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Abstract. Exam timetabling is one of the most important administra-
tive activities that takes place in academic institutions. In this paper
we present a critical discussion of the research on exam timetabling in
the last decade or so. This last ten years has seen an increased level of
attention on this important topic. There has been a range of significant
contributions to the scientific literature both in terms of theoretical and
practical aspects. The main aim of this survey is to highlight the new
trends and key research achievements that have been carried out in the
last decade. We also aim to outline a range of relevant important research
issues and challenges that have been generated by this body of work.
We first define the problem and review previous survey papers. Algo-
rithmic approaches are then classified and discussed. These include early
techniques (e.g. graph heuristics) and state-of-the-art approaches includ-
ing meta-heuristics, constraint based methods, multi-criteria techniques,
hybridisations, and recent new trends concerning neighbourhood struc-
tures, which are motivated by raising the generality of the approaches.
Summarising tables are presented to provide an overall view of these
techniques. We discuss some issues on decomposition techniques, system
tools and languages, models and complexity. We also present and discuss
some important issues which have come to light concerning the public
benchmark exam timetabling data. Different versions of problem datasets
with the same name have been circulating in the scientific community in
the last ten years which has generated a significant amount of confusion.
We clarify the situation and present a re-naming of the widely studied
datasets to avoid future confusion. We also highlight which research pa-
pers have dealt with which dataset. Finally, we draw upon our discussion
of the literature to present a (non-exhaustive) range of potential future
research directions and open issues in exam timetabling research.
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1 Introduction

Timetabling problems arise in various forms of real-world problem solving cir-
cumstances including educational timetabling (e.g. [31]), nurse scheduling (e.g.
[19]), sports timetabling (e.g. [76]) and transportation timetabling (e.g. [94]).
They have represented a challenging and important problem area for researchers
across both Operational Research and Artificial Intelligence since the 1960s. Re-
cent years have seen an increased level of research activity in this area. This
is evidenced (among other things) by the emergence of a series of international
conferences on the Practice and Theory on Automated Timetabling (PATAT)
([17, 18, 25, 43, 44]), and the establishment of a EURO (European Association of
Operational Research Societies) working group on automated timetabling (see
http://www.asap.cs.nott.ac.uk/watt/index.html).

Burke, Kingston and de Werra [31] (2004) gave a definition of general
timetabling, which covers many cases:

A timetabling problem is a problem with four parameters: T , a finite
set of times; R, a finite set of resources; M , a finite set of meetings; and
C, a finite set of constraints. The problem is to assign times and resources
to the meetings so as to satisfy the constraints as far as possible.

Among the wide variety of timetabling problems, educational timetabling is
one of the mostly studied from a practical viewpoint. It is one of the most im-
portant and time-consuming tasks which occur periodically (i.e. annually, quar-
terly, etc) in all academic institutions. The quality of the timetabling has a
great impact on a broad range of different parties including lecturers, students
and administrators (see [123, 129]). Variants of educational timetabling include
school timetabling (class-teacher scheduling), course and exam timetabling (e.g.
[31, 131]), faculty timetabling and classroom assignment (e.g. [9]). It has been
observed that course and exam timetabling are relatively close problems [131]
but very significant differences do exist [100]. This survey will concentrate on
exam timetabling.

An excellent survey of examination timetabling was published in 1986 [47]
and an insightful follow up paper appeared in 1996 [49]. However, a significant
number of research papers in the area have been published since 1996. This pa-
per will concentrate upon the research that has appeared since the publication
of [49]. The last decade has seen the establishment of a collection of benchmark
exam timetabling problems [51] which have been used by many of the exami-
nation timetabling research that have appeared since 1996. Moreover, there has
been some confusion in the literature caused by the existence of different bench-
mark problem datasets with the same names. This paper aims to eradicate such
confusion by presenting a definitive re-naming of the sets and by clarifying the
situation over which papers dealt with which problems.
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1.1 Exam Timetabling Problems

Exam timetabling problems can be defined as assigning a set of exams E = e1,
e2, ... ee into a limited number of ordered timeslots (time periods) T = t1, t2, ...
tt, subject to a set of constraints. The complexities and challenge of timetabling
problems arise from the fact that a large variety of constraints, some of which
contradict each other, need to be satisfied in different institutions ([23, 50]). In
timetabling literature, constraints are usually categorised into two types: hard
constraints and soft constraints, which are explained below:

– Hard Constraints cannot be violated in any circumstances (mainly due to
physical restrictions). For example, conflicting exams (i.e. those which in-
volve common resources such as students) cannot be scheduled simultane-
ously. Another example can be seen by noting that the number of students
taking an exam cannot exceed the seating capacity of the room to which the
exam is assigned. A timetable which satisfies all of the hard constraints is
usually termed feasible.

– Soft Constraints are desirable but are not absolutely critical. In practice it
is usually impossible to find feasible solutions that satisfy all of the soft
constraints. Soft constraints usually vary (and sometimes conflict with each
other) from one institution to another in terms of both the types and their
importance ([23]). The most common soft constraint in the exam timetabling
literature is to spread conflicting exams as much as possible throughout the
examination session so that students can have enough revision time between
exams. An example of another soft constraint which may conflict with this
is represented by the goal of scheduling all the large exams as early as pos-
sible to allow enough time for marking. The quality of timetables is usually
measured by checking to what extend the soft constraints are violated in the
solutions generated.

Due to the large variety of problems presented and investigated, it would be
neither practical nor beneficial to present a comprehensive list of all the hard and
soft constraints that occur in timetabling research. We list some of the key hard
and soft constraints for exam timetabling in Table 1 and Table 2, respectively.
We believe that these cover most of the constraints appeared in the literature.
It can be observed that they can be roughly grouped as time related (No. 1.
in Table 1 and Nos 1.-7. in Table 2) or resource related (No. 2. in Table 1 and
No. 8.-11. in Table 2). Most of the survey papers reviewed in Section 1.2 present
lists of constraints in exam and general timetabling. It appears that the hard
constraints listed in Table 1 and the first soft constraint in Table 2 have been
most covered by the research in the literature.

We will begin this critical review of the research area by overviewing a number
of surveys that have appeared in the literature since the 1960s. Many of these
papers cover educational timetabling in general and thus include discussions of
examination timetabling in addition to other discussions.
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Table 1. Primary Hard Constraints in Exam Timetabling Problems

Primary Hard Constraints

1. no exams with common resources (e.g. students) assigned simultaneously
2. resources of exams need to be sufficient (i.e. size of exams need to be below the

room capacity, enough rooms for all of the exams)

Table 2. Primary Soft Constraints in Exam Timetabling Problems

Primary Soft Constraints

1. spread conflicting exams as even as possible, or not in x consecutive timeslots
or days

2. groups of exams required to take place at the same time, on the same day or at
one location

3. exams to be consecutive
4. schedule all exams, or largest exams, as early as possible
5. ordering (precedence) of exams need to be satisfied
6. limited number of students and/or exams in any timeslot
7. time requirements (e.g. exams (not) to be in certain timeslots)
8. conflicting exams on the same day to be located nearby
9. exams may be split over similar locations
10. only exams of the same length can be combined into the same room
11. resource requirements (e.g. room facility)

1.2 Previous Surveys on Educational Timetabling

A number of previous surveys on timetabling and related issues have appeared
in the last four decades. In addition, an online bibliography was prepared by
Kingston [92] in 1995 and includes more than 1000 references.

An early survey by Miles [105] in 1975 provides a useful bibliography of
early developments on computer aided timetabling. Another well-known early
survey by Schmidt and Strohlein [133] in 1979, including more than 200
references, covers almost all the work on timetabling before 1979. de Werra in
1985 [65] introduced various mathematical (graph theoretical) models and briefly
overviewed methods for class-teacher and course timetabling based on graph
colouring and network flows methods. The author noted that exam timetabling
and course scheduling were similar to each other although there were differ-
ences between them. In 1997 [66] the author introduced some requirements in
timetabling into the restricted graph coloring models and reviewed some math-
ematical programming formulations.

Carter in 1986 [47] presented a review of the early research on practical ap-
plications of examination timetabling in several universities. He reviewed a va-
riety of graph heuristics and pointed out that none of the algorithms/packages
had been implemented in more than one institution. There was no standard
data on which comparisons could be carried out. Also, measures of a problem’s
difficulty did not exist. In 1996, Carter and Laporte [49] updated the above
survey to summarise the algorithmic approaches from 1986 to 1996. The criteria
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for discussion was that the method should be either tested on real data or imple-
mented in real world applications. They categorised the methods into four types:
cluster methods, sequential methods, generalised search (meta-heuristics) and
constraint based techniques. They observed that the approaches implemented in
practice were relatively simple variants of different methods and only addressed
a subset of the constraints in the problems. The authors concluded by suggesting
that timetabling researchers should report test results on benchmark problems
to gain a better understanding of various approaches taken in exam timetabling.
As we will see later in this paper, this is what has happened since 1996.

Burke et al constructed a questionnaire in 1996 on exam timetabling [23]
and sent it to 95 British universities, of which 56 replied. The issues concerned
included:

– The structure of the problems (i.e. size, complexity and constraints, etc),
– How the problems were solved, and
– The objective of the timetabling problem (i.e. what constitutes good solu-

tions).

The resultant data was analysed to provide information on the constraints
involved between exams, students, departments, timeslots and rooms. In addition
to the 13 constraints originally listed in the questionnaire, another 19 constraints
were provided by the universities, demonstrating that in reality there is a wide
variety of constraints among different institutions. It was found that just 21%
of the universities used some form of computational help. Where timetables
were constructed manually, half of the institutions did not base their solution
on the previous year’s timetable, requiring a workload of many months. The
paper suggested some appropriate properties of automated timetabling systems
that could be utilised in practice. This paper provided some insight into the
pertinent issues that impacted upon real world exam timetabling issues at the
time. In 1997, Burke et al [27] presented a brief introduction to automated
university exam timetabling research. The paper concentrated on techniques on
university timetabling which were popular at the time.

Bardadym in 1996 [9] considered different issues in computer-aided man-
agement systems for timetabling. He discussed problems, requirements, data
representations and mathematical models. Solution methods from the 1960s to
the 1990s were also overviewed mainly on heuristics, meta-heuristics and al-
gorithmic tools for integration in decision support systems. Meta-heuristics and
interactive timetabling were seen as the new wave of computer-aided timetabling
systems. He also discussed open issues for future timetabling research.

Wren [148] in 1996 illustrated a useful and interesting link between schedul-
ing, timetabling and rostering by studying an example of the Traveling Salesman
Problem. He concluded that the similarity between timetabling and staff ros-
tering may lead to successful cross-fertilisation on different types of problems.
Indeed, recent research (as we shall see later) has provided some evidence to
support this.

Schaerf in his 1999 survey [131] looked at the formulations of school, course
and exam timetabling and declared that it is difficult to make a distinction
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between the later two. Based on the definitions of variants of these problems,
solution techniques particularly from artificial intelligence were classified and
reviewed. Possible future directions were presented including specific techniques,
standardization, approximability, the design of a powerful constraint language,
and the combination and comparisons on different techniques.

Burke and Petrovic in 2002 [41] gave an overall review of recent research
conducted on university (course and exam) timetabling that had been carried
out in their group including hybrid evolutionary algorithms, multi-criteria ap-
proaches and case-based reasoning techniques. An outline of research on sequen-
tial, clustering, constraint based techniques and meta-heuristic methods was also
provided. Future directions highlighted knowledge based systems and approaches
which aim to raise the generality of timetabling system. A survey by Petrovic
and Burke in 2004 [115] discussed a wider range of themes including the in-
tegration of meta-heuristics and multi-criteria approaches, case-based reasoning
and adaptive approaches with methods aiming at a higher level of generality.

An article by Burke, Kingston and de Werra [31] (2004) discussed the
application of graph coloring methods to timetabling. The authors consider class-
teacher, course, exam and sports timetabling. This paper highlights the role that
graph coloring methods have played in the timetabling literature over the last
40 years or so.

From the above brief discussion, we can see that there are a number of excel-
lent surveys in the literature concerning different issues that have impacted upon
exam timetabling research. We also provide in Appendix A a list of PhD theses
that have appeared during the years on both course and exam timetabling, where
extensive reviews have been carried out upon specific aspects of the educational
timetabling. However there is no comprehensive review on exam timetabling in
the last decade. This body of work includes a number of state-of-the-art ap-
proaches and has introduced a wide variety of diverse and successful methodolo-
gies. This paper aims to build on Carter and Laporte’s 1996 survey [49] to
provide a modern discussion of the methods and techniques that have been devel-
oped for this important problem. With this in mind, we will not discuss in detail
the work that appeared before 1996. We aim to keep our bibliography of examina-
tion timetabling papers and our classification tables (see later on) up to date on
the following web page http://www.cs.nott.ac.uk/∼rxq/bibliography.htm. We
would be very grateful if authors could contact us as new papers appear in order
to regularly update this public resource. Although we have covered all the rele-
vant papers of which we are aware, we may have inadvertently omitted relevant
papers that have already appeared. If so, we apologise and would welcome the
opportunity to add them to the information on our web site.

2 Exam Timetabling Approaches/Techniques

There has been a significant amount of exam timetabling research in the last
ten years. In this section we classify the wide variety of research techniques that
have appeared in this time. We note that many of the successful methodologies
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that have appeared in the literature represent hybridisations of a number of
techniques. Thus the classification is not strict. Indeed, several of the method-
ologies could have appeared in two or more of the classifications. Where possible,
we have classified by the main technique used. For each technique reviewed, a
corresponding summarising table is presented in Appendix B.

2.1 Graph Based Sequential Techniques

Timetabling problems, without soft constraints, can be modelled as graph color-
ing problems (see [47, 79]). The paper by Welsh and Powell [142] in 1967 built
the bridge between graph coloring and timetabling, which led to a significant
amount of later research on graph heuristics in timetabling (e.g. [101, 102]). In
exam timetabling problems, the exams can be represented by vertices in a graph,
and the hard constraint between exams are represented by the edges between
the vertices. The graph coloring problem of assigning colors to vertices, so that
no adjacent vertices have the same color, then corresponds to the problem of
assigning timeslots to exams. Different soft constraints (such as those listed in
Table 2) need to be considered separately and the degree to which timetabling
solution satisfy represents a measure of solution quality.

The basic graph coloring based timetabling heuristics are constructive meth-
ods that order the exams and assign them one by one by how difficult they are
to be scheduled into the timeslots. There is a range of ordering strategies and
their modified variants that appear in the timetabling literature [47]. We list,
in Table 3, some of the widely employed ordering strategies. A random ordering
method has also been employed in the literature to introduce randomness in
hybrid approaches and provide comparisons.

Table 3. Widely Studied Ordering Strategies in Graph Heuristics in Exam Timetabling
Problems

Heuristics Ordering Strategy

Saturation increasingly by the number of timeslots available for the exam
Degree [12] in the timetable at the time

Largest decreasingly by the number of conflicts the exams have with
Degree [13] the other exams

Largest Weighted the same as Largest Degree but weighted by the number of
Degree [51] students involved

Largest decreasingly by the number of enrolments for the exam
Enrolment [147]

Random Ordering randomly order the exams

Color Degree [51] decreasingly by the number of conflicts the exam has with
those scheduled at the time

Graph based heuristics as simple constructive methods played a very im-
portant role in the early days of timetabling research [47]. Although originally
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presented as techniques (albeit simple ones) in their own right, they are still
being employed and adapted within the current research literature. Their great
strength is that they can provide reasonably good results within a small compu-
tational time and are very easy to implement. They are often used to construct
initial solutions, or to build good portions of solutions before improvement tech-
niques are applied (see more details in the following sections). A recent article
by Burke et al [31] overviewed graph coloring techniques.

Carter, Laporte and Lee [51] in 1996 studied the first five ordering strate-
gies in Table 3 on real and randomly generated exam timetabling problems.
Largest cliques, which are the largest sub-graphs where each of the vertices is
adjacent to all of the others, were used to build initial solutions, based on which
graph heuristics and backtracking techniques were employed to construct the
solutions. The idea is that the cardinality of the largest clique determines the
least number of timeslots required for the problem. The results indicated that
none of the heuristics outperformed any of the rest over all of the problems
tested. Another important contribution of this work is the introduction of a set
of 13 exam timetabling problems, which became standard benchmarks in the
field. They have been widely studied and used by different approaches during
the years (see Table 6). We call this the University of Toronto data and discuss
it further in Section 3.1. In 2001, Carter and Johnson [48] investigated the
sub-graphs which are sufficiently dense (almost cliques) on 11 of the instances
in the above data. They observed that in real exam timetabling problems there
are usually many of the largest cliques and showed that employing the almost
cliques can potentially extend and improve the above approach.

Burke, Newall and Weare [40] in 1998 studied the effect of introducing
a random element into the employment of graph heuristics (Saturation Degree,
Color Degree and Largest Degree in Table 3) by developing two variants of
selection strategies: (1) tournament selection that randomly chooses one from a
subset of the first exams in the ordered list; and (2) bias selection that takes
the first exam from an ordered list of a subset of all of the exams. These simple
techniques, when tested on three of the Toronto datasets, improved the pure
graph heuristics with backtracking in terms of both the quality and diversity of
the solutions.

Burke and Newall in 2004 [37] investigated a dynamic ordering strategy
which ordered the exams adaptively during the problem solving in an iterative
process. A heuristic modifier was designed to update the ordering of the exams
according to the experience obtained with regard to the difficulty of assigning
them in the previous process. It was observed that a fixed pre-defined heuris-
tic (employed as a measure of difficulty) in a traditional sequential strategy (as
shown in Table 3) does not always perform well over the full range of problems.
The method described in this paper adapts the heuristic ordering itself on the
fly during the problem solving for the particular problem being solved. Exten-
sive experiments were carried out on 11 of the Toronto datasets, and another
benchmark (which we call the Nottingham data, see Section 3.2). This approach
was shown to be simple and effective (comparable or occasionally better than
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state-of-the-art approaches [51, 71]) and not dependent on the initial ordering of
exams.

Fuzzy logic was employed by Asmuni et al [8] in 2004 to order the exams
to be scheduled based on graph coloring heuristics on the Toronto datasets. The
idea is that when ordering the exams by how difficult they are, fuzzy functions
can be used to give an appropriate evaluation. It was seen that different fuzzy
functions need to be used on different problems to obtain the best results.

Corr et al [59] developed an neural network from which a measure of the
difficulty of assigning exams during the timetable construction can be obtained
by recursively inputting the updated solution construction states. The objective
is to adaptively assign the most difficult exams at the early stage of solution
construction. The neural network was trained by storing the states of timetable
construction (feature vectors) using three graph heuristics. The work has demon-
strated the feasibility of employing neural network based methods as an adaptive
and generally applicable technique on timetabling problems.

Due to the limitations of constructive methods, where early assignments may
lead to situations that no feasible timeslots are available for exams left later on
in the construction process, backtracking is usually employed (e.g. [51]) that
unassigns the early conflicting exams to allocate the current ones. A look ahead
technique was also studied in [35] to solve this problem (for more details see
memetic algorithms in Section 2.4).

As mentioned earlier, techniques which hybridise graph heuristics with other
methods are still appearing in the most modern exam timetabling research liter-
ature. The employment of graph heuristics within Hyper-heuristics is discussed
in Section 2.6.

2.2 Constraint Based Techniques

Constraint logic programming [86] and constraint satisfaction techniques [11]
have their origins in Artificial Intelligence research. Such methods have attracted
the attention of researchers in timetabling due to the ease and flexibility with
which they can be employed for timetabling problems. Exams are modelled as
variables with finite domains. Values within the domains representing the times-
lots and rooms for the variables are assigned sequentially to construct the solu-
tions for the problems. Early research focused on finding feasible solutions (i.e.
satisfying all hard constraints). Brailsford, Potts and Smith [11] in 1999
introduced various searching methods on constraint satisfaction problems and
demonstrated that this technique can be applied to optimisation problems.

Constraint based techniques are usually computationally expensive due to
the fact that the number of possible assignments increases exponentially with
the number of variables. They, on their own, cannot usually provide high quality
solutions compared with the state-of-the-art approaches [11] on complex opti-
misation problems. Backtracking is employed when no values can be assigned
to variables later in the process. Different heuristics and techniques are usually
integrated with such methods to reduce the time complexity for solving practical
problems (see [49, 143]). For example, the labelling strategy indicates the order
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in which the variables are to be initiated and is usually where heuristics are
introduced.

David [62] (1998) applied constraint satisfaction techniques to model an
exam timetabling problem in a French school, the Ecole des Mines de Nantes.
Time complexity was crucial thus partial solutions were firstly obtained, based on
which particular local repairing strategies were employed successively to obtain
complete solutions and make improvements. The approach was run several times
with different initial assignments to reduce the chance of missing good solutions.
It was employed successfully in the school and can usually generate solutions
within one second.

Reis and Oliveira [120] (1999) developed an examination timetabling sys-
tem based on ECLiPSe [7], which is a Prolog based system that serves as the
platform for developing various extensions in constraint logic programming. A
set of hard and soft constraints in the problem were built into a constraint satis-
faction model, where set variables were employed and handled by the libraries in
ECLiPSe. Its application on random and a large real exam timetabling problem
data in the University of Fernando Pessoa in Porto demonstrated the efficiency
of the model.

Merlot et al (2003) [104] employed constraint programming in a similar
way to that of [10] using OPL [87], an optimisation programming language, to
produce initial solutions. Then a Simulated Annealing and a hill climbing method
(see Section 2.3 below) were used to improve the solutions. Variables (exams)
were ordered by the sizes of their domains (available timeslots) and scheduled
into the earliest timeslots one by one. The pure constraint programming obtained
the best result for one of the Toronto datasets. The overall hybrid approach was
tested on problems at the University of Melbourne, two variants of Toronto
instances and the Nottingham data (see Section 3). This approach obtained the
best results reported in the literature on several instances of the Toronto and
Nottingham datasets at the time.

Duong and Lam [64] (2004) also employed constraint programming to
generate initial solutions for a Simulated Annealing methodology for the exam
timetabling problems at HoChiMinh City University of Technology. Backtrack-
ing and forward checking were employed to reduce the searching effort. The
labelling strategy dynamically ordered the variables (exams) by a number of
factors such as the size of the domain and the number of students.

Recent research on constraint based techniques represents overall method-
ologies which are hybridised with other techniques. The labelling strategy is
usually integrated with different problem specific heuristics for variable ordering
and is crucial to the success of the method. The development of some power-
ful constraint programming systems/languages (e.g. ECLiPSE [7], CHIP [135],
OPL [87], Prolog [54]) significantly supported the construction of the complete
exam timetabling systems in real world applications. However, only particular
problems at different institutions have been tackled with this approach in the
literature. No comparisons have been made between constraint based techniques
and other state-of-the-art approaches (besides with a manual method) on the
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same problems, except Merlot et al [104] on the Toronto and Nottingham data.
It is worth noting though that this method can produce the best results in the
literature on some benchmark problems.

2.3 Local Search Based Techniques

Local search based techniques [117] (e.g. Tabu Search, Simulated Annealing and
their variants) and Evolutionary Algorithms (see Section 2.4) are usually seen
as belonging to meta-heuristics [28, 82]. Local search methods are a family of
general techniques which solve problems by searching from an incumbent solution
to its neighbourhood. Different neighbourhood structures and moving operators
within the search space distinguish different local search techniques. The search
is guided by a defined objective function, which is used to evaluate the quality
of the generated timetables.

These techniques represent a large body of work in the last decade [49] and
have been applied on a variety of timetabling problems, mainly because differ-
ent constraints can be handled relatively easy. The performance and efficiency
of these techniques are highly dependent upon the parameters and search space
properties (e.g. connectivity, ruggness), thus a lot of domain knowledge is usually
built-in to deal with specific problems. A large amount of variants and combi-
nations have been investigated. We will first deal with Tabu Search.

2.3.1 Tabu Search
Tabu Search [80, 81] explores the search space by not re-visiting a list of recent
moves (kept in a tabu list). They may, however, be selected if they generated
the best solution obtained so far by using an aspiration strategy. Otherwise
the search moves to other neighbourhoods even if the resulting solutions are
worse than the incumbent solutions, which is able to escape from local optima.
Parameters need to be fine-tuned in designing the approach and this is very
much dependant on the problem in hand. Such parameters include the tabu list
and the stopping criteria among others.

Di Gaspero and Schearf [71] (2001) carried out a valuable investigation
on a family of Tabu Search based techniques whose neighbourhoods concerned
those which contributed to the violations of hard or soft constraints. Exhaustive
and biased selection strategies were also studied. The length of the tabu list is
dynamic and the cost function is adaptively set during the search. This approach
was tested on two sets of benchmark problems (Toronto and Nottingham) and
was shown to perform similarly to graph heuristics, clique initialisation [51]
and Memetic Algorithm [38], but worse than a multi-stage memetic approach
[35]. The authors experimentally demonstrated that the adaptive cost function
and the effective selection of neighbourhoods concerning the violations were key
features of the approach. In 2002 Di Gaspero [70] improved the approach by
employing multiple neighbourhoods based on a token-ring search which circularly
employs recolor (change single exam) and shake (swapping groups of exams),
followed by kickers (change sequence of single exams) to further improve the
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solutions obtained. The technique extended the idea of diversifying the search
from local optima.

White and Xie [144] (2001) developed a four-stage Tabu Search called
OTTABU, where the solutions were gradually improved by considering more
constraints at each stage, for the exam timetabling problem at the University of
Ottawa. Should the 1st stage fail, feasible solutions can be generated by adding
some extra timeslots in the 2nd stage. Subsequently, the solutions were gradually
improved by considering 2nd and 3rd order constraints in the problem at the
3rd and 4th stage, respectively. In addition to recency short term memory, a
frequency long term memory was also used to record the frequency of the most
active moves in the search history. The size of the long term memory was set by
analysing the number of less important exams in the problem. In [145] (2004)
this approach was extended where both of the tabu lists could be dynamically
relaxed (emptied) after a certain length of search time with no improvement.
This approach compared favourbly to those from [51] and [71] on the Toronto
data. The authors experimentally showed that employing long term memory can
significantly improve Tabu Search on real-world problems.

Paquete and Stutzle (2002) [113] developed a Tabu Search methodology
for exam timetabling where ordered priorities were given for the constraints. The
constraints were considered in two ways: (1) one constraint at a time from the
highest priority, where ties were broken by considering the lower priority con-
straints; (2) all the constraints at a time, starting from the highest priority. The
2nd strategy, whose results were comparable with those of [51], obtained better
results while the 1st strategy was more consistent. The length of the tabu list
was adaptively set by considering the number of violations in the solutions. It
was observed that the length of the tabu list needed to be increased with the
size of the problems.

2.3.2 Simulated Annealing
Simulated Annealing [1, 2] is motivated by the natural annealing process [2].
The idea is to search a wider area of the search space at the beginning of the
process by accepting worse moves with a higher probability, which is gradually
decreased as the search continues. A temperature is used within a cooling sched-
ule to control the probability of the acceptance of worse moves in the search.
Many parameters need to be tuned in Simulated Annealing including the initial
and final temperatures, and the cooling factor in the cooling schedule. These
parameters affect the performance and success of this approach.

Thompson and Dowsland [140] (1998) carried out valuable work to de-
velop a two-stage approach where feasible solutions from the 1st stage were
improved in the 2nd stage by Simulated Annealing concerning soft constraints.
As different objectives were dealt with in different stages in turn, the solutions
from early stage may be poor and thus a backtracking technique was proposed.
Dowsland [73] also observed that the way neighbourhood was defined, the im-
portance and how difficult to achieve the objectives greatly affected how they
were tackled in each stage. Based on their work in [139], the authors further in-
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vestigated the Kempe chain neighbourhood, where chains of exams rather than
individual exams were moved. This gave more flexibility to enable the movement
of large difficult exams within the timetable. They concluded that the most im-
portant factors in Simulated Annealing were the cooling schedule and the way
neighbourhoods were defined and sampled. The authors reported that the devel-
oped exam timetabling system has been used in Swansea University successfully
since 1993.

Bullnheimer [14] (1998) discussed how a model for Quadratic Assignment
Problems was adapted to formulate a small scale practical exam timetabling
problem at the University of Magdeburg. The models enabled the university
administrators to control how much the conflicting exams need to be spaced out.
Simulated Annealing was employed where two sets of neighbourhood structures
(moving the timeslots of exams and moving single exams) were studied. However,
the details of the parameters in the algorithm were not given.

Merlot et al (2003) [104] employed a Simulated Annealing approach ini-
tialised by constraint programming techniques (see Section 2.2 on “Constraint
Based Techniques”) and followed by hill climbing to further improve the solu-
tion. A modified Kempe chain neighbourhood was employed. The best results
at the time for several of the Toronto instances were achieved by this hybrid
approach. Indeed, the method still has some of the best known results. The au-
thors suggested that methods combining solution construction with local search
will dominate the future of exam timetabling research.

Duong and Lam [64] (2004) employed Simulated Annealing on the initial
solutions generated by constraint programming for the exam timetabling prob-
lem at HMCM University of Technology. A Kempe Chain neighbourhood was
employed in the Simulated Annealing, whose cooling schedule was experimen-
tally set using mechanisms and algorithms. The authors noted that when limited
time is given, it is crucial to tune the components in Simulated Annealing to the
specific problems to be solved.

Burke et al [16] (2004) studied a variant of Simulated Annealing, called
the Great Deluge algorithm [75]. The search accepts worse moves as long as
the decrease on the quality is below a certain level, which is originally set as
the quality of the initial solution and gradually lowered by a decay factor. The
decay factor and an estimate of desired quality represent the parameters in this
approach. The authors noted that such parameters can be pre-defined by users,
who are usually not experts on Simulated Annealing. The initial solutions, how-
ever, need to be feasible to calculate the decay factor so a Saturation Degree
was run a number of times, from which the best solutions were employed as the
starting points. This approach was superior to a Simulated Annealing developed
by the authors. It was shown to be effective and generated some of the best
results on the Toronto and Nottingham datasets when compared with other ap-
proaches ([51, 71]). Comprehensive experiments were also carried out to analyse
the trade-off between the time and solution quality on problems of different size.
The approach was further studied in [36] where it was initialised by the method
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presented in [37].

2.3.3 Other Local Search Based Techniques

Recently, along with the study of different ways of escaping from local optima
in local search based techniques, some researchers turned to investigating the
effect of designing different neighbourhoods and have obtained some success on
timetabling problems. This demonstrated that not only the way of search, but
also the structure of the neighbourhood had significant impact on the searching
algorithms. For example, Kempe chain neighbourhood structures as mentioned
above were investigated by a number of researchers in exam timetabling (see
[52, 61, 104]). The idea is that chains of conflicting exams are swapped between
timeslots. Reasons for why this neighbourhood structure worked well were anal-
ysed [140]. Other approaches concerned multiple neighbourhood structures [70].
Compared with standard moves on single exams, this brought more flexibility in
the navigation of search spaces for different problems.

Abdullah et al [3] in 2006 developed a large neighbourhood search based
on the methodology of improvement graph construction originally developed
by Ahuja and Orlin [6] for different optimization problems. To generate large
neighbourhoods, instead of just considering traditional pair-wise exchange based
operators, a tree-based neighbourhood structure was designed to carry out cyclic
exchanges among all of the timeslots. The approach has provided the best results
on a number of Toronto dataset problems at the time of publication. However,
a large amount of computational time was needed. The approach was further
developed in [4] where the improvement moves were kept in a tabu list. Capac-
itated exam timetabling problems (Toronto c in section 3.2) were considered in
this paper.

Another technique concerning different neighbourhoods is Variable Neigh-
bourhood Search (e.g. [83, 106]). This approach systematically varies a number
of neighbourhood structures. The aim is to escape from local optima by switch-
ing from the search space defined by one neighbourhood to another. However,
not much work has been done in exam timetabling using this approach. Burke
et al [22] investigated variants of Variable Neighbourhood Search and obtained
the best results in the literature across some of the problems in the Toronto
datasets. The results were further improved by using a standard Genetic Algo-
rithms to intelligently select subset of neighbourhoods. The later approach has
strong link to the work in hyper-heuristics and indicated promising directions
on developing general approaches on neighborhoods rather than directly on so-
lutions. In hyper-heuristics, Variable Neighbourhood Search was also employed
where graph heuristics rather than neighbourhoods were searched. We present
more details in Section 2.6 on “Hyper-heuristics”.

In addition to designing different neighbourhood structures within local search
based techniques, some researchers have also looked into how iterative techniques
can help in solving complex problems. In Iterative Local Search [99], the search
restarts after a certain criteria is met. The motivation is to explore more areas
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of search space within a short time. It was first applied on the graph coloring
problem [114] in 2002.

Caramia, DellOlmo and Italiano [45] (2001) developed a fine-tuned local
search method where a greedy scheduler assigned exams into the least possible
number of timeslots and a penalty decreaser improved the timetable without
increasing the number of timeslots. When no improvement can be made the
number of timeslots were increased gradually by a penalty trader. The process
was repeated employing a permutation technique to reassign the priorities of ex-
ams. A properly tuned checkpointing scheme was also used to release the memory
of the search. This approach still hold the best results reported in the literature
on several instances of the Toronto datasets.

Casey and Thompson [52] (2003) investigated a Greedy Randomised Adap-
tive Search Procedures (GRASP) approach [122], which is a relatively new tech-
nique in timetabling. In GRASP, a local search algorithm is started iteratively
after local optima are reached based on the initial solutions generated by a
greedy approach. In [52], the initial solution in each iteration was generated by
a modified Saturation Degree, where one exam from the first n (experimentally
set as 2-6) exams ordered was assigned into the timetable. Backtracking was
employed in conjunction with a tabu list to forbid indefinite cycles. A limited
form of Simulated Annealing with high starting temperature and fast cooling
was used in the improvement phase. Kempe chain moves were employed on ex-
ams that contributed the cost. The approaches applied on the Toronto datasets
reported competitive results on some of the instances at the time.

2.3.4 Summary on the Discussion of Local Search Based Techniques
During the last decade local search based techniques have been very heavily
studied and have obtained a marked level of success on timetabling. All of the
work discussed above was either tested on benchmark data or implemented in
real applications. Different ways of accepting the moves (i.e. moving strategies,
acceptance strategy and selection strategies) were studied so as to escape from
local optima by defining a variety of approaches in meta-heuristics for exam
timetabling. However one significant drawback of these approaches is the ef-
fort required to tune the parameters for specific problems to get high quality
solutions.

2.4 Population Based Algorithms

2.4.1 Evolutionary Algorithms
Evolutionary algorithms represent a family of population based algorithms in-
cluding Genetic Algorithms, Memetic Algorithms and Ant Algorithms. Genetic
algorithms have been the most studied in terms of exam timetabling research.
In particular, hybridisations of genetic algorithms with local search methods
(sometimes called memetic algorithms) have led to some success in the field.

Genetic Algorithms simulate the evolutionary process in nature by manipu-
lating and evolving populations of solutions within the search space (see [82, 119,
130]). Solutions are coded as chromosomes and are evolved by a reproduction



16

process using crossover and mutation operators, with the aim of getting better
and better solutions through a series of generations. A set of parameters and op-
erators in Genetic Algorithms need to be defined and set properly, making the
approach (usually) more complicated than that of local search based searching
methods. The searching strategy in Genetic Algorithms is fundamentally differ-
ent from the local search based approaches discussed above in the sense that
several solutions are dealt with at once (a population of solutions) rather than
just one solution being improved through a series of iterations.

Corne, Ross and Fang [58] in 1994 provided a brief survey on using Ge-
netic Algorithms in general educational timetabling and addressed some issues
and future prospects. One important contribution of the work concerns the use of
direct representation in Genetic Algorithms, which was shown to be incapable
of dealing with certain problem structures in some specially generated graph
coloring problems. In 2003 Ross, Hart and Corne [127] updated the above re-
view in 1994 on representations and algorithms used in Evolutionary Algorithms
on various kinds of timetabling problems. They concluded that researchers were
tackling their own problems in different institutions and there was still the need
for more comparisons of approaches on a wide range of problems.

Ross, Corne and Terashima-Marin [125] (1996) showed that transition
regions exist in solvable timetabling problems by experimenting upon specially
generated graph coloring problems of different connectivity and homogeneity.
The authors indicated that the study can assist the understanding of how differ-
ent algorithms perform on complex timetabling problems. In 1998 Ross, Hart
and Corne [126] provided further evidence for the weakness of the use of direct
coding in Genetic Algorithms. They observed the failure of a number of (evo-
lutionary and non-evolutionary) approaches on solving special classes of graph
coloring problems. They suggested that Genetic Algorithms should search for
algorithms rather than actual solutions. Indeed hyper-heuristics (where a set of
low level heuristics is searched by a high level algorithm - see more details in
Section 2.6) do exactly this.

Terashima-Marin, Ross and Valenzuela-Rendon [136] in 1999 designed
a clique-based crossover operator on timetabling problems that was transferred
into graph coloring problems. Different recombination strategies were tested in
the reproduction processes to maintain the cliques in parents into offsprings.
They pointed out the same problem with direct representation in Genetic Al-
gorithms as discussed above with [126]. They suggested alternatives for future
work. The same authors also studied the penalty function on both random and
real timetabling problems employing Hardness Theory, which predicts where the
hardest instances are within timetabling problems [137]. However, they observed
that adding this measure is not helpful in guiding Genetic Algorithms towards
promising areas of search space. Based on the above work, they investigated
the non-direct coding in Genetic Algorithms [138], where solution construction
strategies and heuristics rather than the actual solutions were coded (e.g. con-
figurations of constraint satisfaction methods, ordering of nodes being assigned
and heuristics dealing with constraints, etc). Promising results obtained by this
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approach on the Toronto datasets indicated the potential of non-direct represen-
tations in Genetic Algorithms.

Erben [77] (2001) developed a grouping Genetic Algorithm where appropri-
ate encoding and fitness functions were studied. Genes were grouped for each
color in graph coloring problems (which model the exam timetabling problems
with only hard constraints). Specially designed crossover and mutation operators
for the group encoding were employed. Although the results in terms of solution
quality did not compete with the best, the approach requires less computational
time than some of the methods in the literature.

Sheibani [134], in 2002, built a special mathematical model and developed
a standard Genetic Algorithm for solving exam timetabling problems in train-
ing centers with the objective of maximising the intervals between the exams.
An activity-on-arrow network was employed to estimate the closeness between
exams, which was used in the fitness function in Genetic Algorithm.

Wong, Cote and Gely [146] (2002) discussed some issues concerning their
implementing a Genetic Algorithm on solving an exam timetabling problem at
Cole de Technologie Suprieure, which was modelled as a Constraint Satisfaction
problem. Tournament selection was used to select parents and repairing strate-
gies were incorporated with mutation to produce better candidates. In 2005,
Cote, Wong, and Sabourin [61] investigated a bi-objective evolutionary al-
gorithm with the objectives of minimising timetable length and spacing out con-
flicting exams. Two local search operators (instead of recombination operators)
were employed to deal with hard and soft constraints. They were a classic Tabu
Search and a simplified Variable Neighbourhood Descent with Kempe chain and
single move neighbourhoods. A ranking procedure was based on Pareto strength
to carry out evaluation of the individuals in the population. The approach ob-
tained competitive results on a number of benchmark problems against some
of the methods in the literature (e.g. [51, 38, 104]). The paper also provided a
review on all the state-of-the-art approaches on the Toronto datasets at the time.

2.4.2 Memetic Algorithms
Memetic algorithms [108] are an extension of Genetic Algorithms whose basic
idea is that individuals in a population are improved during their lifetime within
a generation. This is often implemented by employing local search methods (in
the form of hill climbing or repairing strategies, etc) on individual members of
a population between generations. Burke and Landa Silva [32] discussed a
number of issues concerning the design of Memetic Algorithms for scheduling
and timetabling problems. Recent research ideas and future directions on this
topic were presented.

The ability to explore by employing a population based method and exploit
for local search enables such methods to deal effectively with large complex
problems. However, there is usually a price to pay in terms of the computational
time required. Also the right balance between exploration and exploitation needs
to be established [32]. There exists a number of in-depth studies on Memetic
Algorithms concerning structures of the search space and different ways of hy-
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bridisations over a range of combinatorial optimisation problems (e.g. see [111,
112]).

Burke, Newall and Weare [38] (1996) developed a Memetic Algorithm
which employs light and heavy mutation operators to reassign single exams and
sets of exams, respectively, with the aim of escaping from local optima. Nei-
ther of these mutations on their own provided substantial improvement on the
solution quality. Hill climbing was used to improve the individuals and it was
shown that this improved the quality of timetables although a larger amount of
computational time was required. Another contribution of this paper was the
introduction of more benchmark exam timetabling problems (named as Not-
tingham data and described in Section 3.2). These have been widely used by a
number of researchers in later work (see Table 8 and 13). The same authors also
investigated the effects of diversity in initial populations in Memetic Algorithms
[39] (1998). To generate a good diversity in the initial population, randomness
was introduced by using different selection strategies in graph heuristics (see
[40]), and three diversity measures were also developed to study the trade-off
between the quality and diversity. It was shown that the study of diversity in
initialisation offered great potential benefits for Memetic Algorithms. In 1999,
Burke and Newall [35] studied decomposing the exam timetabling problems
by each time assigning a subset of n exams which are the most difficult ones
measured by graph heuristics (i.e. Color Degree, Largest Degree, Saturation De-
gree - see Table 3). Backtracking and look-ahead techniques were employed to
avoid the problem of early assignments creating infeasibility later on. The exams
assigned in previous stages are fixed and the sub-problem at the current stage
is solved using the Memetic Algorithm investigated (e.g. see [38, 107, 130]. The
algorithm dramatically reduced the time complexity required and produced high
quality solutions when dealing with larger timetabling problems. The decompo-
sition technique was actually independent of the memetic timetabling algorithm
which was used on each of the decomposed subsets.

2.4.3 Ant Algorithms
Ant Algorithms [68] belong to the family of population based techniques. They
simulate the way ants search for the shortest route to food by laying pheromone
on the way. The shortest trails generate stronger levels of pheromone over a
period of time. In the algorithm, each ant is used to construct a solution and
the information during the search is maintained as pheromone, which is used to
help generating solutions in the next stage. In exam timetabling, Ant Algorithms
represent relatively recently explored techniques. In this context, they have not
been particularly widely studied. Relevant work does, however, exist on graph
coloring problems [60], where the frequency of the colors assigned for the vertices
in the solution construction were employed as the pheromone.

Naji Azimi [109] in 2004 implemented an Ant Colony System and com-
pared it with Simulated Annealing, Tabu Search and a Genetic Algorithm under
a unified framework for solving systematically designed exam timetabling prob-
lems. Initial solutions for the Ant Colony System were generated heuristically
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and improved by local search afterwards. The results analyzed over the running
time indicated that the Ant Colony approach performed the best (although not
on all of the problems) and Tabu Search had the highest level of improvement
upon the initial solution randomly generated. Three variants of hybridisation on
Tabu Search and the Ant Colony method were then studied in [110]. It was ob-
served that the hybrid approaches work better than each single algorithm, and
the sequential Ant Colony System followed by Tabu Search obtained the best
results. However only randomly generated data was tested.

Dowsland and Thompson in 2005 [74] developed Ant Algorithms based on
the graph coloring model studied in [60] for solving exam timetabling problems
without soft constraints (i.e to find the lowest number of timeslots). Exten-
sive experiments were carried out to measure the performance of the algorithm
with different configurations. These include the initialisation methods (i.e. re-
cursive Largest Degree and Saturation Degree), trail calculations, three variants
of fitness functions and different parameter settings. The results obtained were
competitive to the others on the same dataset. It was also observed that the ini-
tialisation methods had significant influence on the solution quality. Extensions
of the algorithm to incorporate other constraints (i.e. time windows, seating ca-
pacities and second-order conflicts) were also discussed.

2.4.4 Summary of the Discussion of Population-Based Techniques
Evolutionary methods (particularly evolutionary hybrids) have been very ef-
fective in providing high quality solutions to exam timetabling problem. Recent
research on Evolutionary Algorithms discussed has the issues of encoding to deal
with the problem structures which direct coding is not capable of dealing with.
This opened up a new research direction in Evolutionary Algorithms and has led
to some of the initial work in Hyper-heuristics (see Section 2.6). Multi-criteria
techniques also form an important research direction in the area of Evolutionary
Algorithms for exam timetabling problems. More details are discussed in Section
2.5 on “Multi-criteria Techniques”.

Ant Algorithms have been applied in exam timetabling with some initial
observations (see [74, 109]). As relatively new techniques, they represent some
potential and should attract more attention in the exam timetabling domain.

2.5 Multi-Criteria Techniques

In the majority of algorithms/approaches on timetabling, weighted costs of vi-
olations of different constraints are summed and used to indicate the quality
of the solutions. However, in real world circumstances the constraints are of-
ten considered from different points of view by different parties involved in the
timetabling process [49]. The simple sum of costs on different constraints cannot
always take care of the situation in such cases. Multi-criteria techniques have
been studied recently in timetabling with the aim of handling different con-
straints easily by considering a vector of constraints instead of a single weighted
sum. In multi-criteria techniques, each criterion can be considered to correspond
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to a constraint, which has a certain level of importance and is dealt with indi-
vidually. In some approaches, multiple stages have been employed to deal with
different objectives. Landa, Burke and Petrovic [95] provide a review of a
large number of scheduling and timetabling applications which employ multi-
criteria techniques.

Burke, Bykov and Petrovic [15] (2001) developed a two-stage multi-
criteria approach dealing with nine criteria in exam timetabling problems (e.g.
room capacity, proximity of exams, time and order of exams, etc). In the 1st

stage, Saturation Degree was used to generate a set of feasible solutions, where
each criterion was dealt with individually. The 2nd stage then heuristically im-
proved these solutions simultaneously. A multi-criteria method called Compro-
mise Programming [150] was used where the quality of the solutions was eval-
uated by the distance between them to an ideal point representing optimal so-
lutions concerning all criteria. This technique was further studied in [116] by
Petrovic and Bykov. They based their multi-criteria approach on the Great
Deluge algorithm [75]. A reference point provided by users was used to draw a
trajectory in the criteria space. The criteria weights can be dynamically changed
to guide the search, starting from random points, towards the reference point. It
aims at the ideal point in the criteria space. However, the initial weights needed
to be set were dependant on the problems. Also the search was not guaranteed
to converge. Published results from [38] were used as the reference points of
the approach and the final results were better on some of the benchmark prob-
lems tested. These approaches provided the flexibility for timetablers to obtain
desired solutions by managing the weights of different constraints.

2.6 Hyper-heuristics

The dependence upon parameter tuning or the way of embedding domain knowl-
edge (i.e. the hard coding of hard and soft constraints) impacts upon meta-
heuristic development for examination timetabling. Some of the most effective
techniques on the benchmark data in the literature are meta-heuristics. How-
ever, most of these methods represent a tailor made approach for one particular
problem (in this case, exam timetabling). Such methods usually work poorly
or are not capable of dealing with other problems. Indeed, it can be the case
that such methods do not work consistently across exam timetabling problem
instances. Often, parameter tuning can play a significant role. The effort of tun-
ing parameters to fit new problems can be thought of as being as difficult as
that of developing new approaches. This well-known issue has led a number of
researchers to develop new technologies aimed at operating at a higher level of
generality.

Hyper-heuristics are motivated by such observations and are attracting an
increased level of research attention. The term can be seen as representing heuris-
tics that choose heuristics, i.e. a search space of heuristics is the focus of attention
rather than a search space of solutions (as is the case with most implementa-
tions of meta-heuristics [26, 124]). The aim is to develop more general approaches
rather than to beat the fine-tuned and problem specific approaches which often
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require much effort on the tuning of parameters and are usually only appropriate
for specific problems.

As mentioned above in Section 2.4.1, Ross, Hart and Corne [126] suggested
that a Genetic Algorithm might be successfully employed in searching for a
good algorithms rather than specific solutions. In [138], Terashima-Marin,
Ross and Valenzuela-Rendon investigated using Evolutionary Algorithms
to search for solution construction strategies.

Ahmadi et al [5] in 2003 developed a Variable Neighbourhood Search to find
good combinations of parameterised heuristics for different exam timetabling
problems. Permutations of the low level heuristics (i.e. seven exam selection,
two timeslot selection and three room selection heuristics) and their associated
parameters (weights) were employed to construct solutions.

Ross, Marin-Blazquez and Hart in 2004 [128] developed a general steady
state Genetic Algorithm to search within a simplified search space of problem-
state descriptions, which were corresponding to the events and timeslots picking
heuristics to construct solutions. Since the search of the Genetic Algorithm was
on heuristics rather than actual solutions, three different fitness functions were
tested. The descriptions of the problem state (corresponding to heuristics) were
experimentally studied with respect to these fitness functions. Promising results
for both the benchmark course and exam timetabling problems demonstrated
valuable potential research directions of this approach for a range of problems.

Kendall and Hussin in 2004 [90, 91] investigated a Tabu Search based
hyper-heuristic based on the work in [29] where both moving strategies and con-
structive graph heuristics were employed as low level heuristics. The algorithms
were tested on exam timetabling problems in the MARA University of Tech-
nology [89] and it was shown that it produced better results compared with
solutions that were generated manually.

Burke et al [20, 42] investigated employing Case-Based Reasoning (see [96]),
a knowledge based technique, as a heuristic selector for solving both course and
exam timetabling problems. In [42] (2006), knowledge discovery techniques were
employed to discover the most relevant features used in evaluating the similarity
between problem solving situations. The objective was to choose the best heuris-
tics from the most similar previous problem solving situation to construct good
solutions for the problem in hand. The issue of defining the similarity between
exam timetabling problems has also been studied in [21] in terms of choosing the
best problem solving method. In [20] (2005), different ways of hybridising the
low level graph heuristics (with and without CBR) were compared for solving
the Toronto datasets. It was shown that employing knowledge based techniques
rather than randomly/systematically hybridising heuristics in a hyper-heuristic
framework presented good results. Yang and Petrovic [149] employed Case-
Based Reasoning to choose graph heuristics to construct initial solutions for the
Great Deluge algorithm and obatined the best results reported in the literature
for several Toronto instances at the time. Attribute graphs studied in [33] were
employed to model the constraints in the problems so that previous problems
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with similar constraints were retrieved to solve the problems in hand by reusing
the most appropriate graph heuristics.

Burke et al [34] (2006) investigated using Tabu Search to search permu-
tations of graph heuristics to construct solutions for timetabling problems. A
different number of low level graph heuristics were studied in this graph based
hyper-heuristic to adaptively assign the most difficult exams at different stages of
solution construction. It was observed that the greater the number of intelligent
low level heuristics, the better the performance may be. However, the size of the
search space will grow significantly, thus the computational time may be an issue.
The results on both the course and exam timetabling problems were competitive
with the best state-of-the-art approaches reported in the literature and demon-
strated the simplicity and efficiency of this general approach. Qu and Burke
[118] further investigated the effect of employing different high level search algo-
rithms (i.e. Steepest Descent, Tabu Search, Iterated Local Search and Variable
Neighbourhood Search) in the unified graph based hyper-heuristic framework.
Experimental results demonstrated that the method of search by different high
level heuristics within the search space of graph heuristics was not crucial. The
characteristics of the neighbourhood structures and search space were analysed.
It was shown that the exploration over the large solution space enabled the
approach to obtain good results on both the exam and course timetabling prob-
lems.

Various strategies and methodologies have been employed as the high level
selection methods in a hyper-heuristic framework to choose appropriate low level
heuristics. These low level heuristics might be either construction or improve-
ment heuristics. Such methods are laying the foundations of methodologies to
automatically design and adapt timetabling heuristics. This has led to some work
on analysing the search space of the heuristics (rather than solutions) with the
goal of fundamentally understanding the search processes which underpin this
new perspective on timetabling research [118].

2.7 Other Issues

2.7.1 Decomposition
The idea of decomposition is that large problems are broken into small sub-
problems, for which optimal or high quality solutions can be obtained by rela-
tively simple techniques as the search spaces of the sub-problems are significantly
smaller than the original problem [46]. Although it has had some success [35],
decomposition in timetabling has not attracted as much attention as might be
expected because of two drawbacks. Firstly, early assignments may lead to later
infeasibility, which was also a problem encountered in clustering and construc-
tive methods in the early days of timetabling research. Secondly, globally high
quality solutions may be missed as certain soft constraints cannot be evaluated
when the problems are decomposed. The clustering methods studied in early
timetabling research [49] can be seen as decomposition approaches in the sense
that the exams are decomposed into conflict-free or low-conflict groups. Another
way of decomposing the problems is by finding the largest clique in the graphs.
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This was studied by Carter, Laporte and Chinneck [50] (1994) and employed
in their later work [51] (1996). Carter and Johnson [48] (2001) improved the
approach by assigning the exams in all of the almost-cliques as all of them are
potentially the most difficult exams.

Burke and Newall [35] in 1999 investigated a decomposition approach by
using sequential heuristics to assign the first set of n exams. This use of graph
based heuristics and the employment of a look ahead method represented the
mechanism which aims to avoid making early assignments which lead to later
infeasibilities. The decomposed sub-problems were then solved by a Memetic
Algoritm developed in [38]. The algorithms presented good results in terms of
both the computational time and solution quality compared with a multi-start
greedy method on the Toronto and Nottingham data. At the time of publication,
this paper had some of the best results on the capacitated benchmark problems
(Toronto c in Section 3.2).

Lin [98] (2002) developed a multi-agent algorithm where problems were di-
vided into sub-problems and solved by each agent locally. A broker was used
to solve the remaining schedules including those were de-allocated from local
schedules. The global solutions were obtained by aggregating all the schedules
generated by agents and the broker. Both the Toronto data and randomly gen-
erated exam timetabling problems were tested and compared with that of [126].
The approach worked well on sparsely scheduled problems but less well on dense
problems.

2.7.2 Timetabling Systems

During the years, a number of timetabling systems for both course and exam
timetabling have appeared in the literature. However many of them (especially
before 1996) were specially developed for, and implemented at, particular in-
stitutions [49]. Not only were the design of algorithms but also practical issues
were considered in the development of the systems.

Hansen and Vidal [85] (1995) presented a nationwide exam timetabling
system which was reported to have been in use since 1992 to solve the problems
of centralised planning of both oral and written examinations for 248 high schools
in Denmark. The complex problem with a variety of objectives was described and
solved by a four-phase process dealing with different objectives using different
techniques and heuristics. Some issues including the preparation of data and the
scheduling of exams were discussed. Some experiences during the development
of the system and other practical issues including the maintenance of centralised
information and communications were also discussed [84].

Colijn and Layfield (1995) [55] applied a multi-stage approach for the exam
timetabling problem in the University of Calgary. In the 1st stage timeslots’ of
exams and individual exams were moved to reduce students sitting two exams
in a row. In the 2nd stage, students taking three and four exams in a row were
considered using the above similar process. The authors also considered the cases
where timetables have to be modified in unforeseen circumstances [56] in the
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2nd stage of the approach, which was a highly interactive process within a visual
interface where exams can be moved, added or removed from the timetables.

Lim et al [97] (2000) developed a timetabling system, which was a 3-tier
client/server application, for both the course and exam timetabling problems
at the National University of Singapore. The problems and the overall manual
process were described. In the exam portion of the system, exams were weighted
by three measures and assigned into the timeslots one by one using constraint
propagation by an arc consistency algorithm. The timetables were generated by
the system in a much shorter time and compared favourably with the manually
generated ones from the previously used manual system. Ho, Lim and Oon [88]
(2001) further developed the system by using a Tabu Search, which employed
four moving operators to improve the solutions obtained. The Push Forward
Insertion heuristic, which has been employed in vehicle routing problems, was
used to help spreading the exams across timetables. Real problems were used to
test the approach.

Dimopoulou and Miliotis [69] (2001) developed a timetabling system to
deal with both the course and exam timetabling problems at Athens University of
Economics and Business. Firstly, an Integer Programming method was developed
based on MPCODE and XPRESS-MP packages. This approach was employed to
assign groups of courses to groups of timeslots for the course timetabling prob-
lem. Based on the course timetables the initial exam timetables were built and
were adjusted repeatedly by a heuristic approach which dealt with a number of
constraints. This provided good and feasible solutions with minimum effort.

2.7.3 Timetabling Languages and Tools

Over the years, timetabling researchers have employed some general packages
(such as ECLiPse for constraint logic programming [7]) to build timetabling sys-
tems. However, some packages and languages which are specialised on timetabling
have also appeared to support representations and comparisons in timetabling
research.

Burke, Kingston and Pepper [30] (1997) presented general requirements
(generality, completeness and practicability) for building a standard data format
for general timetabling problems based on set theory and logic. Examples were
given to show how common constraints were modelled by using this data format.
The objective is to provide an open way of making comparisons on results and
exchanging data in timetabling research.

Tsang, Mills and Williams [141] (1999) developed a language to specify
constraint satisfaction problems so that constraint programming systems can be
easily implemented for exam timetabling problems. The aim was to build a high
level system which abstracted the details as much as possible so that end users,
without knowledge of both the constraint programming and host languages, can
focus on the problem specific information. The language was briefly described
and a real exam timetabling problem was used as the example to build the
constraint satisfaction system.
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Reis and Oliera [121] (2000) proposed a language, called UniLang, which
used a list of synonyms to naturally represent data, various constraints, quality
measure and solutions for general university timetabling problems. Eight classes
of sub-problems in timetabling were defined and lots of examples were presented
to interpret the language proposed. The language was converted into constraint
logic programming in ECLiPse [7] for different problems.

Schearf and Di Gaspero [132] (2001) introduced a software tool called
EASYLOCAL++ for the implementation of a family of local search algorithms
(Hill Climbing, Simulated Annealing and Tabu Search) on general timetabling
problems. This represented an object-oriented framework which consisted of a
hierarchy of abstract classes to take care of different aspects of local search. The
main characteristics of the tool were reusability and generality, which were in-
terpreted using examples from school timetabling, course timetabling and exam
timetabling problems. It was employed to develop a family of Tabu Search meth-
ods in [71].

De Causmaecker et al [63] (2002) discussed how the Semantic Web can
be used in timetabling. They studied, layer by layer, how this technology can
be applied to interpret problem specific knowledge in timetabling using XML.
An upper level timetabling ontology was presented to demonstrate the ability to
support the fast development of applications on different timetabling problems,
whose constraints and resources can be easily identified.

Chand [53] (2004) proposed a constraint based general model where con-
straints are grouped as domain, spread and CountResource, based upon which
timetabling data and constraints can be transferred into a relational database.
Examples of exam timetabling data by Burke, Elliman and Weare [24] and
course timetabling data by Goltz and Matzke [72] were presented using the
model proposed. The author declared that the format can be extended to in-
clude other constraints and can be applied to different languages. The author
also provided a brief review of the relevant work on modelling timetabling data.

2.7.4 Models and Complexity Issues
Over the last ten years, important issues concerning the models and the com-

plexity of timetabling problems have been discussed in the literature. However,
so far, there are still no universally accepted complete models. Not much de-
ployment work has been carried out on this topic. The main area of research on
complexity issues has been on school timetabling.

Cooper and Kingston [57] (1996) represented timetabling problems using
a timetabling specification language called TTL. They proved that timetabling
problems are NP-Complete in five independent ways which actually occur in
practice. Prospects were discussed to overcome the special cases in real problems.

de Werra, Asratian and Durand [67] (2002) studied the complexity of
some variants of class-teacher timetabling problems. A simple model of the prob-
lem was first given, followed by the extension where the classes were partitioned
into groups. The authors showed that when there is a teacher giving lectures to
three groups of classes, besides giving lectures to individual groups, the problem
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is NP-complete. A polynomial procedure to find a timetable of certain number
of timeslots based on network flows was given for the problems where there were
at most two groups of classes.

3 Benchmark Exam Timetabling Data

The high level of research interest in examination timetabling has led to the
establishment of a variety of different benchmark problems which have been
widely studied. The established benchmarks, with variants of standard defined
measures, provided a way for meaningful scientific comparisons and the exchange
of research achievements. However, there has been some confusion in the litera-
ture due to the circulation of two different versions of eight of these benchmark
problems (from the University of Toronto datasets). One of the goals of this
paper is to eradicate this confusion by establishing new names for each of the
different versions. This, of course, means that we actually have 21 problems that
have been studied in the literature (rather than 13). Another aim of this section
of the paper is to summarise which of the methods that have appeared in the
literature are the best on these benchmarks. This is particularly important given
the confusion mentioned above.

3.1 University of Toronto Benchmark Data

Carter, Laptore and Lee [51] in 1996 introduced a set of 13 real-world exam
timetabling problems from three Canadian highs schools, five Canadian universi-
ties, one American university, one British university and one university in Saudi
Arabia. Over the years they were widely tested in exam timetabling research by
different state-of-the-art approaches and have been seen as a benchmark in the
field. As mentioned above, there has been an issue concerning the circulation of
different sets under the same name. This is discussed at length below.

In the problem, to indicate the density of the conflicting exams in each of
the instances, a Conflict Matrix C was defined where each element cij = 1 if
exam i conflict with exam j (have common students), or cij = 0 otherwise. The
Conflict Density represents the ratio between the number of elements of value
“1” to the total number of elements in the conflict matrix.

Two variants of objectives were defined:

– to minimise the number of timeslots needed for the problem (graph coloring)
(named as Toronto a in Table 5); and

– to minimise the average cost per student (named Toronto b in Table 5).

For the 1st objective, the aim is to find the feasible timetables of the shortest
length. For the 2nd objective, an evaluation function was defined to calculate
the cost of the timetables generated. For students sitting two exams s timeslots
apart, the cost was assigned using proximity values ws i.e. w1=16, w2=8, w3=4
w4=2 and w5=1. The aim is to space out the conflicting exams within a limited
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number of timeslots. The authors also introduced seven real world applications
with side constraints (i.e. maximum room capacity per timeslot, pre-assigned
exams, maximum number of exams per timeslot, no x exams in y timeslots,
etc). This objective was modified later and tested by a number of approaches
(see below).

During the years, however, two versions of the data were circulated and were
tested by different approaches. To distinguish the data tested and to build a
standard benchmark for future use in timetabling, we have carefully examined
the data that has appeared in two different forms under the same name for eight
of these benchmark problems. We list the characteristics of these two versions of
data in Table 4. We have post-fixed “I” and “II” respectively to the circulated
datasets to distinguish between them. The post-fix “I” has been used for the
problem instance which we believe has appeared most often in the literature.
For the problem instances of post-fix “II”, some confusion occurred as three of
the instances (car91 I, car92 II and pur93 II) have conflicts on the number of
enrolments (i.e. a different number of enrolments defined in two data files for
each instance). Later on in this section we attempt to cast light on the question
of which technique has been applied to which version of these instances in the
literature.

Table 4. Characteristics of Two Versions of the Toronto Benchmark Datasets

Problem Exams Students Enrolments Conflict Timeslots
Instance Density

car91 I 682 16925 56877 0.13 35
car91 II 682 16925 56242/56877 0.13 35
car92 I 543 18419 55522 0.14 32
car92 II 543 18419 55189/55522 0.14 32
ear83 I 190 1125 8109 0.27 24
ear83 II 189 1108 8014 0.27 24
hec92 I 81 2823 10632 0.42 18
hec92 II 80 2823 10625 0.42 18
kfu93 461 5349 25113 0.06 20
lse91 381 2726 10918 0.06 18
pur93 I 2419 30032 120681 0.03 42
pur93 II 2419 30032 120686/120681 0.03 42
rye92 486 11483 45051 0.07 23
sta83 I 139 611 5751 0.14 13
sta83 II 138 549 5689 0.14 13
tre92 261 4360 14901 0.06 23
uta92 I 622 21266 58979 0.13 35
uta92 II 638 21329 59144 0.13 35
ute92 184 2749 11793 0.08 10
yor83 I 181 941 6034 0.29 21
yor83 II 180 919 6012 0.29 21
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Table 5. Variants of the Toronto Benchmark Datasets

Variants Objectives

Toronto a graph coloring to minimise the number of timeslots needed

Toronto b un-capacitated with cost to space out conflicting exams within limited
(fixed number of) timeslots

Toronto c capacitated with cost to minimise students sitting two exams in a
row on the same day

Toronto d capacitated with same as above, and to minimise students sitting
modified cost two exams overnight

Toronto e estimated capacity and to minimise students sitting two adjacent exams
timeslots the same day

To avoid any further confusion, the definitive versions of these datasets
are available at http://www.cs.nott.ac.uk/∼rxq/data.htm (together with all the
other datasets discussed in this paper).

Burke, Newall and Weare [38] in 1996 modified the objective of the six
real world problems introduced in [51] by considering the maximum room ca-
pacity per timeslot, and adjacent exams on the same day. In 1998 [39], timeslots
in the problems were distinguished by setting three timeslots a day from Mon-
day to Friday and one timeslot on Saturday. The objective is to minimise the
students sitting two consecutive exams on the same day and overnight. These
two variants are named Toronto c and d in Table 5. Terashima-Marin et al in
1999 [138] modified the dataset by assigning each problem instance an estimated
number of timeslots and each timeslot an estimated maximum seats/capacity.
This variant is named Toronto e in Table 5.

The approaches developed and tested on different variants of the Toronto
datasets during the years are listed in Table 6 (ordered by the year in which
the work was published). The values in “()” following the variants of the data
in Table 6 give the number of problem instances tested by the corresponding
approaches. Most of the work did not specify the exact characteristics of the data
tested, and in many of the papers it is impossible to determine which version
(I or II) of the data was tested (for the eight problematical instances). We have
attempted, in Table 10 (by contacting authors), to clarify which versions of the
datasets were used in each paper. If the entries are written in italics, we are
not absolutely sure that the information with respect to this issue is correct.
Otherwise we have had the situation confirmed by the authors concerned.

3.2 University of Nottingham Benchmark Data

Burke, Newall and Weare [38] in 1996 also introduced the 1994 exam timetab-
ling data at the University of Nottingham as a benchmark. It was used later by
a number of researchers on testing different approaches. Table 7 presents the
characteristics of the dataset. We know that 23 is the least possible number
of timeslots due to the limitations on the room capacity. The objective is to
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Table 6. Approaches on the Toronto Benchmark Datasets

Reference Approach/Technique Problem

Carter et al Graph heuristics with clique initialisation and a(13), b(13)
[51] 1996 backtracking

Carter&Johnson Almost cliques with sufficient density as the a(13)
[48] 1996 initialisation for graph heuristics

Burke et al Memetic Algorithm with hill climbing and light and c(5)
[38] 1996 heavy mutation

Burke et al Different initialisation strategies in Memetic d(3)
[39] 1998 Algorithms measured by diversity

Burke et al Non-determinisms introduced by selection strategies d(3)
[40] 1998 in graph heuristics

Burke&Newall Multi-stage Evolutionary Algorithm based on d(3)
[35] 1999 Memetic Algorithm

Terashima Genetic Algorithm with in-direct coding of the e(12)
-Marin et al constructive strategies and heuristics
[138] 1999

Caramia et al Iterated algorithm with novel improving factors a(13), b(13),
[45] 2001 c(5)

Di Gaspero [71] Adaptive tabu list and cost function in Tabu Search b(11), c(5),
&Schaerf 2001 d(3)
Di Gaspero Multiple neighbourhood Tabu Search b(7),d(3)
[70] 2002

White&Xie [144] Tabu Search with long term memory b(2)
[145] 2001&2004 Relaxation on long and short term tabu lists b(7)

Paquete& [113] Tabu Search with Lex-tie and Lex-seq strategies in b(8)
Stutzle 2002 the objective function

Merlot et al Constraint programming as initialisation for a(12), b(12),
[104] 2003 Simulated Annealing and hill climbing c(5), d(2)

Casey& [52] GRASP with modified Saturation Degree b(10)
Thompson 2003 initialisation and Simulated Annealing improvement

Burke&Newall Great Deluge with adaptive ordering as the b(11)
[36] 2003 initialisation

Burke&Newall Graph heuristics with adaptive heuristic modifier to b(11), d(3)
[37] 2004 dynamically order the exams

Burke&Bykov Time-predefined Great Deluge and Simulated b(13), d(2)
et al [16] 2004 Annealing

Asmuni et al Fuzzy rules with Largest Degree, Saturation Degree b(12)
[8] 2004 and Largest Enrolment

Ross et al Genetic Algorithm evolving constructive strategies e(12)
[128] 2004 and heuristics

Burke et al Hybridising graph heuristics in hyper-heuristic by b(4)
[20] 2005 CBR and systematic strategies

Cote et al Bio-objective Evolutionary Algorithm with local b(12)
[61] 2005 search operators in the recombination process

Kendall&Hussin Tabu Search based hyper-heuristic b(8)
[90] 2005

Yang&Petrovic Similarity measure using fuzzy set on selecting b(12)
[149] 2005 hybridisations of Great Deluge and graph heuristics
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Table 6. (cont.) Approaches on the Toronto Benchmark Datasets

Reference Approach/Technique Problem

Abdullah et al Large neighbourhood search with tree-based b(12), c(5)
[3] 2006 neighbourhood structure
[4] 2006 Tabu Search based large neighborhood search c(5)

Burke et al Graph based hyper-heuristic using Tabu Search b(11)
[34] 2006
Qu&Burke Graph based hyper-heuristic framework with different b(11)
[118] 2006 high level search algorithms

Burke et al Genetic Algorithms on selecting subset of b(11)
[22] 2006 neighborhoods in Variable Neighborhood Search

Burke et al Case based heuristic selection for the solution b(11)
[42] 2006 construction

minimise the students sitting two consecutive exams on the same day. The data
can be downloaded from http://www.cs.nott.ac.uk/∼rxq/data.htm.

In [39] (1998) the above problems were further constrained by modifying the
objective function to consider also the consecutive exams overnight. In Table 7 we
highlight these variants as Nottingham a and b. Table 8 presents the approaches
applied on these datasets and the University of Melbourne datasets (see section
3.3 below) in the literature.

Table 7. Characterisitcs of the Nottingham Benchmark Datasets

Nottingham a Nottingham b

Exams 800 800
Students 7896 7896
Timeslots 23, 26 23
Enrolments 34265 34265
Conflicts 10034 10034
Capacity 1550 1550
Density 0.03 0.03
Objective minimise adjacent exams on the minimise adjacent exams on the same

same day day and overnight

3.3 University of Melbourne Benchmark Data

Merlot et al [104] introduced exam timetabling datasets from the University of
Melbourne at the PATAT conference in 2002. Two datasets were introduced. For
these datasets, there were two timeslots on each day for each of the five workdays,
and the capacity for each session varied. The availability of sessions for some of
the exams was restricted. In one problem instance this prevented all feasible solu-
tions so an alternate data set was created which allowed feasible solutions. These
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Table 8. Approaches on the Nottingham and Melbourne Benchmark Datasets

Reference Approach/Technique Problem

Burke&Newall Adaptive ordering based on graph heuristics using Nottingham b
[37] 2004 heuristic modifier

Merlot et al Constraint logic programming as initialisation for Nottingham a,b
[104] 2003 Simulated Annealing and hill climbing Melbourne I II

Di Gaspero& Tabu Search using exhaust and biased selection Nottingham a,b
Schearf [71] 2001 by the costs of exams

Burke et al Great Deluge with a number of runs of Saturation Nottingham b
[16] 2004 Degree

Caramia et al Iterative approach where the number of timeslots Nottingham a
[45] 2001 was gradually increased after greedy improvement

Ahmadi et al VNS to search permutations of heuristics and Nottingham a
[5] 2003 their weights

Cote et al Evolutionary algorithms with bio-objective Nottingham a
[61] 2005 constraint satisfaction Melbourne I

Burke et al Memetic algorithms with light & heavy mutations Nottingham a
[38] 1996 graph heuristic initialisation

Burke&Newall Multi-stage evolutionary algorithm initialised by Nottingham b
[35] 1999 graph heuristics with backtracking

Burke et al Multi-criteria approach dealing with 9 criteria Nottingham b
[15] 2001 based on initial solutions by Saturation Degree

datasets can also be downloaded from http://www.cs.nott.ac.uk/∼rxq/data.htm.
The Melbourne datasets are summarised in Table 9.

Table 9. Characterisitcs of the Melbourne Benchmark Datasets

Exams Timeslots Students Enrolls Objective

I 521 28 20656 62248 minimise adjacent exams on the same day
or overnight

II 562 31 19816 60637 same as above

3.4 Results on the Benchmark Problems

As mentioned above, there has been a large number of papers published which
have worked with the datasets discussed above. In addition, the difficulties sur-
rounding the publication of the Toronto datasets has led to some confusion over
which methods were tackling which problems. Tables 10-12 attempt to clarify
this. They list all of the methods which have addressed the Toronto problems and
they attempt to illustrate which methods used which problems. This has been
a difficult task and the authors would welcome additional information which we
will use to keep an updated version of the table at http://www.cs.nott.ac.uk/∼rxq/data.htm.
We would like to add more methods as they appear.
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Table 10. Results in the literature on the two versions of the Toronto Dataset b (see
Table 5). Values in italic represent that we are unsure about the accuracy in terms of
the versions of the datasets used. Values in bold represent the best results reported.
“-” represent the corresponding problem is not tested or a feasible solution cannot be
obtained.

data Carter Caramia Di Gaspero Di Paquete Burke & Casey & Merlot
set et al. et al. & Schaerf Gaspero & Stutzle Newall Thompson et al.
version (1996) (2001) (2001) (2002) (2002) (2003) (2003) (2003)
I/II [51] I [45] I [71] I [70] I [113] I [36] I [52] II [104] I

car91 7.1 6.6 6.2 5.7 - 4.65 5.4 5.1
car92 6.2 6.0 5.2 - - 4.1 4.4 4.3
ear83 36.4 29.3 45.7 39.4 38.9 37.05 34.8 35.1
hec92 10.8 9.2 12.4 10.9 11.2 11.54 10.8 10.6
kfu93 14.0 13.8 18.0 - 16.5 13.9 14.1 13.5
lse91 10.5 9.6 15.5 12.6 13.2 10.82 14.7 10.5
rye92 7.3 6.8 - - - - - -
sta83 161.5 158.2 160.8 157.4 168.3 168.73 134.9 157.3
tre92 9.6 9.4 10.0 - 9.3 8.35 8.7 8.4
uta92 3.5 3.5 4.2 4.1 - 3.2 - 3.5
ute92 25.8 24.4 27.8 - 29.0 25.83 25.4 25.1
yor83 41.7 36.2 41.0 39.7 38.9 37.28 37.5 37.4

Table 10. (cont.) Results in the literature on the variants of the Toronto Dataset
b. *The value presented here is different from that in [149], as a different objective
function was used in [149].

data Burke & Burke Asmuni Cote Kendall Yang & Abdullah Burke Burke
set Newall et al. el al et al & Hissan Petrovic et al et al et al
version (2004) (2004) (2005) (2005) (2005) (2005) (2006) (2006) (2006)
I/II [37] I [16] I [8] I [61] I [90] I [149] I [3] I [34] I [22] I

car91 5.0 4.8 5.29 5.4 5.37 4.5 5.2 5.36 4.6
car92 4.3 4.2 4.56 4.2 4.67 3.93 4.4 4.53 4.0
ear83 36.2 35.4 37.02 34.2 40.18 33.7 34.9 37.92 32.8
hec92 11.6 10.8 11.78 10.4 11.86 10.83 10.3 12.25 10.0
kfu93 15.0 13.7 15.81 14.3 15.84 13.82 13.5 15.2 13.0
lse91 11.0 10.4 12.09 11.3 - 10.35 10.2 11.33 10.0
rye92 - 8.9 10.35 8.8 - 8.53 8.7 - -
sta83 161.9 159.1 160.42 157.0 157.38 158.35* 159.2 158.19 159.9
tre92 8.4 8.3 8.67 8.6 8.39 7.92 8.4 8.92 7.9
uta92 3.4 3.4 3.57 3.5 - 3.14 3.6 3.88 3.2
ute92 27.4 25.7 27.78 25.3 27.6 25.39 26.0 28.01 24.8
yor83 40.8 36.7 40.66 36.4 - 36.35 36.2 41.37 37.28
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Table 11. Results in the literature on the Toronto Dataset I, variants a (left column)
and e (right column).

data Carter et al. Caramia et al. Merlot et al. Terashima-Marin et al Ross et al
set [51] (1996) [45] (2001) [104] (2003) [138] (1999) [128] (2004)

car91 28 28 30 130 283
car92 28 28 31 285 542
ear83 22 22 24 723 958
hec92 17 17 18 154 224
kfu93 19 19 21 223 226
lse91 17 17 18 221 263
rye92 21 21 22 671 832
pur93 35 36 - - -
sta83 13 13 13 821 1058
tre92 20 20 21 586 604
uta92 32 30 32 594 855
ute92 10 10 11 902 967
yor83 19 19 23 708 758

Table 12. Results in the literature on the Toronto Dataset I, variants c (upper part)
and d (lower part).

dataset car92 car91 kfu93 tre92 uta92 pur93

Burke et al (1996) [38] 81 331 974 3 772 -
Caramia et al (2001) [45] 74 268 912 2 680 -

Di Gaspero&Schearf (2001) [71] 88 424 512 4 554 -
Merlot et al (2003) [104] 31 158 247 0 334 -
Abdullah et al (2006) [3] 37 278 548 0 300 -
Abdullah et al (2006) [4] 47 525 206 4 310 -

Burke et al (1998) [40] 2218 - 3256 - 2440 -
Burke&Newall (1999) [35] 1665 - 1388 - - 63824

Di Gaspero&Schearf (2001) [71] 3048 - 1733 - - 123935
Merlot et al (2003) [104] 1744 - 1082 - - -

Burke&Newall (2004) [37] 1775 - 1422 - - 97237
Burke et al (2004) [16] 1506 - 1321 - - -
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Table 13 presents the results from different approaches applied on the Not-
tingham datasets a and b (see Table 7) and Melbourne datasets I and II (see
Table 7) in the literature.

Table 13. Results on the Nottingham Dataset a and b and Melbourne Dataset I and
II. Values in bold represent the best results reported. “-” represent the corresponding
problem is not tested or a feasible solution cannot be obtained.

Burke et al Di Gaspero&Schearf Caramia et al Merlot et al Abdullah et al
Nottingham [38] (1996) [71] (2001) [45] (2001) [104] (2003) [4] (2006)

a 53 11 44 2 18
(26 slots)

a 269 123 - 88 -
(23 slots)

Burke& Di Gaspero Merlot et al Burke& Burke et al
Newall &Schearf [104] (2003) Newall [16] (2004)

[35] (1999) [71] (2001) [37] (2004)

b 519 751 401 545 384

Merlot et al
Melbounre [104] (2003)

I 1072
II 1115

Table 10-13 also illustrate which of the methods are most effective in terms of
solution quality. The very best results are presented in bold. We have not listed
computational times for these reasons. Firstly, many of these papers do not
report the relevant times. Secondly, comparisons across very different platforms
are impossible. Thirdly, examination timetabling is a problem which is almost
always tackled weeks or months before the timetable will be used. As such, it is
definitely not a time critical problem and there are many real world scenarios
where it would be perfectly reasonable to leave an algorithm running overnight
or even over a weekend.

4 Conclusions and Future Directions

Timetabling research started with simple sequential techniques in the 1960s.
Constraint based techniques appeared later and still play a significant role in
timetabling today. Recent research in exam timetabling is dominated by meta-
heuristics and their integrations/hybridisations with a variety of techniques, in-
cluding many of the early techniques. Local search based techniques, multi-
criteria techniques and approaches which aim to be more general than the state
of the art have also presented interesting outcomes.

Recent innovations have utilised different mechanisms in exam timetabling
and they cover a variety of new techniques including Variable Neighbourhood
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Search, Iterative Local Search, GRASP, and hyper-heuristics with the aim of
developing more powerful, efficient, effective and more general approaches.

In the following section we will draw upon the above discussion to highlight
a number of conclusions and to present some ideas for future research which are
generated by these conclusions. It is worth noting that Burke et al [19] outline
some future research directions in nurse rostering. There is of course, some syn-
ergy with issues discussed in [19] and these are alluded to here.

Meta-heuristics have attracted the most attention in exam timetabling
research.

In addition to a comprehensive treatment of Tabu Search, Simulated An-
nealing, Genetic Algorithms and various hybrids, some new exam timetabling
techniques have been presented. For example, GRASP and Iterated Local Search
build on the similar idea of exploring wider areas of the search space by using
a multi-start greedy search technique to reduce the risk of being stuck in local
optima. Variable Neighbourhood Search escapes from local optima by switch-
ing between the search spaces defined by different neighbourhood structures.
Large neighbourhood search fulfils this by extending the flexibility of moves
within the search space. In summary, these techniques extend the idea of help-
ing the search to escape from local optima in a variety of ways and have obtained
promising progress on a wide range of exam timetabling problems. The devel-
opment of these new techniques has opened up a wide variety of new research
directions such as exploring alternative neighborhood structures, new multi-start
techniques, hybridisation issues, alternative operators and many others. One of
the key research goals is to provide an appropriate balance between exploration
and exploitation in search algorithms.

Extensive study is also required in how to determine appropriate parameter
settings for meta-heuristic methods. The determination of suitable initialisa-
tion methods and in-depth analysis of the effects of initialisation on a range
of meta-heuristics is another important exam timetabling research topic. Theo-
retical issues (such as phase transition) and multi-criteria techniques represent
other important directions in meta-heuristic research. Evolutionary methods and
other population based techniques represent a significant proportion of the meta-
heuristic literature on exam timetabling. There are many research directions gen-
erated by considering the hybridisation of meta-heuristic methods particularly
between population based methods and other approaches. A study of coding
issues represents a new and promising direction in both evolutionary algorithms
and hyper-heuristic research.

More General and adaptive techniques have been also studied.
Hyper-heuristics are concerned with searching for appropriate heuristics rather

than concentrating on the problem specific details of actual solutions, which have
been the focus of traditional search algorithms. This opens up a new direction of
research and represents much potential in both practical applications and theo-
retical study. Adaptive techniques have also recently emerged where information
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collected during the problem solving is used to guide the search. Some work has
been carried out on knowledge based techniques where the experience from previ-
ous problem solving drives the search. Further investigation of knowledge based
techniques has the promise to underpin the development of fundamentally more
general approaches. The goal is to deal automatically with different problems
in a dynamic way so that extra effort is not needed to fine-tune the approach.
An analysis of heuristics/techniques concerning the nature of the search space
could be beneficial. It is generally accepted that little is known about the na-
ture of search spaces, especially for complex real-world problems such as exam
timetabling.

Hybridisations of different techniques have been investigated in exam
timetabling.

Although different authors have favored different approaches, it has been
observed that hybrid approaches are usually superior to pure algorithms. For
example, all of the recent work on constraint based techniques represent hybridi-
sation with other techniques (see Section 2.2). However, in most of the cases,
methodologies are hybridised in a sequential way rather than being efficiently
integrated. More work needs to be done to not just simply combine but rather
more meaningfully integrate different methodologies efficiently. For example, in
memetic algorithms, local search is used co-operatively after each generation. In
a hyper-heuristic, one approach taken is that, low level heuristics are searched
and combined adaptively during the problem solving. Further in-depth analysis
and investigation can underpin the design and development of more powerful
techniques.

Benchmark exam timetabling problems have been formed and thor-
oughly tested by a number of approaches.

Recent state-of-the-art approaches in exam timetabling research have car-
ried out comparisons on the benchmark problems (see Section 3) that have
appeared over the last ten years. This has led to fundamental developments
in exam timetabling research. However, these problems still represent simpli-
fied versions of the problem. In the wider context of scheduling research, there
has been much recent debate about the “gap between theory and practice”.
The same is true for exam timetabling research. A major research direction is
represented by exploring the wide range of research issues that are opened up
by considering the high levels of complexity that are generated by real world
problems [100]. In addition, there still is no widely accepted universal data for-
mat and standard timetabling languages. The establishment of quality mea-
sures by standard techniques on both solution quality (objective functions) and
computational time for exam timetabling problems also requires much work
and is crucial in conjunction with the formation of benchmarks. The require-
ments for the development of automatic tools to support timetabling staff to
save significant development time still exists. To encourage such development,
we are building up an archive where benchmark exam timetabling problems are
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collected, together with a categorised updated timetabling bibliography (after
1995). We welcome contributions to this exam timetabling archive. It is held at
http://www.cs.nott.ac.uk/∼rxq/bibliography.htm.

In summary, it is possible to draw a number of conclusions from an in-depth
survey of the examination timetabling literature in the last ten years. Firstly,
there has been a significant number of research successes in that time. Secondly,
the current state of the art provides a strong platform from a range of impor-
tant research directions. Thirdly, future research requires a particular emphasis
on the complexity of real world issues and this requires the establishment of more
benchmarks that are drawn from real world problems. Fourthly, raising the level
of generality of decision support systems (including for exam timetabling) rep-
resents an emerging theme. Finally, it is worth noting that successful papers
in exam timetabling have been authored by researchers from a range of disci-
plinary backgrounds and particularly at the interface of Operational Research
and Artificial Intelligence. Such interdisciplinary collaboration is crucial to sci-
entific progress in the area. It is clear from this analysis of the literature that
the future of exam timetabling research is inter-disciplinary.
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Appendix B. Summarising Tables Catergorised by
Techniques in Exam Timetabling

In this appendix, the research methods in the exam timetabling literature are
categorised in a series of tables by the approaches and techniques they employed.
The work from the same authors was grouped in the table to represent the con-
tinuous development of a line of investigation. The work in each table (grouped
by the same authors) is ordered by the year of publication to represent the de-
velopment related techniques over the years. In the tables, the term “practical”
indicates that the corresponding work was tested/implemented on real world
problems. “-” indicates that the corresponding properties were not presented in
the paper. “Toronto”, “Nottingham” and “Melbourne” refer to the benchmark
problems described in Section 3.
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Table 14. Graph Heuristics in the Exam Timetabling

Reference Techniques Problems

Carter et al largest cliques as the initialisation for graph heuristics Toronto,
[51] 1996 with backtracking random

Burke et al biased and tournament selection that introduce non- Toronto
[40] 1998 determinism to graph heuristics

Carter& [48] almost cliques that are sufficiently dense as the Toronto
Johnson 2001 initialisation for graph heuristics

Burke& adaptive heuristic modifier based on Largest Degree, Toronto,
Newall [37] Color Degree and Saturation Degree that dynamically Nottingham
2004 order the exams

Table 15. Constraint Based Techniques

Reference Techniques Problem Notes

David iterative approach, repairing strategies on practical
[62] 1998 partial solutions generated by constraint

satisfaction model

Reis&Oliera constraint satisfaction model, set variables random, ECLiPSe
[120] 1999 practical package

Merlot et al constraint logic programming as initialisation Toronto, OPL
[104] 2003 for Simulated Annealing and hill climbing, Nottingham language

labeling: by the size of domain Melbourne

Duong& constraint programming with Simulated practical
Lam [64] Annealing, backtracking & forward checking,
2004 labeling: by the size of domain, number of

students, etc

Table 16. Tabu Search

Reference Moving Strategies Tabu Problem Notes
List

Di Gaspero exhaust and biased adaptive Toronto, greedy initialisation
&Schearf selection on exams causing Nottingham dynamic cost function,
[71] 2001 costs employing the
[70] 2002 token ring search with 3 adaptive Toronto EASYLOCAL++

neighbourhood structures tool

White&Xie moves on single exams long and practical, 4-stage Tabu Search,
[144, 145] short term Toronto largest enrollment
2001&2004 memory initialisation

Paquete& moves on single exams adaptive Toronto ordered priorities for
Stutzle causing costs constraints
[113] 2002
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Table 17. Simulated Annealing

Reference Moving Initialisation Problem Notes
Strategies

Thompson& Kempe random practical and derived two-phase
Dowsland chain problems approach
[140] 1998

Bullnheimer slot&exam - practical adapted model
[14] 1998 moves of QAP

Merlot et al Kempe constraint Toronto, Melbourne, geometric cooling
[104] 2003 chain programming Nottingham schedule

Duong&Lam Kempe constraint practical components set
[64] 2004 chain programming experimentally

Burke et al moves on a number of runs Toronto, Nottingham time-predefined
[16] 2004 single of Saturation Great Deluge

exams Degree

Table 18. Local Search Based Techniques (beside Tabu Search and Simulated Anneal-
ing)

Reference Techniques Problem

Caramia et al iterative process, the number of timeslots was Toronto,
[45] 2001 gradually increased after greedy improvement Nottingham

Ahmadi et al search on permutations of heuristics and their weights extended
[5] 2003 by Variable Neighbourhood Search Nottingham

Casey& GRASP: Saturation Degree as initialisation, Toronto
Thompson backtracking, improvement by modified Simulated
[52] 2003 Annealing with Kempe chain neighbourhood

Abdullah et al Large neighbourhood search with cyclic exchanges Toronto
[3] 2004 of exams among timeslots

Qu&Burke Variable Neighbourhood Search as the high level Toronto
[118] 2005 search upon graph heuristics
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Table 19. Evolutionary Algorithms

Reference Operators Problem Notes

Ross et al standard special graph phase transition, compared
[125] 1996 coloring problems with stochastic hill climbing
[126] 1998 standard special graph issues of direct coding in

coloring problems Genetic Algorithms

Terashima- clique-based special classes of issues of direct coding in
Marin et al crossover graph coloring Genetic Algorithms
[136] 1999 problems
[137] 1999 standard two- as above hardness theory
[138] 1999 point crossover Toronto indirect coding of heuristics

rather than actual solutions

Erben [77] specialised special graph specialised fitness function
2001 operators coloring problems

Sheibani standard derived problems special mathematical model to
[134] 2002 estimate costs

Wong et al mutation with practical modelled as constraint
[146] 2002 heuristic repairing satisfaction problem

strategies
Cote et al local search Toronto, Melbourne, bio-objective constraint
[61] 2005 operators Nottingham satisfaction problems

Burke et al light and heavy Toronto, Memetic Algorithm with hill
[38] 1996 mutations Nottingham climbing, graph heuristics as

the initialisation
[39] 1998 as above Toronto initial populations with different

diversities in Memetic Algorithm
Burke& as above Toronto, multi-stage Evolutionary
Newall [35] Nottingham Algorithm initialised by graph
1999 heuristics with backtracking

Table 20. Ant Algorithms

Reference Initialisation Problems Notes

Naji Azimi heuristic method derived local improvement, compared with
[109] 2004 Toronto Simulated Annealing, Tabu Search and

Genetic Algorithms
[110] 2005 heuristic method as above hybridisations with Tabu Search

Dowsland& recursive Largest Toronto modified fitness function based on [60],
Thompson Degree and trail calculation, parameter settings
[74] 2005 Saturation Degree

Table 21. Multi-Criteria Techniques

Reference Techniques Problems Notes

Burke et al hill climbing and heavy mutation on Nottingham deal with 9 criteria
[15] 2001 initial solutions by Saturation Degree

Petrovic search by Great Deluge towards the Nottingham random initial
&Bykov ideal point guided by the predefined Toronto solutions, dynamic
[116] 2003 trajectory in the criteria space weights
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Table 22. Hyper-heuristics

High level Low level Problem Notes
heuristic heuristic

Terashima Evolutionary solution Toronto study of in-direct codings
-Marin Algorithms construction
[138] 1999 strategies

Ahmadi Variable constructive extended perturbations of low level
et al [5] Neighbourhood heuristics Nottingham heuristics and their
2003 Search &weights weights in heuristic space

Petrovic Case based graph Toronto reuse graph heuristics as
&Yang [149] reasoning heuristics initialisation methods
2005

Asmuni et al fuzzy techniques 3 graph Toronto different fuzzy functions
[8] 2004 heuristics

Kendall& Tabu Search constructive, practical hybridise Tabu Search
Hussin moving with hill climbing and
[90] 2004 strategies Great Deluge

Ross et al steady state exams and Toronto, simplified problem-state
[138] 2004 Genetic timeslots course descriptions mapped to

Algorithm picking timetabling constructive heuristics,
heuristics problems fitness functions

Burke et al Case based graph Toronto, heuristics mapped and
[42] 2005 reasoning heuristics course reused to problem solving

timetabling situations
[20] 2005 Case based as above Toronto hybridise graph heuristics

reasoning by different methodologies

Burke et al Tabu Search graph Toronto different number of low
[34] 2006 heuristics level graph heursitics,

multi-stage approach
Qu&Burke Iterated Local as above Toronto different neighbourhood
[118] Search, Variable and high level heuristics
2005 Neighbourhood in the graph based hyper-

Search, etc heuristic

Table 23. Decomposition Approaches

Reference Techniques Problem Notes

Burke&Newall sequential methods Toronto sub-problems solved by Memetic
[35] 1999 to partition the Nottingham Algorithms

problems

Lin [98] 2002 multi-agent Toronto aggregate schedules from agents and
algorithm random a broker
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Table 24. Timetabling Systems

Reference Techniques Problem Notes

Hansen& 4-phase process with different Danish high centralised planning on
Vidal [84] objectives schools oral and written exams,
[85] 1995 GIA-system

Colijn& multi-stage process for practical matrices used to record
Layfield [55] different objectives the violations
[56] 1995 interactive interface for practical

unforseen circumstances

Lim et al constructive heuristic with National exam and course
[97] 2000 3 measures, arc consistency Uni of timetabling, 3-tier

algorithm Singapore client/server application,
UTTS system

Ho et al Tabu Search with Push as above maximise exam paper
[88] 2002 Forward Insertion heuristic spreading

Dimopoulou Integer Programming, Athens Uni initial exam timetables
&Miliotis grouped courses assigned of Economic based on course timetables
[69] 2001 to grouped timeslots & Business and improved by heuristics

Table 25. Timetabling Languages and Tools

Reference Languages/Tools Notes

Burke et al similar to the Z standard data format for easy exchange of
[30] 1997 specification results and comparisons in timetabling

language research

Tsang et al EaCL easy specification of constraint satisfaction
[141] 1999 problems to support building Constraint

Satisfaction systems

Reis&Oliera UniLang using a timetabling problem specification in the
[121] 2000 list of synonyms ECLiPse package

Schearf&Di EASYLOCAL++ object-oriented software tool to support the
Gaspero [132] development of local search algorithms
2001

De Causmaecker Semantic Web, machine accessible way of easy identification
et al [63] 2002 XML for timetabling problems


