

Abstract—Combinations of evolutionary based approaches
with local search have provided very good results for a variety
of scheduling problems. This paper describes the development
of such an algorithm for university course timetabling. This
problem is concerned with the assignment of lectures to specific
timeslots and rooms. For a solution to be feasible, a number of
hard constraints must be satisfied. The quality of the solution
is measured in terms of a penalty value which represents the
degree to which various soft constraints are satisfied. This
hybrid evolutionary approach is tested over established
datasets and compared against state-of-the-art techniques from
the literature. The results obtained confirm that the approach
is able to produce solutions to the course timetabling problem
which exhibit some of the lowest penalty values in the literature
on these benchmark problems. It is therefore concluded that
the hybrid evolutionary approach represents a particularly
effective methodology for producing high quality solutions to
the university course timetabling problem.

I. INTRODUCTION
N the timetabling literature, there has been a lot of
attention paid to the problem of automating the

construction of university timetables. Various techniques
have been applied including simulated annealing (e.g.
[1,2,3]), tabu search (e.g. [4]) and genetic algorithms (e.g.
[5]). A successful approach to many scheduling and
timetabling problems (e.g. [6,7]) is represented by the
combination of evolutionary based approaches with local
search (sometimes called a memetic algorithm). The paper is
organised as follows: The next section describes the course
timetabling problem and provides a brief overview of the
relevant timetabling literature. Section III presents a general
description of related evolutionary approaches together with
a summary of the relevant literature. Section IV describes
our hybrid evolutionary approach and its application to the
university course timetabling problem. Experimental results
are presented in Section V. A comparison between state-of-
the-art techniques from the literature and some brief
concluding comments are presented in Section VI.

1Computer Science Department, Faculty of Information Science and
Technology, University Kebangsaan Malaysia, 43600 Bangi Selangor,
Malaysia (e-mail: salwani@ftsm.ukm.my).
2Automated Scheduling, Optimisation and Planning Research Group,
School of Computer Science & Information Technology, University of
Nottingham, Jubilee Campus, Wollaton Road, Nottingham NG8 1BB,
United Kingdom (e-mail: ekb@cs.nott.ac.uk)
3School of Computer Science, Queen’s University Belfast, Belfast BT7
1NN United Kingdom (e-mail: b.mccollum@qub.ac.uk).

II. THE UNIVERSITY COURSE TIMETABLING PROBLEM
The problem involves assigning lecture events to timeslots

and rooms subject to a variety of hard and soft constraints.
Hard constraints represent an absolute requirement. A
timetable which satisfies the hard constraints is known as a
feasible solution. In this paper, we will test our approach on
the problem instances introduced by [8] who present the
following hard constraints:

• No student can be assigned to more than one course
at the same time.

• The room should satisfy the features required by the
course.

• The number of students attending the course should
be less than or equal to the capacity of the room.

• No more than one course is allowed at a timeslot in
each room.

The following soft constraints, that are equally penalised,
were also presented by [8]:

• A student has a course scheduled in the last
timeslot of the day.

• A student has more than 2 consecutive courses.
• A student has a single course on a day.

The problem has

• A set of N courses, e = {e1,…,eN}
• 45 timeslots
• A set of R rooms
• A set of F room features
• A set of M students.

The objective of this problem is to satisfy the hard
constraints and to minimise the violation of the soft
constraints. Although, this model of the problem lacks many
of the constraints and resource issues found in real world
problems [9], it allows comparison of our approach with
current state of the art techniques on these instances.

In recent years, several university course timetabling
papers have appeared in the literature which address the
model of the problem detailed above. In 2002, Socha et al.
[8] applied an ant based approach to the eleven datasets
which are investigated here. These instances of the problem
were originally produced by Paechter’s course timetabling
test instance generator [10] which was developed within the
International Meteheuristic Network [11]. Abdullah et al.

A Hybrid Evolutionary Approach to the University Course
Timetabling Problem

Salwani Abdullah1, Edmund K. Burke2, and Barry McCollum3

I

[12] developed a variable neighbourhood search approach
which used a fixed tabu list to penalise particular
neighbourhood structures. A fuzzy approach to the problem
was introduced by Asmuni et al., 2005 [13]. In [14], Socha
et al. build on the ant algorithm methodologies that they first
investigated in [8] and apply the results to the datasets
discussed in this paper. Rossi-Doria et al. [15] consider the
same datasets and present a comparison of a number of
metaheuristic methods. Burke et al. [4] introduced a tabu-
search hyperheuristic and applied it to university course
timetabling in addition to nurse rostering. The focus of the
paper was on robustness across different problems rather
than specifically on timetabling. Burke et al. [16] also
employed tabu search within a graph based hyper-heuristic
and applied it to both examination and course timetabling
benchmark datasets. Again, the aim was to raise the level of
generality by operating on different problem domains. In
addition to these datasets, Paechter’s generator was used to
produce the problem sets for a timetabling competition held
in 2002 [17]. As an investigation of these datasets is outside
the scope of this paper, we do not discuss papers which
describe methods for these datasets here but a brief
description can be found in [12].

III. HYBRID EVOLUTIONARY APPROACHES
The hybridisation method employed here (an evolutionary

algorithm together with local search) has been given various
other names in the literature such as memetic algorithms,
hybrid genetic algorithms and genetic local search
algorithms [18]. Examples of similar approaches applied to
university timetabling can be found in [6,7,19]. The method
described in [6] employed a memetic algorithm for
university examination timetabling where two evolutionary
operators are used (light and heavy mutation) in the initial
phase followed by a hill-climbing algorithm. The algorithm
has been tested on real examination datasets. Experimental
results show that the solution quality found was better when
compared to employing the evolutionary operators alone.
The technique of [7] implemented a memetic algorithm to
the lecture timetabling problem which utilised several types
of mutation strategies. Experimental results show that selfish
and co-operative mutations are very useful in increasing the
performance of the algorithm when applied to this problem.
In [19], the authors developed a multi-stage evolutionary
algorithm which integrated a decomposition method with an
evolutionary approach. In order to evaluate the effectiveness
of this approach, real datasets were used. The results show
that this methodology was able to improve the solution
quality and reduce the time taken to find that solution.
Interested readers can find more details about hybrid
evolutionary approaches in [18,20]. An overview of memetic
algorithms for scheduling and timetabling problems can be
seen in [21].

IV. A HYBRID EVOLUTIONARY ALGORITHM FOR THE
UNIVERSITY COURSE TIMETABLING PROBLEM

The main technique used in our evolutionary algorithm is

a light mutation operator followed by a randomised iterative
improvement algorithm. The crossover operator is not
employed in our approach.

A. Solution Representation
A direct representation is used. Each gene contains

information about the timeslot and room for a particular
course. Fig. 1 shows examples of the genes where ci is a
course, N is the maximum number of courses and i ∈
{1,…,N). For example course c1 is scheduled at timeslot 5 in
room 2.

Fig. 1. Solution representation

B. Initial Population Generation and Solution
A construction algorithm is used to generate large

populations of random feasible timetables. The approach,
which starts with an empty timetable, is similar to a random
graph colouring method (see [22]). A feasible solution is
obtained by adding or removing appropriate courses from
the schedule until the hard constraints are met. A roulette
wheel selection is employed to select individuals for the new
population. Based on preliminary tests, the size of the
population is set to 100.

C. The Evolutionary Operator: Mutation
 We carry out a random light mutation on 20% of the

courses from 20% of the selected individuals. The
percentage choices were based on our preliminary tests
Courses are chosen at random from any point and are
reallocated to the next earliest feasible timeslots. The pseudo
code for the mutation operation is shown in Fig. 2.

Fig. 2. The pseudo code for the mutation operation

D. The Local Search: A Randomised Iterative
Improvement Algorithm
 The approach discussed in [12] is used as the local search

operator and is applied after the mutation takes place. The

c1

Timeslot: 5
Room: 2

c2

Timeslot: 3
Room: 4

Timeslot: 7
Room:1

cN

 …

for 1 to 20% of the individuals
for 1 to 20% of the courses of each
individual

Choose a course at random;
Allocate a course to a feasible
timeslot according to the earliest
possible timeslot and room capacity;

 end for;
end for

algorithm always accepts an improved solution. A worse
solution is accepted with a certain probability. Note that
during the course of the timetabling process, the hard
constraints are never violated. We now briefly describe how
this local search works. Assume that we have K number of
neighbourhood structures to be applied to the solution, Sol to
obtain TempSoli where i ∈ {1,…,K}. The best solution
among TempSoli called Sol* is compared to the best solution
in hand, Solbest. If there is an improvement in the quality of
the solution, then the new solution, Sol* is updated.
Otherwise, the exponential monte carlo acceptance criterion
is employed (see [23]) where a new solution, Sol* is
accepted if a generated random number, RandNum
inbetween [0,1] is less than e-δ where δ is the difference
between the quality of the new and old solutions (i.e. δ =
f(Sol*)–f(Sol)). This algorithm is repeated until a termination
criterion is met (in this work, our termination criterion is set
to 200000 iterations as employed in [12]). The pseudo code
of the randomised iterative improvement algorithm is shown
in Fig. 3

Fig.3. The pseudo code of the randomised iterative improvement
algorithm

E. The Algorithm
The schematic overview and the pseudo code of the

algorithm are presented in Figs. 4 and 5. Recall that our
evolutionary method does not use a crossover operator. Such
operators can create extra difficulties (such as having to
“repair” offspring) in timetabling [6,24,25]. Combined, these
figures represent the approach used in our experiments. The
algorithm begins by creating an initial population of size
100. The process creates subsequent generations by firstly
selecting 20% of individuals from the previous populations.
Secondly, 20% of the courses from each selected individual
are chosen at random to be mutated. The local search
component is then employed. The best result obtained after
applying this local search is kept. The solutions obtained
after performing the local search are saved in the population
pool and may be selected and used in the next generation

where a roulette wheel is applied to select the new individual
member for the next generation. The process is terminated
after a predefined number of generations is reached (for the
purpose of the experimentation this number was set to 30) or
a timetable with a zero penalty cost is found. Note that the
parameter values used in this work were decided on by
performing preliminary experiments.

Fig. 4. A schematic overview of the hybrid evolutionary approach
for the university course timetabling

V. HELPFUL HINTS
Fig.5. The pseudo code of the hybrid evolutionary approach for the
university course timetabling

VI. EXPERIMENTS
The approach described in Section IV was implemented

in Microsoft Visual C++ version 6 under Windows on an
Athlon machine with a 1.2GHz processor and 256 MB
RAM. We present the best results out of 5 runs. The
experiments were run for 200000 iterations which take
approximately ten hours for each of the datasets. Note that
course timetabling is a problem that is usually tackled
several months before the schedule is required. A ten hour
run for course timetabling is perfectly acceptable in a real
world environment. This is a scheduling problem where the
time taken to solve the problem is not critical. The algorithm
has been tested on a range of standard benchmark instances
as presented in Table 1.

TABLE I
THE PARAMETER VALUES FOR THE COURSE TIMETABLING PROBLEM

CATEGORIES
Category small medium large
Number of courses, N 100 400 400
Number of rooms, R 5 10 10
Number of features, F 5 5 10
Number of students, M 80 200 400

Set the initial solution Sol;
Calculate the quality of the initial solution,
f(Sol);

Set best solution Solbest ← Sol;
do while (not termination criteria)

for i = 1 to i= K where K is the total
number of neighbourhood structures

Apply neighbourhood structure on Sol,
TempSoli;
Calculate the quality of TempSol,
f(TempSoli);

end for
Find the best solution among TempSoli where
i ∈ {1,…,K} call new solution Sol*;
if (f(Sol*) < f(Solbest))

Sol ← Sol*; f(Solbest) ← f(Sol*);
else

δ = f(Sol*) - f(Sol));
Generate RandNum, a random number in
0,1];

if (RandNum < e-δ) Sol ← Sol*;
end if

end do;

begin
Create population;

do while (maximum number of generations
or zero penalty timetable is not met)

Select individuals to be mutated;
Apply mutation;
Apply local search;
Select individual members of new
populations;

end do;
end

Population

Selection

Mutation
Local search:
Randomised

iterative
improvement

Selection
pool

Roulette wheel

The comparison of our approach with other available
approaches in the literature is shown in Table 2 i.e. a local
search method and ant algorithm [8], a tabu-search
hyperheuristic [4], a graph hyperheuristic [16], a fuzzy
approach [13], a variable neighbourhood search with a tabu
list [12] and which employed a randomised iterative
improvement algorithm with composite neighbourhood
structures [26]. The term “x%Inf.” in Table 2 indicates a
percentage of runs that failed to obtain feasible solutions.
Also, note that the term “Ave.” represents the average result
out of a number of runs and the term “Best” represents the
best result among a number of runs. The best results are
presented in bold.

TABLE 2

COMPARISON OF RESULTS ON THE UNIVERSITY COURSE TIMETABLING
PROBLEM USING THE HYBRID EVOLUTIONARY APPROACH

Our approach, M1 M2 M3
Datasets Best Average Best Averag

e
Best

small1 0 0 0 0 0
small2 0 0 0 0 0
small3 0 0 0 0 0
small4 0 0 0 0 0
small5 0 0 0 0 0
medium1 221 224.8 242 245 317
medium2 147 150.6 161 162.6 313
medium3 246 252 265 267.8 357
medium4 165 167.8 181 183.6 247
medium5 130 135.4 151 152.6 292
large 529 552.4 100%

Inf.
100%
Inf.

100%
Inf.

M4 M5 M6 M7 M8

Datasets Average Averag
e

Best Best Best

small1 8 1 1 6 10
small2 11 3 2 7 9
small3 8 1 0 3 7
small4 7 1 1 3 17
small5 5 0 0 4 7
medium1 199 195 146 372 243
medium2 202.5 184 173 419 325
medium3 77.5%Inf. 248 267 359 249
medium4 177.5 164.5 169 348 285
medium5 100%

Inf.
219.5 303 171 132

large 100%
Inf.

851.5 80%
Inf.

1068 1138

Legend:
M1: Our hybrid evolutionary approach
M2: The Randomised iterative improvement algorithm with

composite neighbourhood structures by Abdullah et al., 2005
[12]

M3: The Variable neighbourhood search by Abdullah et al., 2005
[26]

M4: The Local search approach by Socha et al., 2002 [8]
M5: The Ant algorithm by Socha et al., 2002 [8]
M6: The Tabu search hyper-heuristic by Burke et al., 2003 [4]
M7: The Graph based hyper-heuristic by Burke et al., 2006 [16]
M8: The Fuzzy approach by Asmuni et al., 2005 [13]

VII. DISCUSSION AND CONCLUSIONS
Our approach is better than the local search method on ten

of the problems and is better than the ant approach of [8] on
seven of the problems (with one tie on the small5 dataset).
Our method also obtained better results than [4] and [16] in
all or most of the datasets. When comparing with [26] it is
better on the large dataset, better on all medium datasets and
ties on all the small datasets. It is particularly interesting to
compare the results obtained here with the results from [12].
The hybrid evolutionary approach algorithm obtained better
results on the large dataset and all the medium datasets with
ties on the small datasets. This shows that the hybridisation
between genetic operators and the local search method of
[12] produces a much stronger algorithm than when
employing the local search on its own. Our hybrid approach
produces the best known results in the literature for all but
three of these datasets. Note that although the methods
described in [14,15] are tested on the same datasets, the
papers do not present numerical results and so, we are
unable to produce a direct comparison. The percentage
improvement obtained by applying the hybrid evolutionary
algorithm compared to the randomised iterative
improvement algorithm alone for the medium datasets can be
computed as: Percentage improvement = (best randomised
iterative improvement algorithm – best hybrid evolutionary
algorithm) * 100 / best randomised iterative improvement
algorithm. The hybrid evolutionary algorithm managed to
reduce the penalty cost by between 7.2% and 13.9%. To
summarise, the performance of our hybrid evolutionary
algorithm was measured on the benchmark problems
introduced in [8]. When comparing our method with other
published approaches, we demonstrate that it is capable of
producing some of the best results in the literature on the
eleven university course timetabling datasets discussed here.

REFERENCES
[1] J. Thompson, K. Dowsland, “A Robust Simulated Annealing Based

Examination Timetabling System”. Computers Operations Research,
Volume 25, 637-648, 1998.

[2] E.K. Burke, Y. Bykov, J.P. Newall, S. Petrovic, “A Time-Predefined
Local Search Approach to Exam Timetabling Problem”. IIE
Transactions, Volume 36(6), 509-528, 2004

[3] E.K. Burke, A.J. Eckersley, B. McCollum, S. Petrovic, R. Qu,
“Analysing Similarity in Exam Timetabling”. In: The Proceedings of
the 5th International Conference on the Practice and Theory of
Automated Timetabling (PATAT 2004), Pittsburg, USA, August 18th-
20th, 89-106, 2004.

[4] E.K. Burke, G. Kendall, E. Soubeiga, “A Tabu-Search Hyperheuristic
for Timetabling and Rostering”. Journal of Heuristics, Volume 9, No.
6, 451-470, 2003.

[5] W. Erben, “A Grouping Genetic Algorithm for Graph Colouring and
Exam Timetabling”. The Practice and Theory of Automated
Timetabling III, Springer Lecture Notes in Computer Science Vol.
2079, Springer-Verlag, 132-156, 2001.

[6] E.K. Burke, J.P. Newall, R.F. Weare, “A Memetic Algorithm for
University Exam Timetabling”. The Practice and Theory of
Automated Timetabling I, Springer Lecture Notes in Computer
Science Vol.1153 Springer-Verlag, 241-250, 1996.

[7] B. Paechter, A. Cumming, M.G. Norman, H. Luchian, “Extensions to
a Memetic Timetabling System”. The Practice and Theory of
Automated Timetabling I, Springer Lecture Notes in Computer
Science Vol.1153 Springer-Verlag, 251-265, 1996.

[8] K. Socha, J. Knowles, M. Samples, “A Max-Min Ant System for the
University Course Timetabling Problem”. In: The Proceedings of the
3rd International Workshop on Ant Algorithms, ANTS 2002, Springer
Lecture Notes in Computer Science Vol.2463, Springer-Verlag, 1-13,
2002.

[9] B. McCollum, “University Timetabling: Bridging the Gap between
Research and Practice”. In: The Proceedings of the 6th International
Conference on the Practice and Theory of Automated Timetabling,
Plenary Talk, Brno, ISBN 80-210-3726-1, 15-35, 2006.

[10] B. Paechter, Available: http://www.dcs.napier.ac.uk/~benp/
[11] Metaheuristic Network, Available: http://www.metaheuristics.org/
[12] S. Abdullah, E.K. Burke, B. McCollum, “Using a Randomised

Iterative Improvement Algorithm with Composite Neighbourhood
Structures for the University Course Timetabling Problem”. Accepted
for publication in the Metaheuristics International Conference
(MIC’2005), Vienna, Austria, August 22nd-26th, post conference
volume (eds. Karl Doerner, Michel Gendreau, Walter Gutjahr, Peter
Greistorfer, Richard Hartl, Marc Reimann), to appear 2007.

[13] H. Asmuni, E.K. Burke, J.M. Garibaldi, “Fuzzy Multiple Heuristic
Ordering for Course Timetabling”. In: The Proceedings of the 5th
United Kingdom Workshop on Computational Intelligence (UKCI05),
London, UK, September 5th-7th, 302-309, 2005.

[14] K. Socha, M. Sampels, M. Manfrin, “Ant algorithms for the university
course timetabling problem with regard to the state-of-the-art”. In: The
Proceedings of 3rd European Workshop on Evolutionary Computation
in Combinatorial Optimization (EvoCOP'2003), UK, April 14th-16th,
Springer Lecture Notes in Computer Science Vol.335-345, 2003.

[15] O. Rossi-Doria, M. Samples, M. Birattari, M. Chiarandini, M. Dorigo,
L.M. Gambardella, J. Knowles, M. Manfrin, M. Mastrolilli, B.
Paechter, L. Paquete and T. Stützle, “A comparison of the performance
of different meta-heuristics on the timetabling problem”. Practice and
Theory of Automated Timetabling V (eds. Burke and De
Causmaecker), Springer Lecture Notes in Computer Science Vol.
2740, Springer-Verlag, 329-354, 2003.

[16] E.K. Burke, B. McCollum, A. Meisels, S. Petrovic, R. Qu, “A Graph-
Based Hyper Heuristic for Educational Timetabling Problems”.
European Journal of Operational Research 176(1), (2007) 177-192.

[17] 2002 International Timetabling Competition – Available:
http://www.idsia.ch/Files/ttcomp2002.

[18] W.E. Hart, N. Krasnogor, J.E. Smith, “Memetic Evolutionary
Algorithms”. Recent Advances in Memetic Algorithms: Studies in
Fuzziness and Soft Computing. Springer-Verlag, 3-27, 2004.

[19] E.K. Burke, J.P. Newall, “A Multi-Stage Evolutionary Algorithm for
the Timetable Problem”. IEEE Transactions on Evolutionary
Computation, Volume 3.1 (1999) 63-74.

[20] N. Krasnogor and J.E. Smith. A tutorial for competent memetic
algorithms: model, taxonomy and design issues. IEEE Transactions on
Evolutionary Computation, 9(5):474- 488, 2005.

[21] E.K. Burke, J.D. Landa Silva, “The Design of Memetic Algorithms
for Scheduling and Timetabling Problems” In: Krasnogor N., Hart W.,
Smith J. (eds.), Recent Advances in Memetic Algorithms, Studies in
Fuzziness and Soft Computing, Volume 166, Springer-Verlag (2004)
289-312.

[22] E.K. Burke, J. Kingston, D. de Werra, “Applications to Timetabling”
Section 5.6 of the Handbook of Graph Theory (edited by Jonathan
Gross and Jay Yellen), Chapman Hall/CRC Press, 445-474, 2004.

[23] M. Ayob, G. Kendall, “A Monte Carlo Hyper-heuristic to Optimise
Component Placement Sequencing for Multi Head Placement
Machine”. In: The Proceeding of the International Conference on
Intelligent Technologies (InTech’03), Chiang Mai, Thailand,
December 17th -19th, 132-141, 2003.

[24] E.K. Burke, D.G. Elliman, R.F. Weare, “A Hybrid Genetic Algorithm
for Highly Constrained Timetabling Problems”. In: The Proceedings
of the 6th International Conference on Genetic Algorithms (ICGA'95),
Pittsburgh, USA, July 15th-19th, 605-610, 1995.

[25] E.K. Burke, D.G. Elliman, P.H. Ford, R.F. Weare, “Specialised
Recombinative Operators for the Timetabling Problem”. In: The
Proceedings of the AISB (Artificial Intelligence and Simulation of
Behaviour) Workshop on Evolutionary Computing, University of
Sheffield, UK, April 3rd-7th, Springer Lecture Notes in Computer
Science Vol.993, Springer-Verlag, 75-85, 1995.

[26] S. Abdullah, E.K. Burke, B. McCollum, “An Investigation of a
Variable Neighbourhood Search Approach for Course Timetabling”.
In: The Proceedings of the 2nd Multidisciplinary International

Conference on Scheduling: Theory and Applications (MISTA 2005),
New York, USA, July 18th-21st, 413-427, 2005.

