
 
 

  

Abstract—Combinations of evolutionary based approaches 
with local search have provided very good results for a variety 
of scheduling problems. This paper describes the development 
of such an algorithm for university course timetabling. This 
problem is concerned with the assignment of lectures to specific 
timeslots and rooms. For a solution to be feasible, a number of 
hard constraints must be satisfied.  The quality of the solution 
is measured in terms of a penalty value which represents the 
degree to which various soft constraints are satisfied. This 
hybrid evolutionary approach is tested over established 
datasets and compared against state-of-the-art techniques from 
the literature. The results obtained confirm that the approach 
is able to produce solutions to the course timetabling problem 
which exhibit some of the lowest penalty values in the literature 
on these benchmark problems. It is therefore concluded that 
the hybrid evolutionary approach represents a particularly 
effective methodology for producing high quality solutions to 
the university course timetabling problem. 

I. INTRODUCTION 
N the timetabling literature, there has been a lot of 
attention paid to the problem of automating the 

construction of university timetables. Various techniques 
have been applied including simulated annealing (e.g. 
[1,2,3]), tabu search (e.g. [4]) and genetic algorithms (e.g. 
[5]). A successful approach to many scheduling and 
timetabling problems (e.g. [6,7]) is represented by the 
combination of evolutionary based approaches with local 
search (sometimes called a memetic algorithm). The paper is 
organised as follows: The next section describes the course 
timetabling problem and provides a brief overview of the 
relevant timetabling literature. Section III presents a general 
description of related evolutionary approaches together with 
a summary of the relevant literature. Section IV describes 
our hybrid evolutionary approach and its application to the 
university course timetabling problem. Experimental results 
are presented in Section V. A comparison between state-of-
the-art techniques from the literature and some brief 
concluding comments are presented in Section VI. 
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II. THE UNIVERSITY COURSE TIMETABLING PROBLEM 
The problem involves assigning lecture events to timeslots 

and rooms subject to a variety of hard and soft constraints. 
Hard constraints represent an absolute requirement. A 
timetable which satisfies the hard constraints is known as a 
feasible solution. In this paper, we will test our approach on 
the problem instances introduced by [8] who present the 
following hard constraints: 

• No student can be assigned to more than one course 
at the same time. 

• The room should satisfy the features required by the 
course. 

• The number of students attending the course should 
be less than or equal to the capacity of the room. 

• No more than one course is allowed at a timeslot in 
each room. 

 
The following soft constraints, that are equally penalised, 
were also presented by [8]: 

• A student has a course scheduled in the last 
timeslot of the day. 

• A student has more than 2 consecutive courses. 
• A student has a single course on a day. 

 
The problem has 

• A set of N courses, e = {e1,…,eN} 
• 45 timeslots 
• A set of R rooms 
• A set of F room features 
• A set of M students. 

 
The objective of this problem is to satisfy the hard 
constraints and to minimise the violation of the soft 
constraints. Although, this model of the problem lacks many 
of the constraints and resource issues found in real world 
problems [9], it allows comparison of our approach with 
current state of the art techniques on these instances. 

In recent years, several university course timetabling 
papers have appeared in the literature which address the 
model of the problem detailed above. In 2002, Socha et al. 
[8] applied an ant based approach to the eleven datasets 
which are investigated here. These instances of the problem 
were originally produced by Paechter’s course timetabling 
test instance generator [10] which was developed within the 
International Meteheuristic Network [11]. Abdullah et al. 
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[12] developed a variable neighbourhood search approach  
which used a fixed tabu list to penalise particular 
neighbourhood structures. A fuzzy approach to the problem 
was introduced by Asmuni et al., 2005 [13]. In [14], Socha 
et al. build on the ant algorithm methodologies that they first 
investigated in [8] and apply the results to the datasets 
discussed in this paper. Rossi-Doria et al. [15] consider the 
same datasets and present a comparison of a number of 
metaheuristic methods.  Burke et al. [4] introduced a tabu-
search hyperheuristic and applied it to university course 
timetabling in addition to nurse rostering.  The focus of the 
paper was on robustness across different problems rather 
than specifically on timetabling. Burke et al. [16] also 
employed tabu search within a graph based hyper-heuristic 
and applied it to both examination and course timetabling 
benchmark datasets. Again, the aim was to raise the level of 
generality by operating on different problem domains. In 
addition to these datasets, Paechter’s generator was used to 
produce the problem sets for a timetabling competition held 
in 2002 [17]. As an investigation of these datasets is outside 
the scope of this paper, we do not discuss papers which 
describe methods for these datasets here but a brief 
description can be found in [12]. 

III. HYBRID EVOLUTIONARY APPROACHES 
The hybridisation method employed here (an evolutionary 

algorithm together with local search) has been given various 
other names in the literature such as memetic algorithms, 
hybrid genetic algorithms and genetic local search 
algorithms [18]. Examples of similar approaches applied to 
university timetabling can be found in [6,7,19]. The method 
described in [6] employed a memetic algorithm for 
university examination timetabling where two evolutionary 
operators are used (light and heavy mutation) in the initial 
phase followed by a hill-climbing algorithm. The algorithm 
has been tested on real examination datasets. Experimental 
results show that the solution quality found was better when 
compared to employing the evolutionary operators alone. 
The technique of [7] implemented a memetic algorithm to 
the lecture timetabling problem which utilised several types 
of mutation strategies. Experimental results show that selfish 
and co-operative mutations are very useful in increasing the 
performance of the algorithm when applied to this problem. 
In [19], the authors developed a multi-stage evolutionary 
algorithm which integrated a decomposition method with an 
evolutionary approach. In order to evaluate the effectiveness 
of this approach, real datasets were used. The results show 
that this methodology was able to improve the solution 
quality and reduce the time taken to find that solution. 
Interested readers can find more details about hybrid 
evolutionary approaches in [18,20]. An overview of memetic 
algorithms for scheduling and timetabling problems can be 
seen in [21].  

IV. A HYBRID EVOLUTIONARY ALGORITHM FOR THE 
UNIVERSITY COURSE TIMETABLING PROBLEM 

The main technique used in our evolutionary algorithm is 

a light mutation operator followed by a randomised iterative 
improvement algorithm. The crossover operator is not 
employed in our approach.  

A. Solution Representation 
A direct representation is used. Each gene contains 

information about the timeslot and room for a particular 
course. Fig. 1 shows examples of the genes where ci is a 
course, N is the maximum number of courses and i ∈ 
{1,…,N). For example course c1 is scheduled at timeslot 5 in 
room 2. 
 
 
 
 
 

 

Fig. 1. Solution representation 
 

B. Initial Population Generation and Solution 
A construction algorithm is used to generate large 

populations of random feasible timetables. The approach, 
which starts with an empty timetable, is similar to a random 
graph colouring method (see [22]). A feasible solution is 
obtained by adding or removing appropriate courses from 
the schedule until the hard constraints are met. A roulette 
wheel selection is employed to select individuals for the new 
population. Based on preliminary tests, the size of the 
population is set to 100. 
 

C. The Evolutionary Operator: Mutation 
 We carry out a random light mutation on 20% of the 

courses from 20% of the selected individuals. The 
percentage choices were based on our preliminary tests 
Courses are chosen at random from any point and are 
reallocated to the next earliest feasible timeslots. The pseudo 
code for the mutation operation is shown in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. The pseudo code for the mutation operation 
 

D. The Local Search: A  Randomised Iterative 
Improvement Algorithm 
 The approach discussed in [12] is used as the local search 

operator and is applied after the mutation takes place. The 

 
c1

Timeslot:  5 
Room: 2 

c2

Timeslot: 3 
Room: 4 

Timeslot: 7 
Room:1 

cN

  … 

for 1 to 20% of the individuals 
for 1 to 20% of the courses of each 
individual 

Choose a course at random; 
Allocate a course to a feasible 
timeslot according to the earliest 
possible timeslot and room capacity; 

 end for; 
end for



 
 

algorithm always accepts an improved solution. A worse 
solution is accepted with a certain probability. Note that 
during the course of the timetabling process, the hard 
constraints are never violated. We now briefly describe how 
this local search works. Assume that we have K number of 
neighbourhood structures to be applied to the solution, Sol to 
obtain TempSoli where i ∈ {1,…,K}. The best solution 
among TempSoli called Sol* is compared to the best solution 
in hand, Solbest. If there is an improvement in the quality of 
the solution, then the new solution, Sol* is updated. 
Otherwise, the exponential monte carlo acceptance criterion 
is employed (see [23]) where a new solution, Sol* is 
accepted if a generated random number, RandNum 
inbetween [0,1] is less than e-δ where δ is the difference 
between the quality of the new and old solutions (i.e. δ = 
f(Sol*)–f(Sol)). This algorithm is repeated until a termination 
criterion is met (in this work, our termination criterion is set 
to 200000 iterations as employed in [12]). The pseudo code 
of the randomised iterative improvement algorithm is shown 
in Fig. 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3. The pseudo code of the randomised iterative improvement 
algorithm 

E. The Algorithm 
The schematic overview and the pseudo code of the 

algorithm are presented in Figs. 4 and 5. Recall that our 
evolutionary method does not use a crossover operator. Such 
operators can create extra difficulties (such as having to 
“repair” offspring) in timetabling [6,24,25]. Combined, these 
figures represent the approach used in our experiments. The 
algorithm begins by creating an initial population of size 
100. The process creates subsequent generations by firstly 
selecting 20% of individuals from the previous populations. 
Secondly, 20% of the courses from each selected individual 
are chosen at random to be mutated. The local search 
component is then employed. The best result obtained after 
applying this local search is kept. The solutions obtained 
after performing the local search are saved in the population 
pool and may be selected and used in the next generation 

where a roulette wheel is applied to select the new individual 
member for the next generation. The process is terminated 
after a predefined number of generations is reached (for the 
purpose of the experimentation this number was set to 30) or 
a timetable with a zero penalty cost is found. Note that the 
parameter values used in this work were decided on by 
performing preliminary experiments.  

 
 
 
 
 
 
 
 
 
 
 

Fig. 4. A schematic overview of the hybrid evolutionary approach 
for the university course timetabling 

 
 
 
 
 
 
 
 

V. HELPFUL HINTS 
Fig.5. The pseudo code of the hybrid evolutionary approach for the 
university course timetabling 

VI. EXPERIMENTS 
The approach described in Section IV was implemented 

in Microsoft Visual C++ version 6 under Windows on an 
Athlon machine with a 1.2GHz processor and 256 MB 
RAM. We present the best results out of 5 runs. The 
experiments were run for 200000 iterations which take 
approximately ten hours for each of the datasets. Note that 
course timetabling is a problem that is usually tackled 
several months before the schedule is required. A ten hour 
run for course timetabling is perfectly acceptable in a real 
world environment. This is a scheduling problem where the 
time taken to solve the problem is not critical. The algorithm 
has been tested on a range of standard benchmark instances 
as presented in Table 1.  
 

 
 
 

TABLE I 
THE PARAMETER VALUES FOR THE COURSE TIMETABLING PROBLEM 

CATEGORIES 
Category small medium large 
Number of courses, N 100 400 400 
Number of rooms, R 5 10 10 
Number of features, F 5 5 10 
Number of students, M 80 200 400 

Set the initial solution Sol; 
Calculate the quality of the initial solution, 
f(Sol); 

Set best solution Solbest ← Sol; 
do while (not termination criteria) 

for i = 1 to i= K where K is the total 
number of neighbourhood structures 

Apply neighbourhood structure on Sol, 
TempSoli; 
Calculate the quality of TempSol, 
f(TempSoli); 

end for 
Find the best solution among TempSoli where 
i ∈ {1,…,K} call new solution Sol*; 
if (f(Sol*) < f(Solbest)) 

Sol ←  Sol*; f(Solbest) ← f(Sol*); 
else  

δ = f(Sol*) -  f(Sol)); 
Generate RandNum, a random number in 
0,1]; 

if (RandNum < e-δ ) Sol ← Sol*; 
end if 

end do; 

begin 
Create population; 

do while (maximum number of generations 
or zero penalty timetable is not met) 

Select individuals to be mutated; 
Apply mutation; 
Apply local search; 
Select individual members of new 
populations; 

end do; 
end

Population 

Selection 

Mutation 
Local search: 
Randomised 

iterative 
improvement 

Selection  
pool

Roulette wheel  



 
 

 
 

The comparison of our approach with other available 
approaches in the literature is shown in Table 2 i.e. a local 
search method and ant algorithm [8], a tabu-search 
hyperheuristic [4], a graph hyperheuristic [16], a fuzzy 
approach [13], a variable neighbourhood search with a tabu 
list [12] and which employed a randomised iterative 
improvement algorithm with composite neighbourhood 
structures [26]. The term “x%Inf.” in Table 2 indicates a 
percentage of runs that failed to obtain feasible solutions. 
Also, note that the term “Ave.” represents the average result 
out of a number of runs and the term “Best” represents the 
best result among a number of runs. The best results are 
presented in bold. 

 
TABLE 2 

COMPARISON OF RESULTS ON THE UNIVERSITY COURSE TIMETABLING 
PROBLEM USING THE HYBRID EVOLUTIONARY APPROACH 

Our approach, M1 M2 M3  
Datasets Best Average Best Averag

e 
Best 

small1 0 0 0 0 0 
small2 0 0 0 0 0 
small3 0 0 0 0 0 
small4 0 0 0 0 0 
small5 0 0 0 0 0 
medium1 221 224.8 242 245 317 
medium2 147 150.6 161 162.6 313 
medium3 246 252 265 267.8 357 
medium4 165 167.8 181 183.6 247 
medium5 130 135.4 151 152.6 292 
large 529 552.4 100% 

Inf. 
100% 
Inf. 

100% 
Inf. 

 
M4 M5 M6 M7 M8  

Datasets Average Averag
e 

Best Best Best 

small1 8 1 1 6 10 
small2 11 3 2 7 9 
small3 8 1 0 3 7 
small4 7 1 1 3 17 
small5 5 0 0 4 7 
medium1 199 195 146 372 243 
medium2 202.5 184 173 419 325 
medium3 77.5%Inf. 248 267 359 249 
medium4 177.5 164.5 169 348 285 
medium5 100% 

Inf. 
219.5 303 171 132 

large 100% 
Inf. 

851.5 80% 
Inf. 

1068 1138 

Legend: 
M1: Our hybrid evolutionary approach  
M2:  The Randomised iterative improvement algorithm with 

composite neighbourhood structures by Abdullah et al., 2005 
[12]  

M3:  The Variable neighbourhood search by Abdullah et al., 2005 
[26]  

M4: The Local search approach by Socha et al., 2002 [8] 
M5:  The Ant algorithm by Socha et al., 2002 [8]  
M6:  The Tabu search hyper-heuristic by Burke et al., 2003 [4] 
M7:  The Graph based hyper-heuristic by Burke et al., 2006 [16] 
M8:  The Fuzzy approach by Asmuni et al., 2005 [13]  

VII. DISCUSSION AND CONCLUSIONS 
Our approach is better than the local search method on ten 

of the problems and is better than the ant approach of [8] on 
seven of the problems (with one tie on the small5 dataset). 
Our method also obtained better results than [4] and [16] in 
all or most of the datasets. When comparing with [26] it is 
better on the large dataset, better on all medium datasets and 
ties on all the small datasets. It is particularly interesting to 
compare the results obtained here with the results from [12]. 
The hybrid evolutionary approach algorithm obtained better 
results on the large dataset and all the medium datasets with 
ties on the small datasets. This shows that the hybridisation 
between genetic operators and the local search method of 
[12] produces a much stronger algorithm than when 
employing the local search on its own. Our hybrid approach 
produces the best known results in the literature for all but 
three of these datasets.  Note that although the methods 
described in [14,15] are tested on the same datasets, the 
papers do not present numerical results and so, we are 
unable to produce a direct comparison. The percentage 
improvement obtained by applying the hybrid evolutionary 
algorithm compared to the randomised iterative 
improvement algorithm alone for the medium datasets can be 
computed as: Percentage improvement = (best randomised 
iterative improvement algorithm – best hybrid evolutionary 
algorithm) * 100 / best randomised iterative improvement 
algorithm. The hybrid evolutionary algorithm managed to 
reduce the penalty cost by between 7.2% and 13.9%. To 
summarise, the performance of our hybrid evolutionary 
algorithm was measured on the benchmark problems 
introduced in [8]. When comparing our method with other 
published approaches, we demonstrate that it is capable of 
producing some of the best results in the literature on the 
eleven university course timetabling datasets discussed here. 
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