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This paper presents alternative methods for producing fuzzy models for the fuzzy multiple heuristic
ordering technique that we previously introduced for the construction of examination timetables.
The effects of altering the rules within the fuzzy inference system were investigated. Four alternative
rule ‘tuning’ approaches are described in detail and their results are presented and compared.
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1 Introduction

In the process of examination timetable construction, the order in which exams are assigned to
time slots has been shown to have a major effect on the eventual solution [6]. An assessment of
how difficult it is to place a given exam into a timetable (in effect, some measure of how hard
it is to satisfy the constraints relevant to the particular exam) is often used to guide the order
of placement. The usual strategy is to place the most difficult exams first, on the basis that it is
better to leave the easier exams until later in the process when there are fewer time slots remaining.
There are many different criteria that may be used when assessing this difficulty.

A common approach has been to employ graph based heuristics (a heuristic is an approximate
rule or a ‘rule-of-thumb’ [5]) to provide a quantitative indication of difficulty. This measure is then
used to determine the order in which the exams are assigned into the timetable and, hence, are
referred to as ‘heuristic orderings’. Examples of such heuristics are the number of other exams
in conflict with the given exam, the number of students enrolled on each exam, etc. For detailed
descriptions of these heuristic orderings, please refer to Asmuni et al. [3]. In our previous papers
[1, 3], we explored how fuzzy techniques [7] could be employed to combine multiple heuristics
within the construction of examination timetables. Particularly, we proposed the use of fuzzy
inference systems to combine multiple heuristics simultaneously in order to provide a measure of
the difficulty of placing each exam. This measure was then used to order (rank) the exams for
assignment. Various combinations of heuristics were investigated in the construction process. In
order to investigate the wider applicability of this novel fuzzy approach, the techniques were also
applied to the domain of course timetabling [2]. However, to date, we have only been concerned with
tuning the membership functions of the fuzzy variables, utilising a set of pre-defined (and fixed)
fuzzy rules. This paper presents a series of experiments which were undertaken to explore the
influences of tuning the fuzzy rules in fuzzy inference systems for which the membership functions
had been fixed.



2 Method

The following heuristic orderings have been widely used to determine the order of placement of
examinations in sequential construction algorithms:

Largest Degree (LD): Exams are ranked in descending order by the number of exams in conflict
— i.e. priority is given to exams with the greatest number of exams in conflict.

Largest Enrollment (LE): Exams are ranked in descending order by the number of students
enrolled in each of the exam.

Least Saturation Degree (SD): Exams are ranked in increasing order by the number of valid
time slots remaining in the timetable for each exam.

Largest Coloured Degree (LCD): This heuristic is based on LD. For this heuristic, only exams
which have been already assigned to the schedule are considered to cause conflict.

Weighted Largest Degree (WLD): This heuristic is also based on LD. Besides the number of
exams, the total number of students involved in the conflict is also taken into account.

The general framework for constructing timetables using fuzzy inference systems utilising various
combinations of these three heuristics has previously been described in Asmuni et al. [3]. In this
study, the effect of two further fuzzy model determination techniques were investigated. Firstly, a
simple enumerative search was implemented for tuning the fuzzy rules for the fuzzy system utilising
a combination of the first three heuristics above (termed the Fuzzy LD+SD+LE Model) for which
the membership functions had been previously tuned (see Section 2.1). Secondly, a random search
was implemented to create fuzzy systems utilising combinations of all five heuristics above, in which
the fuzzy model parameters (specifying both membership functions and rules) were determined by
random selection (see Section 2.2). This allowed for a wider exploration of the total search space
of alternative fuzzy models (which is vast).

2.1 Tuning Fuzzy Rules with Fixed Membership Functions

The objective of these experiments was to investigate whether tuning the fuzzy rules would offer any
improvement in performance over the previously tuned and then fixed set of fuzzy rules. For this
purpose, the best membership functions identified in experiments reported in [1] were implemented
for the respective data sets. As we used the fuzzy multiple ordering that considered three heuristics
simultaneously (i.e. Fuzzy LD+SD+LE Model), the rules shown in Fig. 6 of [1] were used as the
benchmark fuzzy rule-set.

The original fuzzy rule-set is detailed in Table 1, where the number in the cell represents the
rule number. As an example, rule 22 is read as:

IF LE is small AND SD is medium AND LD is high THEN examweight is small

In the tuning process, the only modification allowed was in the consequence part of each rule.

Table 1: Fuzzy Rule set for Fuzzy LD+LE+SD Model
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Six possible values for the consequence part were defined: not_in_use, very small, small, medium,
high and wvery high. If the not_in_use value was assigned to the consequence part of a rule, that
means the rule was not applicable. For each rule, it’s consequence part was changed by assigning
one of the six possible values in the sequence of not_in_use, very small, small, medium, high and
very high, iteratively. Considering 27 fuzzy rules and six possible values that could be assigned to
the consequence part of each rule, there were 162 possible sets of fuzzy rules. Although the initial
number of rules was 27, the number of rules might be reduced if, by doing so, the solution quality
improved. Each rule-set was tested over three runs of the sequential construction algorithm. Hence,
at the end of the experiment, for each data set, three timetable solutions were obtained for each of
the 162 rule-sets. The fuzzy rules set with the lowest penalty cost were selected as the ‘best’ set of
rules for that specific data set. Two experiments were conducted:

o Tuned Fuzzy Rules 1— The set of tuned fuzzy rules that gave the best current solution quality
was kept and used as the initial set of rules for the next step of the tuning process. A simple
deepest descent enumerative search algorithm was employed in this experiment.

o Tuned Fuzzy Rules 2— Each of the rules was changed in isolation, no changes made in the
earlier iterations were taken into account. Hence, after each change to the consequence part
of any rule, the rules were reinstated to the initial configuration as shown in Table 1, before
moving to the next iteration (i.e. setting another value in a consequence part).

2.2 Randomly Generated Fuzzy Models

The aim of this experiment was to examine alternative approaches for determining fuzzy models and
to explore a larger space of possible fuzzy models. Instead of using fuzzy models in which either the
membership functions or the rules were fixed, a stochastic approach was utilised to define the fuzzy
model. In order to make the resultant fuzzy systems more manageable, only combinations of three
heuristics selected from the five specified above (LD, SD, LE, LCD and WLD) were generated
(the rule-sets for fuzzy systems featuring five heuristics would be enormous).

In the implementation, the first step was to randomly select which three heuristic orderings
would be considered simultaneously. The next step was to create a set of fuzzy rules for the
selected heuristic orderings, which were also selected in random fashion. Any rule contain at least
one antecedent, up to a maximum of three antecedents. The last step was to choose centre points
(cp) for membership functions for all of the fuzzy variables. The cp parameter defines the right-hand
point of the small, the centre-point of the medium and the left-hand point of the high membership
functions, as illustrated in Fig. 1. As a fuzzy system with three input and one output variables was
implemented, four ¢p points needed to be randomly chosen.

Integer values were used to encode the heuristic orderings and fuzzy rules, as shown in Table 2.
An example is presented in Figure 2 to show how the random fuzzy model was created. In STEP
1, the three heuristic orderings chosen are identified as LE, SD and WLD. Based on these heuristic

orderings, the randomly generated rules are translated into ‘IF ... THEN ... form. The rules
; small medium high , small medium high
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Figure 1: An illustration of the effect of the ¢p parameter on the membership functions of a variable



Table 2: Integer codes assigned to fuzzy model parameters

Heuristic LD | SD | LE | LCD WLD
Heuristic Code 1 2 3 4 5
Antecedent linguistic variable | not_inuse | small | medium | high
Antecedent Code 0 1 2 3
Consequence not_inuse very | small | medium | high very
linguistic variable small high
Consequence Code 0 1 2 3 4 5

are presented in a two dimensional array. Each row of the array represents one rule. In each row,
the first column corresponds to the antecedent for the first heuristic ordering, the second column
represent the antecedent value for the second heuristic and the third column holds the value for
the third heuristic; the last column corresponds to the consequence part (i.e. examweight). In
the example, three rules are randomly generated and their translated form are given. Notice that
Rule 2 only consists of two antecedents as SD is set to not_in_use (antecedent code = 0). This
rule generation was performed without any concern as to the meaning of the rule — any rule was
accepted even if it contradicted the ‘common sense’ of the relevant heuristic ordering. Next, in
STEP 3, four cp points are randomly picked and a graphical representation of the membership
functions that are generated is given. Again, the first three elements of the array are corresponds
to the membership functions for the three chosen heuristic ordering in the sequence order; while
the last element represents the c¢p point for examweight.

In order to evaluate this stochastic approach to fuzzy model determination, two experiments
were performed as follows:

o Random Model 1: Experiments were performed for 100 iterations for each data set. In each
iteration, a new fuzzy model was created by randomly choosing the heuristic orderings, 27
fuzzy rules and the four cp points for the membership functions. Each fuzzy model was tested
three times within the sequential constructive algorithm.

e Random Model 2: Experiments were conducted for 1000 iterations for nine of the data sets,
while for CAR-F-92, CAR-5-91 and UTA-S-92, the experiments were run for 100 iterations.
For this experiment, the heuristic orderings and cp points were randomly choosen only once
for each data set. Initially, the fuzzy rule-set was empty. In the first iteration, a fuzzy rule
was randomly created and specified to be the first rule. Having created the fuzzy model, the
sequential constructive algorithm was run three times. The best timetable constructed was
set as a ‘benchmark’. For each of the remaining iterations, a fuzzy rule was randomly created
and appended to the list of rules. The sequential constructive algorithm was again run three
times with the new fuzzy model (i.e. only the rules were changed). The rule was kept if
a better solution was obtained with this new fuzzy model, and the new best solution was
recorded as the new benchmark; otherwise, the newly added rule was removed. This process
continued until the number of iteration exceeded the maximum number of iterations allowed
for the particular data set.

In both experiments, non-applicable rules (rule in which the consequence part was not_in_use or
rules in which all the antecedents were not_in_use) were removed. As the fuzzy rules were randomly
selected, in the case of experiment with Random Model 1, it was possible to have a fuzzy model
that contained less than 27 rules.



STEP 1 :

heuristicCode

Actual heuristic : LE, SD and WLD

STEP 2 :

rulesCode &—* 9192133 Rule 1

1101212 Rule 2
3(11(1215 Rule 3

Actual fuzzy rules :
Rule 1 - If LE is medium and SD is medium and WLD is high
then examweight is medium
Rule 2 — If LE is small and WLD is medium
then examweight is small
Rule 3 —If LE is high and SD is small and WLD is medium
then examweight is very high

STEP 3 :
cp®—{0.33]0.62 | 0.78 | 0.4 |

Actual membership functions :

HOsmall medium  high H(small  medium high MX)small  medium high *®\small medium  high
1. 1. 1.0

00 LE 10 o0 SD 1.0 00 WLD 10 00  examweight 1.0

Figure 2: An example of defining a random fuzzy model

3 Implementation

3.1 Problem Description

The experiments were carried out with 12 benchmark data sets made publicly available by Carter
et al. [6]. Table 3 reproduces the problem characteristics. A proximity cost function was used
to measure the timetable quality. The maximum capacity for each time slot was not taken into
account. Only feasible timetables were accepted. The penalty function was taken from Carter et
al. [6]. It is motivated by the goal of spreading out each student’s examination schedule. If two
exams scheduled for a particular student are ¢ time slots apart, the weight is set to w; = 2°7¢
where t € {1,2,3,4,5}. The weight is multiplied by the number of students that sit for both of the
scheduled exams. The average penalty per student is calculated by dividing the total penalty by
total number of students. The following formulation was used (adapted from Burke et al. [4]), in
which the goal is to minimize:
i]\;l Z;‘V:i+1 SijWip; —p;|
T )




Table 3: Examination Timetabling Problem Characteristics

Data Set Number of Number of Number of Conflict

time slots exams students density
CAR-F-92 32 543 18419 0.14
CAR-S-91 35 682 16925 0.13
EAR-F-83 24 190 1125 0.27
HEC-S-92 18 81 2823 0.42
KFU-S-93 20 461 5349 0.06
LSE-F-91 18 381 2726 0.06
RYE-F-92 23 486 11483 0.08
STA-F-83 13 139 611 0.14
TRE-S-92 23 261 4360 0.18
UTA-S-92 35 622 21266 0.13
UTE-S-92 10 184 2750 0.08
YOR-F-83 21 181 941 0.29

where N is the number of exams, s;; is the number of students enrolled in both exam ¢ and j,
p; is the time slot where exam 7 is scheduled, and T is the total number of students; subject to
1< |pj —pil <5.

3.2 Results

Table 4 shows a comparison of the results obtained using fixed and tuned fuzzy rules. The first col-
umn indicates the penalty cost for the timetable solution of each data set that has been constructed
with a set of fixed fuzzy rules (extracted from the ninth column of Table 2 in [1]). In the next
two columns, the qualities of the timetable solutions produced using the sequential constructive
algorithm with Tuned Fuzzy Rules 1 and Tuned Fuzzy Rules 2 approaches are given. In the fifth
and sixth columns, the qualities of the timetable solutions produced by the experiments outlined
in Section 2.2 are given. In Table 4, the best results across all experiments for each data set is
highlighted in bold font. It can be seen that, in all data sets, better solutions were produced by
tuning the fuzzy rules (either by Tuned Fuzzy Rules 1 or Tuned Fuzzy Rules 2), compared to the
approach that only used fixed fuzzy rules (column one), the only exception being KFU-S-93 for
which no improvement was observed. These results show that tuning the fuzzy rules produced
considerably better timetable solutions. Although the results only show small improvements (in
the range of 0.01 to 1.43), this evidence indicates that performing fuzzy rule tuning does give a
considerable performance advantage.

In [1], we demonstrated that combinations of three heuristic ordering generally produced better
solutions compared to combinations of two heuristic orderings. However, in two cases (CAR-F-92
and EAR-F-83), it was observed that two heuristics ordering outperformed three heuristics or-
dering. We argued then that this may have been rectified if the fuzzy rules were to be tuned.
As these fuzzy rules tuning experiments were performed only with the Fuzzy LD+SD+LE Model,
the result obtained in this experiment confirmed that statement in which it can be observed that
the EAR-F-83 data set now has a penalty cost equal to 36.16. This penalty cost value is smaller
than the penalty cost incurred when the Fuzzy SD+LE was used — i.e. 36.99 (see Table 2 in [1]).
Although the result produced by the Fuzzy SD+LE model for the CAR-F-92 (see Table 2 in [1])
still outperformed the result obtained in this experiment, overall the results indicate the potential
of expanding the tuning of the fuzzy model to also incorporate tuning the fuzzy rules.

If we now compare the results obtained for rule tuning (the third and fourth columns) to the
results obtained by random model generation (the fifth and sixth columns) it can be seen that the
best result for eight of the data sets was obtained by fuzzy models that were developed using tuned



Table 4: A comparison of results

Data Set Fixed Fuzzy Rules Tuned Fuzzy Tuned Fuzzy Random Random

(from [1]) Rules 1 Rules 2 Model 1 Model 2
CAR-F-92 4.52 4.51 4.51 4.59 4.32
CAR-5-91 5.24 5.19 5.19 5.58 5.54
EAR-F-83 37.11 36.16 36.64 40.93 37.05
HEC-5-92 11.71 11.61 11.60 12.55 12.31
KFU-S-93 15.34 15.34 15.34 15.74 15.03
LSE-F-91 11.43 11.35 11.35 12.58 12.65
RYE-F-92 10.30 10.02 10.05 10.58 9.75
STA-F-83 159.15 159.09 160.79 159.22 158.64
TRE-S-92 8.64 8.62 8.47 9.24 8.79
UTA-S-92 3.55 3.52 3.52 3.69 4.31
UTE-S-92 27.64 27.64 27.55 29.77 29.10
YOR-F-83 40.68 39.25 39.79 43.88 42.30

membership functions with tuned fuzzy rules. Although experiments which applied Random Model
1 did not produce any best results, the experiments that used Random Model 2 actually produced
four best results. These best results were obtained using the following fuzzy models:

CAR-F-92:
e heuristic orderings: LCD, LE and SD
e c¢p points for membership functions: 0.550, 0.110, 0.296, and 0.132
e number of fuzzy rules: 16

KFU-5-93:
e heuristic orderings: WLD, SD and LE
e ¢p points for membership functions: 0.021, 0.721, 0.351, and 0.095
e number of fuzzy rules: 48

RYE-F-92:
e heuristic orderings: LFE, WLD and LCD

e ¢p points for membership functions: 0.679, 0.358, 0.001, and 0.708
e number of fuzzy rules: 9

STA-F-83:
e heuristic orderings: WLD, SD and LE

e ¢p points for membership functions: 0.309, 0.739, 0.408, and 0.595
e number of fuzzy rules: 17

One possible reason why only four best results were found is the fact that the number of itera-
tions in the experiments (100 for Random Model 1 and 1000 for Random Model 2) was quite small
when compared to the huge search space that needs to be explored in order to find the ‘optimal’
fuzzy model. Taking a different view, one should notice that performing tuning of membership
functions and fuzzy rules in separate stages is better than performing both membership functions
and fuzzy rules tuning at the same stage (as in the Random Model 2 approach). It also worthy of
mention that only 16, 9 and 17 fuzzy rules are required to produced the best solutions obtained
for CAR-F-92, RYE-F-92 and STA-F-83 respectively. This indicates that not all possible rules
are require to be utilised in such a fuzzy system in order to get a good solution. Fewer rules
makes the fuzzy model more understandable for the developer and user. Therefore, a more sophis-
ticated optimisation approach could almost certainly be devised to tackle the tuning process more
systematically.



4 Conclusion

The overall aim of this paper was to investigate the effect of altering the fuzzy rules for fuzzy
multiple heuristic ordering in measuring the difficulty of assigning exams into time slots. Having
implemented two alternative approaches for altering the fuzzy rules (one for tuning the rules once
membership functions have been tuned and fixed and the other for randomly generating alternative
rule-sets), the results obtained demonstrated that better solutions can be generated. Unfortunately
the space of all possible fuzzy models is vast and there remains much scope for the investigation
of more sophisticated methods to efficiently search this vast space in order to find effective fuzzy
models.
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