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Abstract. Efficient constructive heuristics have been designed for most of the 
difficult combinatorial optimisation problems. Performance of these heuristics 
may vary from one instance to another and hence it is beneficial to be able to 
select an instance of the heuristic which is best suited to a given instance of the 
problem. Both of the heuristic search algorithm and hyper-heuristic approaches 
try to provide methodologies for  selecting a heuristic from a set of given heu-
ristics. In this paper we propose a perturbation based algorithm to search an in-
finite space of parameterised heuristics. This algorithm aims to find the best 
heuristic in a set of given heuristics and hence its success or failure are meas-
ured in terms of the quality of the solution generated by the selected heuristic 
compared to the other heuristics in the heuristic space. This approach was ap-
plied to a highly constrained instance of examination timetabling problem. 
Computational  results show the ability of the perturbation based algorithm in 
finding good combinations of heuristics and their parameters with reasonable 
computational effort. 

1   Introduction 

Efficient constructive heuristics have been designed for most of the difficult combina-
torial optimisation problems. Performance of these heuristics may vary from one in-
stance to another and hence it is beneficial to be able to select an instance of the heu-
ristic which is best suited to a given instance of the problem. Both of the hyper-
heuristic approach and the heuristic search algorithms try to provide methodologies 



 2

for  selecting a heuristic from a set of given heuristics. In this paper we propose a 
perturbation based algorithm to search an infinite space of parameterised heuristics. 
This algorithm aims to find the best heuristic in the set of given heuristics and hence 
its success or failure are measured in terms of the quality of the solution generated by 
the selected heuristic compared to the other heuristics in the heuristic space. The un-
derlying application for the heuristic algorithms is the examination timetabling prob-
lem.  
Our approach in searching the space of heuristics by the use of perturbation is based 
on our experience with the human approach to selecting  heuristics. These experiments 
have been conducted using the HuSSH (human selection of scheduling heuristics) 
interface which has been designed in conjunction with the STARK (Semantically 
Transparent Approach to Representing Knowledge)  visual interface for examination 
timetabling (Ahmadi, Barone et al. 2002; Cowling, Ahmadi et al. 2002; McCollum, 
Ahmadi et al. 2002; P.Cheng, R.Barone et al. 2002; Ahmadi and Osman 2003; Cheng, 
Barone et al. 2003).  
This paper is organized in following order: in the next section, a brief overview of the 
examination timetabling problem is presented. Section (3) outlines the design of flexi-
ble constructive heuristics based on weighted decision functions. We introduce a set 
of constructive heuristics for examination timetabling problem in section (4). Our 
perturbation based Heuristic search algorithm and its implementation for examination 
timetabling problem are discussed in Section (5) and computational results are pre-
sented in section (6). Conclusions and directions for further research are presented  in 
section (7). 

2   The Examination timetabling problem 

The Examination timetabling problem is a difficult combinatorial optimisation prob-
lem that needs to be solved several times a year in schools and universities. The prob-
lem demands that a given number of exams need to be scheduled to a limited number 
of periods and rooms  in such a way that there are no clashes  (i.e. no student will have 
more than one exam at a time) and resource constraints (available space and time) are 
not violated. Institutions differ in the types of constraints they use and their level of 
severity. Constraints which really must not be violated are called hard constraints. 
This includes clashes, examination ordering constraints, resource constraints, restric-
tion of exams to the specific time windows or venues and preference constraints. Soft 
constraints are mostly related to preferences and their violations can be tolerated to 
some extent but need to be minimized. The objective of examination timetabling prob-
lem is to find a schedule which satisfies all the hard constraints (or minimizes their 
violations)  and minimises the total  violations of the soft constraints. 
This problem has been tackled with different heuristic, optimisation and metaheuristic 
algorithms. The underlying model of the problem considered  by most of the algo-
rithms is the graph coloring problem.  Burke, Bykov et al. (2001) used a multicriteria 
approach to solve the problem in several phases. Thompson and Dowsland (1998) 
used simulated annealing with Kempe chain neighbourhoods to preserve the feasibility 
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of the solutions in terms of first order clashes during the local moves.  Ross, Hart et al. 
(1998) analysed  the behaviour of genetic algorithm on different instances of the prob-
lem. Arani and Lotfi (1989) investigated a three phase process using the quadratic 
assignment problem, the set covering problem and the traveling salesman problem in 
different phases respectively. Further references and a general survey of the problem 
are in (Carter, Laporte et al. 1997).  
In next section we describe a weighted decision function to provide a flexible ap-
proach to accommodate the varieties of the constraints. 

3   Weighted decision functions: an adaptive model for dealing with 
hard and soft constraints in the design of heuristics 

Conflicting objectives and the changing set of constraints in different institutions 
makes the examination timetabling  problem challenging for the design of a generic 
algorithms. To deal with hard constraints efficiently, one may algorithmically prevent 
their violation. In this method hard and soft constraints need to be specified at the 
design time of the algorithm which makes the algorithm inflexible towards changes in 
the sets of hard and soft constraints and  prevents the algorithm from accepting infea-
sible solutions that may be necessary for bypassing the disconnectedness of the solu-
tion space.  

An alternative approach is to use a decision function that is the weighted  sum of 
the violations of all the constraints. This provides the flexibility of switching the soft 
and hard constraints for different instances and institutions. The drawback of this 
approach is that it is highly parametrised. We introduce a perturbation based heuristic 
search algorithm to explore the space of heuristics for suitable heuristics and their 
corresponding weights. Note that the decision function is a greedy selection function 
which could dynamically change its weights, where the objective function will use 
constant weights. For our scheduling algorithm we incorporate violations of all the 
different constraints (hard and soft) in a weighted decision function. The potential cost 
of scheduling an exam e to a period p is defined as  weighted sum of following values: 
1. Clash and consecutive constraint violations: if exam e  has n1,…,nk  students in 

common with exams e1,…,ek, respectively, its potential clash constraint violation 
penalty  value in period p is defined as:  

∑
=

k

i
ink

1

 (1) 

This will give weight to the number of students involved in each clash and not only to 
the number of clashing exams. At the same time, the  above formula  stresses the im-
portance of having smaller number of clashing exams in a period. Note that a large 
number of small clashes may need more effort to resolve the violations later. As an 
example note that above formula assigns  penalty  of 9 to the case of  3 exams in pe-
riod p,  each having clashes of size 1 with exam e  compared to the case of having 
only one exam in this period with total number of students in common of 3 which will 
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be assigned  penalty of 3. The same measure is defined for consecutive exam viola-
tions. 
2. Order constraint violations: if an exam e  is required to be scheduled at the same 

time (coincidental) with exams e1,…,ek  and k’  of these exams are scheduled in pe-
riod p, then the coincidental penalty associated with this period is k-k’, i.e. number 
of coincidental exams of e which are scheduled in a period other than p. This re-
wards assignment of exam e to periods with a higher number of its coincidental ex-
ams in them. For penalty values of followed exams and excluded exam violations 
similar definitions are used. 

3. Resource constraints:  Resources (periods, rooms) with duration/capacity shorter 
than the duration/size of the exam are discouraged by penalizing them according to 
the amount  by which they differ. 

4. Exams Restrictions to specific time windows or venues: For exams with pre-
specified  periods, a penalty is associated their assignment to  other periods. For 
pre-specified rooms a similar method is used. 
 
In next section, we propose several constructive heuristics for the examination 

timetabling problem based on a weighted decision function, a ranking method of  
heuristic selection and several basic heuristics derived from the graph theoretical 
models.  

4   Constructive heuristics for examination timetabling 

Sequential heuristics and clustering heuristics are the two major categories of con-
structive heuristics for examination timetabling. Sequential constructive heuristics for 
examination timetabling problem can be divided into three main heuristic components: 
exam selection heuristics, period selection heuristics (scheduling heuristics) and room 
selection heuristics. We propose the following heuristics for exam, period and room 
selection:  

4.1   Exam selection heuristics 

1. Intersections heuristics: The unscheduled exams with highest number of students 
in common with other scheduled and unscheduled exams will be scheduled next. 
This is similar to largest degree first heuristic for the graph colouring problem with 
the following difference: for an exam e, we define its  intersection value as the 
number of intersecting exams multiplied by the total number of students in common 
with other exams. For example, if exam e has intersections of 2, 4 and 1 students 
with three other exams (say n=3 and s=2+4+1=7), the intersection value of e  is 
defined as:  3×7=21.  Note that this will give higher priority to exams with larger  
number of intersecting exams (see 3.1). To provide an ordering for all the exams in 
ascending order, the actual value used in our procedure is: 
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2. Restrictions heuristics: Some of exams are restricted to be held at pre-specified 
periods or venues. Dealing with such exams in later stages of scheduling process 
may create problems due to usage of their corresponding rooms and periods for 
other exams. In this heuristic we prioritise restricted exams to be scheduled first. 
The restrictions number is calculated as:  p×r where p is the number of available 
periods and r is the number of available rooms. 

3. Available Periods: This heuristic dynamically finds the number of available peri-
ods where an exam can be scheduled without penalty for each exam e each time an 
examination is added. Availability of a period is checked against clashes, room and 
period pre-assignments, duration of exam and size constraints. This is a generalisa-
tion of least saturation degree for graph colouring problem where we consider con-
straints other than clashes for checking the availability of each period. At each it-
eration, the exam with the minimum number of available periods is selected to be 
scheduled. 

4. Available resources:  In the previous heuristic, the number of available rooms in 
each period is not considered. Note that, for two exams with an equal number of 
available periods, the exam with a smaller number of available rooms should be 
prioritised. In this algorithm if for an exam e, m periods and n rooms are available, 
the priority value of e is defined as: 

mt
n

n +  
(3) 

 where t is the total number of periods available.  This adds the total number of avail-
able rooms to the average number of available rooms per period multiplied by the 

number of periods available. The 
n
t factor is a normalisation factor for the number of 

periods for changing it to the scale of number of rooms. 
5. Combined heuristic using heuristic ranking: Some of the above heuristics may 

use measures which have limited range of effectiveness.  For example, the 
restriction heuristic will only differentiate between exams with rooms and periods 
restrictions and the other exams will be considered  to have the same priority. Us-
ing other heuristics to break the ties when a heuristic fails to differentiate between 
two exams is a reasonable option. The combination heuristic uses an ordering of 
different measures of importance for an exam such as size of its order constraints, 
number of clashes, number of available rooms and periods. For dealing with more 
complex constraints such as coincidental exams (which needs a group of exams to 
be aggregated as one exam) an extra priority value is added to the other related ex-
ams after a member of their group is scheduled. This reduces the possibility of 
other exams occupying the same period before members of the coincidental exams 
group. The scheduling heuristic will use the potential cost value (section 3.2) to lo-
cate suitable periods for these exams when considering its related exams.  

6. Random selection of exams: A random heuristic is included in the pool of exam 
selection heuristics to examine the ability of our algorithm in learning to escape 
from heuristics of low quality and to provide a mechanism for diversification. 
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3.2 Period selection heuristics 

After selecting an exam for scheduling, a period needs to be selected. The main ap-
proach for this process is to select a period with minimal violations of constraints for 
the exam. This mimics the human schedulers criteria in selecting periods for schedul-
ing based on significance of their violations of constraints. (Burke and Newall 1999) 
use penalty values including soft intersection violation values and another measure 
which will encourage scheduling exams with intersecting exams in common to the 
same period. Our approach uses a more general penalty function which contains viola-
tions of all the constraints. This will find a period in which the least combination of 
clashes, consecutive exams, order constraint violations, size violations, duration ex-
cess and pre-specified rooms and periods violations occur. 
1. Penalty based scheduling heuristic: in this algorithm for a given  exam e, the 

potential penalty of assigning e to that period is calculated and the period with the 
minimum penalty is selected. Note that, the penalty function is a weighted sum of 
violations of all the constraints and hence this selection will minimise the violations 
of constraints. This single criterion in dealing with all the different constraints is the 
central idea when designing generic and flexible constructive heuristics to deal with 
different constraints and their different levels of importance. 

2. Random selection of period: similar to 4.1.6., but for periods. 

3.3 Room selection heuristics 

After an exam is selected, different periods are examined for the availability of 
rooms in the order induced by the period heuristic.  For each period, a list of permitted 
rooms for the exam (room restriction constraint) are ordered based on following heu-
ristics:  

1. Best fit heuristic: this heuristic will find the smallest room with enough remaining 
capacity for the exam; 

2. Largest-first heuristics: in this heuristic priority is given to fill the largest spaces 
available (sports halls, large lecture theatres). This policy will be reasonable in the 
context of optimising usage of large spaces to minimse number of venues and 
invigilators engaged; 

3. Random selection of rooms: similar to 4.1.6., but for rooms. 
 

If there are no rooms available in a period without penalty, the periods are 
examined in increasing order of penalty value. If no single room can accommodate the 
exam, the exam is split into more than one room in the period with lowest penalty. It 
will be desireable to assign some penalty for splitting of an exam to be able to decide 
on the right balance between the penalty of period and penalty of splitting. To 
minimise the number of splits, the splits are delayed until all the available periods are 
examined. This may degrade the quality of the solution in terms of the objective 
function, as no cost is associated with splitting an exam. This approach manages to 
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accommodate all the exams with room restrictions in our real problem instance and 
hence no post-optimisation of space allocation needs to be performed. 
 
Above heuristics  define a set:  

of heuristics for examination timetabling, where 321 ,, hhh are heuristics for exam, 

period and room selections, respectively. If h1=6, then using permutation  O a combi-
nation of different exam selection heuristics are used. If h2=1, then period selection 

heuristic is based on weights 91,..., ww , which are used to define the level of severity 

of different constraint violations  in the decision function of the period selection 
(scheduling) heuristic. For this class of heuristics a parameter α will control the 
amount of perturbation to be increased if no improvements were found at the early 
stages of the search. Excluding the  variations of the heuristics based on weights or 
α , the number of different combinations of heuristics is 90750. This approach of 
using combinations and weighted decision functions introduces a very large space of 
heuristics for examination timetabling. Hence, it is necessary to develop a search algo-
rithm for finding the best heuristic for a given instance, because the performance of 
these heuristics may vary from one instance to another. 
 In the next section we propose two neighbourhood structures to be searched by effi-
cient algorithms similar to the variable neighbourhood search approach. This method 
is inspired by  human method’s of selection and manipulation of heuristics in our 
experiments with the HuSSH and the STARK systems.  

5   Heuristic Search Algorithm 

In designing a local search algorithm, instead of using the concept of moves to define 
neighbourhoods, one may use problem specific heuristics to define neighbourhood of 
constructive solutions. Storer, Wu et al. (1992)) used this method to define heuristic 
space neighbourhoods for the Job Shop Scheduling problem by utilizing a paramet-
rised family of heuristics defined as the weighted linear combination of dispatching 
rules. This method of encoding the solutions by means of heuristics is also called 
“indirect encoding” of the solutions (Terashima-Marin, Ross et al. 1999) and provides 
an easy way for creating different neighbourhood structures by means of using con-
structive heuristics. This method works at a higher level than normal neighbourhood 
structures by manipulating the methods of generating solutions (heuristics), rather than 
working directly on the solutions.  
For an instance p of the examination timetabling problem, a heuristic algorithm h can 
be considered as a mapping of  p into its associated solution s in the solution space S, 
i.e. s=h(p). Through solving p, a set of heuristics H will be mapped into a subset SH of 
S. Using this sets one can define corresponding  neighbourhoods in the heuristic space 
and the solution space.  

{
[ ] }

1 2 3 1 9 1 2 3

j

( , , , , , ..., ) , 1, 2, 3,1 6 ,1 2,1 3,  is a 

permutation of 5 digits out of  9 digits  00012345, w 0,1000 , 1, ...9

i
H h O h h w w h i h h h O

j

= ∈ = ≤ ≤ ≤ ≤ ≤ ≤

∈ =
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Definition: for a given parametric heuristic h, a neighbourhood of h is defined by the 
means of perturbing its parameters with a perturbation algorithm. The neighbourhood  
h induces a neighbourhood for  the solution s=h(p) in the solution space. In other 
words, we define the perturbation based neighbourhood of s as all the solutions s’ 
produced by h’, where h’ is derived from h by a perturbation of  its parameters.  
 
Example: in our heuristic search algorithm, the concept of perturbation is used as 
perturbation of parameters (weights) and also as changing the heuristic components of 
h. For example if: 

(6,501030024,1,1,800,100,300,300,300,200,200,100,500)h =  

then some of the perturbations of this heuristic are: 
• Changing the permutation S: 
(6,150300240,1,1,800,100,300,300,300, 200, 200,100,500)h =  

• Changing type of the heuristic: 
(1, ,1,1,800,100,300,300,300, 200, 200,100,500)h = −  

note that, as 1 6h ≠ , the permutation O does not need to be considered. 

• Changing the weights: 
(6,501030024,1,1,801,98,296,302,301.9,198.75,199,100,499)h =  

 
Different perturbation algorithms generate different neighbourhoods. As, there is a 
clear difference between nature of different dimensions of H, namely heuristic types 
and the weights, we define our perturbation algorithms to perturb either the heuristic 
types (and orders) or the weights. This defines two different types of neighbourhoods 
in subsets of H with smaller dimensions. We use an approach similar to the variable 
neighbourhood search approach to switch between two neighbourhoods during the 
search process. 

The first type of neighbourhood of  a heuristic 
1 2 3 1 9

( , , , , , ..., )h h O h h w w= , 

1( )N h , keeps the heuristic types the same as h and perturbs the weights randomly by 

%α . The value of α is initialised by 1

2

0.1%
l

l
+ , where 1l is the number of itera-

tions from last improvement and 2l is the total number of iterations. This value is reset 

to 0.1% after an improving heuristic is found. 
 

The second type of neighbourhood of the heuristic 
1 2 3 1 9

( , , , , , ..., )h h O h h w w= , 

2 ( )N h ,is defined as follows: 

 }{ 1 2 3 1 92 ( , , , , , ..., )( ) h O h h w wN h h h′ ′ ′ ′ ′ ′= =  
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where , 1,2,3
i

h i′ = ,are selected randomly from the appropriate ranges and 

_ ( )O Next Permutation O′ = . Note that weights of h are the same as weights of 

h ′ . The function Next_Permutation from C++ standard template library(STL) de-

rives the next permutation by minor modifications to the current permutation. 
We use a descent local search in a variable neighbourhood search framework to 

explore the above neighbourhoods. Our algorithm starts by sampling the heuristic 
space by generating 50 random combinations of heuristics. The best heuristic out of 

50 iterations, namely Bh , is selected as the initial solution of the search algorithm. In 

the first phase of the search, 2 ( )N h is searched for 2r iterations. The value of α in 

this neighbourhood icreases gradually to include larger layers in the neighbourhood. If 

an improvement is found, the weight of Bh  is reset to the associated weight of the 

improving heuristic and 2 ( )BN h for the new heuristic is searched. If no improve-

ments are found in 2 ( )BN h ,  then 1( )BN h  is searched .   

The intuition behind this search strategy is to try to optimise the weights associated 

with the current combination of Bh .If better weights are found, algorithm tries to 

optimise the combination of heuristics with these weights and the process continues 
until a total number of iterations has reached. 

 Note that the quality of the solutions in HS , the set of all the solutions generated 

with heuristics in H, is dependant on the quality of the heuristics defined in H: one 
may include more exhaustive heuristics (such as Simulated annrealing, tabu search, 

etc.) in H to ensure the existance of higher quality of the solutions in HS . Using a 

high quality constructive heuristic h with a small amount of perturbation, the quality 
of the resulting neighbourhood is expected to be high. The high quality of the 
neighbourhood will ensure that even with a simple local search the algorithm may 
produce good results(Ahmadi 1998; Ahmadi and Osman 2003). 

 Hence, the aim of the search process is to find near optimal sequences of heuristics 
in SH (solutions generated by set of heuristics H) rather than in S (complete set of 
solutions). This approach also proposes a search method  based on perturbation of 
parameters to the common problem of fine-tuning the parameters of computational 
procedures.  

6   Computational results 

To show the ability of the algorithm in finding the approximate range of the weights of 
the constraints and the sequences of the heuristics for solving the given instance effi  

ciently, the algorithm was executed several times with different random starts. We 
used a real data set from the Nottingham University  in year 1994 due to its rich set of 
constraints and the  heuristics described in section  (4) in our experiment. This data set  
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Figure 1: Best weights of constraints in the period selection decision function in 7 
independent random runs 

 
includes 7896 students, 800 exams, 33998 enrollments and all the 4 classes of differ-
ent constraints described in section 3.  
To increase the statistical significance of the experiment, several random start experi-
ments were conducted.  
 

Run No. BST50R AVF50R BST BST-HEURS ITER tag α 
5 4075 108734.1 2568 5-135402-0-0 337 1 0.015
3 11678 116307.5 2710 5-500100324-0-2 300 1 0.007
6 4650 156326.58 3712 5-513004002-0-1 90 1 0.039
1 8354 197558.0 4400 5-351402-0-0 415 1 0.009
4 7315 115338.74 4774 5-150000234-0-1 368 1 0.005
2 11487 137457.7 6008 2-X-0-2 423 1 0.027
7 13782 107028.8 6060 1-X-0-1 500 2 0.039

Table 1: Results of different random start runs 

Rows of the Table 1 are sorted in the order of the runs where the best solutions were 
found. The first column shows the run number. The second and the third columns 
show the total penalty values of the best solution found (BST50R) and the average 
solutions (AVF50R) of the first 50 randomly generated solutions, respectively. In the 
next two columns, the best results of the heuristic space search improvement in every 
run are reported. This includes the best objective function value (BST), the best com-
binations of heuristics (BST-HEURS) and the  iteration number (ITER) which the best 
solution was created. The last two columns present the type of the neighbourhood 
(tag) and  the amount of perturbation (α), for the best solution. As the results demon-
strate, the algorithm finds “combination heuristics” for exam selection as the best 
heuristic in this class in 5 out of 7 of the runs.  The results also suggest the combina-
tions of of heuristics 1 and 5 to be the best combination of the exam selection heuris-
tics in all the 5 cases. This suggests that most of the random runs find similar patterns 
of heuristics as the best heuristics for the Nottingham data set. This result is quite 
significant due to the large space of the heuristics and the small number of total itera-
tions, 500. 
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A second observation is the value of the weights of the constraints in period selection 
heuristics. There are an infinite number of combinations of weights in the [0,1000]. 
Due to the complex relations between changes of weights and their effect on other 
constraints, finding the right values (or ranges of values) for the weights is a complex 
decision. Figure 1, shows the weights of the constraints found for the best solution of 
all the randomly started runs. In this figure each column shows the weights of one of 
the constraints in different runs. For example weights of clash constraints are in the 
first column of the graph and their values are 999.768, 633.522, 968.234, 419.51, 
744.362, 763.224, 952.837 and 852.015. We also report the average weights and 
average plus and minus standard deviation of the weights (vertical line). Results of our 
7 randomly started runs, shows that the weights associated with best solutions found  
in all the random runs are quite homogenous and algorithm manages to suggest spe-
cific ranges for the weights of different constraints. Note that this approach will find  

Figure 2: Best solutions in each neighbourhood explored by the search algorithm 
for the 5th run 

 
the weights suitable for solving each given instance of the problem and hence could be 
viewed as a valuable tool for finding instance-specific information. The averages 
(Ave), which can be used to define the order of importance and severity of the con-
straints, are very similar to the weights defined experimentally for Nottingham 94 data 
set in PATAT 2002 competition and our other experiments.  
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Figure 2 summarises the search procedure for the best run (Run 5) by showing the 
quality of the best solutions in the  explored neighbourhoods. On the horizontal axis 
the combination of heuristics used to generate the solution and its  iteration number 
are reported. Neighborhoods are generated by fixing the heuristics and perturbing the 

weights of Bh and also by fixing the weights of Bh and perturbing its heuristics. The 

process of alternating between two different types of neighbourhoods,  demonstrates 
our Variable Neighbourhood  Seach procedure in perturbation based neighbourhoods.  

Success of  5th run  in relatively small number of iterations is mainly due to its good 
starting solution, 5-000124350-0-2. The search procedure manages to refine the struc-
ture of the heuristics and their associated weights of constraints even further. For ex-
amples of cases, starting from more different starting points see Figure 3.  Quality of 
all the visited solutions during the search procedure for run 5 are reported in Figure 4.  

 

Figure 3: Best solutions in each neighbourhood explored by the search algo-
rithm for another run 
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Figure 4: quality of all the visited solutions during the search procedure for 
run 5 

 
 

 

Figure 5: Summary of the search procedure in terms of number of visited 
neighbourhoods in each run  
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Figure 5 summarizes quality of the best solutions in visited neighbourhoods for all the 
runs. As the graph shows, different runs take different number of neighbourhoods to 
find their best solution. In general the algorithm shows robustness in terms of search-
ing the space of heuristics efficiently with different random starts. This may provide a 
good tool to be used in the context of the selection of heuristics for solving different 
instances of a problem and also in finding the values of parameters in experimental 
design. 

7   Further research 

In this paper we presented an approach for searching the space of heuristics for ex-
amination timetabling problem with perturbation based neighbourhood structures. The 
algorithm is promising in terms of its capacity to find good combinations of heuristics 
and their associated weights in a small number of iterations. This may provide a good 
tool to be used in the context of selection of heuristics for solving different instances 
of a problem and also in finding the values of parameters in experimental design. 
Further work will investigate application of this procedure on other datasets from the 
examination timetabling literature and also on selecting local search heuristics. Simi-
larities between this approach and human strategies of discovery will be investigated. 
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