worst 0.27 0.14 3.39 0.22 6.64 11.05

TRE-S-92 Shortest 1.08 1.31 30.02 0.47 43.55 75.39

Average 4.12 3.57 30.08 0.49 43.70 76.94

Worst 12.77 8.34 30.23 0.55 44.86 85.88

UTA-S-92 Shortest 39.38 71.22 597.94 4.95 675.06 1101.94

Average 229.01 296.84 639.26 40.40 695.52 1111.75

Worst 501.64 697.88 809.13 93.91 818.70 1160.22

UTE-S-92 Shortest 0.06 0.08 4.23 0.14 12.67 18.41

Average 0.11 0.09 4.32 0.17 13.02 19.51

Worst 0.41 0.23 4.95 0.39 13.33 24.52

YOR-F-83 Shortest 0.42 0.88 15.99 0.78 22.47 37.22

Average 1.34 3.06 18.03 1.74 22.51 38.78

Worst 3.17 9.39 23.53 5.16 22.59 46.23

Nevertheless, there are a few cases in which fuzzy multiple heuristic order-
ings produced worst solutions compared to specific single heuristic orderings.
For example, for the RYE-F-92 , UTE-S-92 and YOR-F-83 data sets the LE
heuristic ordering beat the Fuzzy SD+LD Model (see Table 6), and there are
other similar such occurrences. These observations suggest that care must be
taken when choosing which heuristic orderings are to be used simultaneously
for any given problem instance.

When looking at ‘effectiveness’ in terms of both solution quality and variation
in solution quality, the results indicate that the Fuzzy SD+LE Model is the
most effective heuristic ordering. For all 12 data sets, the 30 multiple runs of
this heuristic ordering obtain the same solution quality. Although the Fuzzy
SD+LD Model also managed to obtain the same solution quality for 10 data
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sets, this fuzzy model only produced one best result out of the 12 data sets.
Meanwhile, SD ordering and the Fuzzy LD+LE Model only managed to pro-
duce the same solution for a few of the data sets, while LD ordering only
managed to obtain the same solution quality for the STA-F-83 data set.

Since the only stochastic element in our algorithm is when selecting a time slot
in the rescheduling procedure, any heuristic ordering that produces an exam
ordering which causes no skipped exams will always obtain the same solution in
multiple runs. On the other hand, in situations where there are skipped exams
(which depends on the problem instance and the heuristic ordering used) these
can only be scheduled by reshuffling the already scheduled exams into another
time slot, or ‘bumping’ the scheduled exams back to the unscheduled exam list.
It seems obvious that the higher the number of iterations of the rescheduling
procedure required, the higher the possibility of obtaining a solution with a
different cost penalty. This scenario may explain why the fuzzy membership
function tuning process took a long time to finish, particularly for the problem
instances that have more than 400 exams. It is assumed that during the fuzzy
model tuning process, when a bad fuzzy model is evaluated, it will generate
an ordering of the exams which for some reason cannot guide the constructive
algorithm towards a good solution. In the case of a bad ordering of exams such
as this, many of the exams cannot be scheduled without reshuffling exams that
have already been scheduled earlier.

In Table 8, it can be observed that the SD heuristic ordering, the Fuzzy SD+LE
Model and the Fuzzy SD+LD Model often produced solutions without invoking
the rescheduling procedure. An interesting point here is that, although the SD
heuristic ordering is capable of generating an ordering of exams that required
no rescheduling procedure, when compared against the other single heuristic
orderings it only produced 3 best results out of the 12 data sets (see Table
6). In contrast, the exam ordering generated using the Fuzzy SD+LE Model
guides the constructive algorithm without requiring the rescheduling procedure
and, moreover, it finds solutions which are better than other heuristics in 10
out of the 12 data sets. In addition, although the Fuzzy SD+LE Model needed
to reschedule one exam in the case of HEC-S-92 and UTE-S-92 , the solutions
were produced by performing only one iteration of the rescheduling procedure.
For the same HEC-S-92 data set, the SD heuristic ordering also produced only
one skipped exam but it required 39 iterations, on average, of the rescheduling
procedure to produce the solution. When the UTE-S-92 data set is considered,
although having only one unscheduled exam, an average of 9 iterations of the
rescheduling procedure were required to produce the solution.

Taking these facts into consideration, we may now speculate as to what might
be the factors that cause the Fuzzy SD+LE Model to perform uniformly well
across the 12 different data sets. Amongst the single heuristic orderings, LE
performed well in 8 out of 12 data sets (see Table 6), while SD often managed
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to find solutions without skipping an exam (see column 4 of Table 8). It
would appear that the fuzzy approach is somehow combining the individual
strengths of these two heuristics to improve the overall performance of the
search algorithm.

In can be seen that 24 exams are skipped when the single heuristic ordering
LD and the Fuzzy SD+LD Model were applied to the STA-F-83 data set
(columns 2 and 7 of Table 8). Interestingly, all these skipped exams are then
scheduled by performing the rescheduling procedure with the same number of
iterations, i.e. 24 (see columns 3 and 8 of Table 9). This means that none of
the already scheduled exams needed to be bumped back to the unscheduled
list in order to create spaces for the skipped exams. Further investigation has
shown that the 24 skipped exams are the same in each case. We examined this
closely in order to understand what had caused this curious effect.

In essence, the initial part of the construction process is a greedy algorithm
that minimises the penalty of placing each exam, one by one, into the timetable
(in the order given by the heuristic determination of difficulty). With the ten-
dency to assign each unscheduled exam into the time slot with least penalty
cost, the available time slots are usually occupied at an early stage of the
scheduling process. In the case of the STA-F-83 data set with the Fuzzy
SD+LD Model , the first 13 exams were assigned to the 13 time slots available,
although some of these exams could have been scheduled together in the same
time slot — i.e. these 13 did not necessarily clash with each other. In effect,
this situation had caused a ‘bottleneck’, after which no more valid time slots
were available. In the next step of the construction process, the reschedul-
ing procedure attempts to schedule each of the skipped exams by considering
multiple simultaneous moves of already placed exams in order to obtain fea-
sible solutions. For the STA-F-83 data set, each of the skipped exams could
be placed without needing to ‘unschedule’ (‘bump-back’) any exams already
placed.

Turning now to the computational time, it seems that the Fuzzy LD+LE Model
can be considered to be the best amongst the multiple heuristic orderings we
experimented with since this heuristic always found good quality solutions in
relatively low computational time. As seen in Table 6, in terms of solution
quality, the Fuzzy LD+LE Model and Fuzzy SD+LE Model were approxi-
mately the same. Furthermore, when compared to the various single heuristic
orderings, it is apparent that the Fuzzy LD+LE Model heuristic ordering ob-
tained the minimum penalty cost for nine out of 12 data sets. However, in
terms of computational time (see Table 10), the Fuzzy SD+LE Model and
the Fuzzy SD+LD Model consistently perform worse than the other heuristic
orderings. Note that the times in column 6 of Table 10 are equivalent to those
for our previous approach [16].
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Considering that the Fuzzy LD+LE Model combines two single heuristic order-
ings which are both categorised as static heuristics, it might be expected that
this fuzzy model will take more computational time to produce the solution
than the two heuristics on which it depends. However, the results presented in
Table 10 indicate that in at least 6 out of the 12 cases the Fuzzy LD+LE Model
is actually quicker than the single heuristics, specifically for the CAR-F-92 ,
CAR-S-91 , LSE-F-91 , RYE-F-92 , TRE-S-92 , and UTA-S-92 data sets. (It
is arguable that is it also quicker for a 7th data set, HEC-S-92 , as the Fuzzy
LD+LE Model has a lower average than the other heuristics.) It can be seen
that this fuzzy heuristic ordering always obtains the solutions in shorter ex-
ecution time for the data sets that consist of more than 300 exams, except
for KFU-S-93 . For the rest of the data sets, the time taken to construct the
solution is very reasonable compared to the other single static heuristics.

If we now compare the longest time required to produce the solutions among
the static heuristic orderings (i.e. those excluding the use of SD) it is evident
that the Fuzzy LD+LE Model always produced the solutions in relatively short
time (except for KFU-S-93 ). This is obvious for the data sets that contain
more than 300 exams particularly for CAR-F-92 , CAR-S-91 and UTA-S-92
(see Table 10). For example, in the case of the CAR-F-92 data set (looking at
the Worst row), the Fuzzy LD+LE Model only took approximately 3 seconds,
whereas the other heuristics took at least 217 seconds. Although it takes a long
time to search for the ‘best’ fuzzy model, it is important to notice how quickly
the ‘best’ fuzzy model finds the solution compared to these other heuristic
orderings.

However, the capability to produce solutions quickly is not achievable when
the dynamic heuristic is implemented. As seen in Table 10, the Fuzzy SD+LD
Model required the longest time in all problem instances as compared to the
other heuristics, followed by the Fuzzy SD+LE Model . We believe that most
of the time is used to recalculate the number of valid time slots available for
the remainder of the unscheduled exams, and not to calculate the fuzzy exam
weight. This assumption is based on the observation mentioned earlier, that
the Fuzzy LD+LE Model always obtained the solutions in quick time, meaning
that the time taken to calculate exam fuzzy weight must be relatively very
small. Moreover, in 10 out of the 12 problem instances, the Fuzzy SD+LE
Model found the solutions without invoking the rescheduling procedure (and
the other two data sets with only one iteration of the rescheduling procedure),
which means that no time was spent reshuffling the scheduled exams.
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8 Conclusions

The work presented in this paper builds upon and extends our previous work
investigating the use of fuzzy techniques in the construction of university ex-
amination timetables. In our previous work [16], we carried out a preliminary
investigation into the use of fuzzy techniques to combine multiple heuristics
used to determine the order in which to place exams into timetables in the
construction phase. This previous work considered only a limited combination
of heuristics but, nevertheless, highlighted the fact that the fuzzy approach
showed promise. In this paper, we have extended this by considering the fuzzy
combination of all three pairs of heuristics that are possible from a set of
three single heuristics (LD , LE and SD). We have also analysed, in signifi-
cant depth, the effect of utilising the fuzzy combination of heuristics in the
construction process, specifically in its effect on the amount of backtracking
required and the associated computational time required. We have evaluated
the proposed approach on the 12 Carter benchmark data sets commonly used
for comparative purposes in this field of research.

We have shown that the fuzzy combination of SD and LE obtained a good
overall performance in terms of low penalty cost on the 12 benchmark data
sets. The use of the fuzzy combination of heuristics resulted in lower penalty
costs than obtained by the use of any of the heuristics alone, on all 12 data
sets. Furthermore, the Fuzzy SD+LE Model obtained a penalty cost for one
data set (YOR-F-83 ) that is lower than any other previously published con-
structive approach. In addition to this, the Fuzzy SD+LE Model required less
backtracking in the construction process than that observed for any single
heuristic used alone. We hence conclude that this novel fuzzy approach is a
highly effective method for combining heuristics to be used in the construction
of examination timetabling solutions. As the process of constructing feasible
solutions to examination timetables in real-world situations (as opposed to
these benchmark data sets) is often a significant challenge in its own right
[41], the fuzzy approach detailed here could be of great benefit.

The issue of which combination of heuristics should be applied in novel real-
world problem instances is an important open research question. Our current
research is currently investigating the development of a framework which could
take as input a new problem instance and, from its characteristics, recommend
which combination of heuristics should be used for producing a solution.
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