
 1

Perturbation based variable neighbourhood search in
heuristic space for examination timetabling problem

Samad Ahmadi1,2, Rossano Barone2,1, Peter Cheng2, Edmund Burke1,
Peter Cowling3 and Barry McCollum4

1 ASAP research group, School of Computer Science & IT, University of Nottingham, Jubi-
lee Campus, Nottingham NG8 1BB,UK,

sza@cs.nott.ac.uk
2 CREDIT research group, School of Psychology, University of Nottingham, Nottingham

NG7 2RD, UK,
 rb@psychology.nott.ac.uk, peter.cheng@nottingham.ac.uk

3 MOSAIC research group, Department of Computing, University of Bradford, Bradford
BD7 1DP, UK,

Peter.Cowling@scm.brad.ac.uk
4 School of Computer Science, Queen's University Belfast, Belfast,

BT7 1NN, UK
b.mccollum@qub.ac.uk

Abstract. Efficient constructive heuristics have been designed for most of the
difficult combinatorial optimisation problems. Performance of these heuristics
may vary from one instance to another and hence it is beneficial to be able to
select an instance of the heuristic which is best suited to a given instance of the
problem. Both of the heuristic search algorithm and hyper-heuristic approaches
try to provide methodologies for selecting a heuristic from a set of given heu-
ristics. In this paper we propose a perturbation based algorithm to search an in-
finite space of parameterised heuristics. This algorithm aims to find the best
heuristic in a set of given heuristics and hence its success or failure are meas-
ured in terms of the quality of the solution generated by the selected heuristic
compared to the other heuristics in the heuristic space. This approach was ap-
plied to a highly constrained instance of examination timetabling problem.
Computational results show the ability of the perturbation based algorithm in
finding good combinations of heuristics and their parameters with reasonable
computational effort.

1 Introduction

Efficient constructive heuristics have been designed for most of the difficult combina-
torial optimisation problems. Performance of these heuristics may vary from one in-
stance to another and hence it is beneficial to be able to select an instance of the heu-
ristic which is best suited to a given instance of the problem. Both of the hyper-
heuristic approach and the heuristic search algorithms try to provide methodologies

 2

for selecting a heuristic from a set of given heuristics. In this paper we propose a
perturbation based algorithm to search an infinite space of parameterised heuristics.
This algorithm aims to find the best heuristic in the set of given heuristics and hence
its success or failure are measured in terms of the quality of the solution generated by
the selected heuristic compared to the other heuristics in the heuristic space. The un-
derlying application for the heuristic algorithms is the examination timetabling prob-
lem.
Our approach in searching the space of heuristics by the use of perturbation is based
on our experience with the human approach to selecting heuristics. These experiments
have been conducted using the HuSSH (human selection of scheduling heuristics)
interface which has been designed in conjunction with the STARK (Semantically
Transparent Approach to Representing Knowledge) visual interface for examination
timetabling (Ahmadi, Barone et al. 2002; Cowling, Ahmadi et al. 2002; McCollum,
Ahmadi et al. 2002; P.Cheng, R.Barone et al. 2002; Ahmadi and Osman 2003; Cheng,
Barone et al. 2003).
This paper is organized in following order: in the next section, a brief overview of the
examination timetabling problem is presented. Section (3) outlines the design of flexi-
ble constructive heuristics based on weighted decision functions. We introduce a set
of constructive heuristics for examination timetabling problem in section (4). Our
perturbation based Heuristic search algorithm and its implementation for examination
timetabling problem are discussed in Section (5) and computational results are pre-
sented in section (6). Conclusions and directions for further research are presented in
section (7).

2 The Examination timetabling problem

The Examination timetabling problem is a difficult combinatorial optimisation prob-
lem that needs to be solved several times a year in schools and universities. The prob-
lem demands that a given number of exams need to be scheduled to a limited number
of periods and rooms in such a way that there are no clashes (i.e. no student will have
more than one exam at a time) and resource constraints (available space and time) are
not violated. Institutions differ in the types of constraints they use and their level of
severity. Constraints which really must not be violated are called hard constraints.
This includes clashes, examination ordering constraints, resource constraints, restric-
tion of exams to the specific time windows or venues and preference constraints. Soft
constraints are mostly related to preferences and their violations can be tolerated to
some extent but need to be minimized. The objective of examination timetabling prob-
lem is to find a schedule which satisfies all the hard constraints (or minimizes their
violations) and minimises the total violations of the soft constraints.
This problem has been tackled with different heuristic, optimisation and metaheuristic
algorithms. The underlying model of the problem considered by most of the algo-
rithms is the graph coloring problem. Burke, Bykov et al. (2001) used a multicriteria
approach to solve the problem in several phases. Thompson and Dowsland (1998)
used simulated annealing with Kempe chain neighbourhoods to preserve the feasibility

 3

of the solutions in terms of first order clashes during the local moves. Ross, Hart et al.
(1998) analysed the behaviour of genetic algorithm on different instances of the prob-
lem. Arani and Lotfi (1989) investigated a three phase process using the quadratic
assignment problem, the set covering problem and the traveling salesman problem in
different phases respectively. Further references and a general survey of the problem
are in (Carter, Laporte et al. 1997).
In next section we describe a weighted decision function to provide a flexible ap-
proach to accommodate the varieties of the constraints.

3 Weighted decision functions: an adaptive model for dealing with
hard and soft constraints in the design of heuristics

Conflicting objectives and the changing set of constraints in different institutions
makes the examination timetabling problem challenging for the design of a generic
algorithms. To deal with hard constraints efficiently, one may algorithmically prevent
their violation. In this method hard and soft constraints need to be specified at the
design time of the algorithm which makes the algorithm inflexible towards changes in
the sets of hard and soft constraints and prevents the algorithm from accepting infea-
sible solutions that may be necessary for bypassing the disconnectedness of the solu-
tion space.

An alternative approach is to use a decision function that is the weighted sum of
the violations of all the constraints. This provides the flexibility of switching the soft
and hard constraints for different instances and institutions. The drawback of this
approach is that it is highly parametrised. We introduce a perturbation based heuristic
search algorithm to explore the space of heuristics for suitable heuristics and their
corresponding weights. Note that the decision function is a greedy selection function
which could dynamically change its weights, where the objective function will use
constant weights. For our scheduling algorithm we incorporate violations of all the
different constraints (hard and soft) in a weighted decision function. The potential cost
of scheduling an exam e to a period p is defined as weighted sum of following values:
1. Clash and consecutive constraint violations: if exam e has n1,…,nk students in

common with exams e1,…,ek, respectively, its potential clash constraint violation
penalty value in period p is defined as:

∑
=

k

i
ink

1

 (1)

This will give weight to the number of students involved in each clash and not only to
the number of clashing exams. At the same time, the above formula stresses the im-
portance of having smaller number of clashing exams in a period. Note that a large
number of small clashes may need more effort to resolve the violations later. As an
example note that above formula assigns penalty of 9 to the case of 3 exams in pe-
riod p, each having clashes of size 1 with exam e compared to the case of having
only one exam in this period with total number of students in common of 3 which will

 4

be assigned penalty of 3. The same measure is defined for consecutive exam viola-
tions.
2. Order constraint violations: if an exam e is required to be scheduled at the same

time (coincidental) with exams e1,…,ek and k’ of these exams are scheduled in pe-
riod p, then the coincidental penalty associated with this period is k-k’, i.e. number
of coincidental exams of e which are scheduled in a period other than p. This re-
wards assignment of exam e to periods with a higher number of its coincidental ex-
ams in them. For penalty values of followed exams and excluded exam violations
similar definitions are used.

3. Resource constraints: Resources (periods, rooms) with duration/capacity shorter
than the duration/size of the exam are discouraged by penalizing them according to
the amount by which they differ.

4. Exams Restrictions to specific time windows or venues: For exams with pre-
specified periods, a penalty is associated their assignment to other periods. For
pre-specified rooms a similar method is used.

In next section, we propose several constructive heuristics for the examination

timetabling problem based on a weighted decision function, a ranking method of
heuristic selection and several basic heuristics derived from the graph theoretical
models.

4 Constructive heuristics for examination timetabling

Sequential heuristics and clustering heuristics are the two major categories of con-
structive heuristics for examination timetabling. Sequential constructive heuristics for
examination timetabling problem can be divided into three main heuristic components:
exam selection heuristics, period selection heuristics (scheduling heuristics) and room
selection heuristics. We propose the following heuristics for exam, period and room
selection:

4.1 Exam selection heuristics

1. Intersections heuristics: The unscheduled exams with highest number of students
in common with other scheduled and unscheduled exams will be scheduled next.
This is similar to largest degree first heuristic for the graph colouring problem with
the following difference: for an exam e, we define its intersection value as the
number of intersecting exams multiplied by the total number of students in common
with other exams. For example, if exam e has intersections of 2, 4 and 1 students
with three other exams (say n=3 and s=2+4+1=7), the intersection value of e is
defined as: 3×7=21. Note that this will give higher priority to exams with larger
number of intersecting exams (see 3.1). To provide an ordering for all the exams in
ascending order, the actual value used in our procedure is:

 5

1

1

+sn
 (2)

2. Restrictions heuristics: Some of exams are restricted to be held at pre-specified
periods or venues. Dealing with such exams in later stages of scheduling process
may create problems due to usage of their corresponding rooms and periods for
other exams. In this heuristic we prioritise restricted exams to be scheduled first.
The restrictions number is calculated as: p×r where p is the number of available
periods and r is the number of available rooms.

3. Available Periods: This heuristic dynamically finds the number of available peri-
ods where an exam can be scheduled without penalty for each exam e each time an
examination is added. Availability of a period is checked against clashes, room and
period pre-assignments, duration of exam and size constraints. This is a generalisa-
tion of least saturation degree for graph colouring problem where we consider con-
straints other than clashes for checking the availability of each period. At each it-
eration, the exam with the minimum number of available periods is selected to be
scheduled.

4. Available resources: In the previous heuristic, the number of available rooms in
each period is not considered. Note that, for two exams with an equal number of
available periods, the exam with a smaller number of available rooms should be
prioritised. In this algorithm if for an exam e, m periods and n rooms are available,
the priority value of e is defined as:

mt
n

n +
(3)

 where t is the total number of periods available. This adds the total number of avail-
able rooms to the average number of available rooms per period multiplied by the

number of periods available. The
n
t factor is a normalisation factor for the number of

periods for changing it to the scale of number of rooms.
5. Combined heuristic using heuristic ranking: Some of the above heuristics may

use measures which have limited range of effectiveness. For example, the
restriction heuristic will only differentiate between exams with rooms and periods
restrictions and the other exams will be considered to have the same priority. Us-
ing other heuristics to break the ties when a heuristic fails to differentiate between
two exams is a reasonable option. The combination heuristic uses an ordering of
different measures of importance for an exam such as size of its order constraints,
number of clashes, number of available rooms and periods. For dealing with more
complex constraints such as coincidental exams (which needs a group of exams to
be aggregated as one exam) an extra priority value is added to the other related ex-
ams after a member of their group is scheduled. This reduces the possibility of
other exams occupying the same period before members of the coincidental exams
group. The scheduling heuristic will use the potential cost value (section 3.2) to lo-
cate suitable periods for these exams when considering its related exams.

6. Random selection of exams: A random heuristic is included in the pool of exam
selection heuristics to examine the ability of our algorithm in learning to escape
from heuristics of low quality and to provide a mechanism for diversification.

 6

3.2 Period selection heuristics

After selecting an exam for scheduling, a period needs to be selected. The main ap-
proach for this process is to select a period with minimal violations of constraints for
the exam. This mimics the human schedulers criteria in selecting periods for schedul-
ing based on significance of their violations of constraints. (Burke and Newall 1999)
use penalty values including soft intersection violation values and another measure
which will encourage scheduling exams with intersecting exams in common to the
same period. Our approach uses a more general penalty function which contains viola-
tions of all the constraints. This will find a period in which the least combination of
clashes, consecutive exams, order constraint violations, size violations, duration ex-
cess and pre-specified rooms and periods violations occur.
1. Penalty based scheduling heuristic: in this algorithm for a given exam e, the

potential penalty of assigning e to that period is calculated and the period with the
minimum penalty is selected. Note that, the penalty function is a weighted sum of
violations of all the constraints and hence this selection will minimise the violations
of constraints. This single criterion in dealing with all the different constraints is the
central idea when designing generic and flexible constructive heuristics to deal with
different constraints and their different levels of importance.

2. Random selection of period: similar to 4.1.6., but for periods.

3.3 Room selection heuristics

After an exam is selected, different periods are examined for the availability of
rooms in the order induced by the period heuristic. For each period, a list of permitted
rooms for the exam (room restriction constraint) are ordered based on following heu-
ristics:

1. Best fit heuristic: this heuristic will find the smallest room with enough remaining
capacity for the exam;

2. Largest-first heuristics: in this heuristic priority is given to fill the largest spaces
available (sports halls, large lecture theatres). This policy will be reasonable in the
context of optimising usage of large spaces to minimse number of venues and
invigilators engaged;

3. Random selection of rooms: similar to 4.1.6., but for rooms.

If there are no rooms available in a period without penalty, the periods are
examined in increasing order of penalty value. If no single room can accommodate the
exam, the exam is split into more than one room in the period with lowest penalty. It
will be desireable to assign some penalty for splitting of an exam to be able to decide
on the right balance between the penalty of period and penalty of splitting. To
minimise the number of splits, the splits are delayed until all the available periods are
examined. This may degrade the quality of the solution in terms of the objective
function, as no cost is associated with splitting an exam. This approach manages to

 7

accommodate all the exams with room restrictions in our real problem instance and
hence no post-optimisation of space allocation needs to be performed.

Above heuristics define a set:

of heuristics for examination timetabling, where 321 ,, hhh are heuristics for exam,

period and room selections, respectively. If h1=6, then using permutation O a combi-
nation of different exam selection heuristics are used. If h2=1, then period selection

heuristic is based on weights 91,..., ww , which are used to define the level of severity

of different constraint violations in the decision function of the period selection
(scheduling) heuristic. For this class of heuristics a parameter α will control the
amount of perturbation to be increased if no improvements were found at the early
stages of the search. Excluding the variations of the heuristics based on weights or
α , the number of different combinations of heuristics is 90750. This approach of
using combinations and weighted decision functions introduces a very large space of
heuristics for examination timetabling. Hence, it is necessary to develop a search algo-
rithm for finding the best heuristic for a given instance, because the performance of
these heuristics may vary from one instance to another.
 In the next section we propose two neighbourhood structures to be searched by effi-
cient algorithms similar to the variable neighbourhood search approach. This method
is inspired by human method’s of selection and manipulation of heuristics in our
experiments with the HuSSH and the STARK systems.

5 Heuristic Search Algorithm

In designing a local search algorithm, instead of using the concept of moves to define
neighbourhoods, one may use problem specific heuristics to define neighbourhood of
constructive solutions. Storer, Wu et al. (1992)) used this method to define heuristic
space neighbourhoods for the Job Shop Scheduling problem by utilizing a paramet-
rised family of heuristics defined as the weighted linear combination of dispatching
rules. This method of encoding the solutions by means of heuristics is also called
“indirect encoding” of the solutions (Terashima-Marin, Ross et al. 1999) and provides
an easy way for creating different neighbourhood structures by means of using con-
structive heuristics. This method works at a higher level than normal neighbourhood
structures by manipulating the methods of generating solutions (heuristics), rather than
working directly on the solutions.
For an instance p of the examination timetabling problem, a heuristic algorithm h can
be considered as a mapping of p into its associated solution s in the solution space S,
i.e. s=h(p). Through solving p, a set of heuristics H will be mapped into a subset SH of
S. Using this sets one can define corresponding neighbourhoods in the heuristic space
and the solution space.

{
[] }

1 2 3 1 9 1 2 3

j

(, , , , , ...,) , 1, 2, 3,1 6 ,1 2,1 3, is a

permutation of 5 digits out of 9 digits 00012345, w 0,1000 , 1, ...9

i
H h O h h w w h i h h h O

j

= ∈ = ≤ ≤ ≤ ≤ ≤ ≤

∈ =

 8

Definition: for a given parametric heuristic h, a neighbourhood of h is defined by the
means of perturbing its parameters with a perturbation algorithm. The neighbourhood
h induces a neighbourhood for the solution s=h(p) in the solution space. In other
words, we define the perturbation based neighbourhood of s as all the solutions s’
produced by h’, where h’ is derived from h by a perturbation of its parameters.

Example: in our heuristic search algorithm, the concept of perturbation is used as
perturbation of parameters (weights) and also as changing the heuristic components of
h. For example if:

(6,501030024,1,1,800,100,300,300,300,200,200,100,500)h =

then some of the perturbations of this heuristic are:
• Changing the permutation S:
(6,150300240,1,1,800,100,300,300,300, 200, 200,100,500)h =

• Changing type of the heuristic:
(1, ,1,1,800,100,300,300,300, 200, 200,100,500)h = −

note that, as 1 6h ≠ , the permutation O does not need to be considered.

• Changing the weights:
(6,501030024,1,1,801,98,296,302,301.9,198.75,199,100,499)h =

Different perturbation algorithms generate different neighbourhoods. As, there is a
clear difference between nature of different dimensions of H, namely heuristic types
and the weights, we define our perturbation algorithms to perturb either the heuristic
types (and orders) or the weights. This defines two different types of neighbourhoods
in subsets of H with smaller dimensions. We use an approach similar to the variable
neighbourhood search approach to switch between two neighbourhoods during the
search process.

The first type of neighbourhood of a heuristic
1 2 3 1 9

(, , , , , ...,)h h O h h w w= ,

1()N h , keeps the heuristic types the same as h and perturbs the weights randomly by

%α . The value of α is initialised by 1

2

0.1%
l

l
+ , where 1l is the number of itera-

tions from last improvement and 2l is the total number of iterations. This value is reset

to 0.1% after an improving heuristic is found.

The second type of neighbourhood of the heuristic
1 2 3 1 9

(, , , , , ...,)h h O h h w w= ,

2 ()N h ,is defined as follows:

 }{ 1 2 3 1 92 (, , , , , ...,)() h O h h w wN h h h′ ′ ′ ′ ′ ′= =

 9

where , 1,2,3
i

h i′ = ,are selected randomly from the appropriate ranges and

_ ()O Next Permutation O′ = . Note that weights of h are the same as weights of

h ′ . The function Next_Permutation from C++ standard template library(STL) de-

rives the next permutation by minor modifications to the current permutation.
We use a descent local search in a variable neighbourhood search framework to

explore the above neighbourhoods. Our algorithm starts by sampling the heuristic
space by generating 50 random combinations of heuristics. The best heuristic out of

50 iterations, namely Bh , is selected as the initial solution of the search algorithm. In

the first phase of the search, 2 ()N h is searched for 2r iterations. The value of α in

this neighbourhood icreases gradually to include larger layers in the neighbourhood. If

an improvement is found, the weight of Bh is reset to the associated weight of the

improving heuristic and 2 ()BN h for the new heuristic is searched. If no improve-

ments are found in 2 ()BN h , then 1()BN h is searched .

The intuition behind this search strategy is to try to optimise the weights associated

with the current combination of Bh .If better weights are found, algorithm tries to

optimise the combination of heuristics with these weights and the process continues
until a total number of iterations has reached.

 Note that the quality of the solutions in HS , the set of all the solutions generated

with heuristics in H, is dependant on the quality of the heuristics defined in H: one
may include more exhaustive heuristics (such as Simulated annrealing, tabu search,

etc.) in H to ensure the existance of higher quality of the solutions in HS . Using a

high quality constructive heuristic h with a small amount of perturbation, the quality
of the resulting neighbourhood is expected to be high. The high quality of the
neighbourhood will ensure that even with a simple local search the algorithm may
produce good results(Ahmadi 1998; Ahmadi and Osman 2003).

 Hence, the aim of the search process is to find near optimal sequences of heuristics
in SH (solutions generated by set of heuristics H) rather than in S (complete set of
solutions). This approach also proposes a search method based on perturbation of
parameters to the common problem of fine-tuning the parameters of computational
procedures.

6 Computational results

To show the ability of the algorithm in finding the approximate range of the weights of
the constraints and the sequences of the heuristics for solving the given instance effi

ciently, the algorithm was executed several times with different random starts. We
used a real data set from the Nottingham University in year 1994 due to its rich set of
constraints and the heuristics described in section (4) in our experiment. This data set

 10

Figure 1: Best weights of constraints in the period selection decision function in 7
independent random runs

includes 7896 students, 800 exams, 33998 enrollments and all the 4 classes of differ-
ent constraints described in section 3.
To increase the statistical significance of the experiment, several random start experi-
ments were conducted.

Run No. BST50R AVF50R BST BST-HEURS ITER tag α
5 4075 108734.1 2568 5-135402-0-0 337 1 0.015
3 11678 116307.5 2710 5-500100324-0-2 300 1 0.007
6 4650 156326.58 3712 5-513004002-0-1 90 1 0.039
1 8354 197558.0 4400 5-351402-0-0 415 1 0.009
4 7315 115338.74 4774 5-150000234-0-1 368 1 0.005
2 11487 137457.7 6008 2-X-0-2 423 1 0.027
7 13782 107028.8 6060 1-X-0-1 500 2 0.039

Table 1: Results of different random start runs

Rows of the Table 1 are sorted in the order of the runs where the best solutions were
found. The first column shows the run number. The second and the third columns
show the total penalty values of the best solution found (BST50R) and the average
solutions (AVF50R) of the first 50 randomly generated solutions, respectively. In the
next two columns, the best results of the heuristic space search improvement in every
run are reported. This includes the best objective function value (BST), the best com-
binations of heuristics (BST-HEURS) and the iteration number (ITER) which the best
solution was created. The last two columns present the type of the neighbourhood
(tag) and the amount of perturbation (α), for the best solution. As the results demon-
strate, the algorithm finds “combination heuristics” for exam selection as the best
heuristic in this class in 5 out of 7 of the runs. The results also suggest the combina-
tions of of heuristics 1 and 5 to be the best combination of the exam selection heuris-
tics in all the 5 cases. This suggests that most of the random runs find similar patterns
of heuristics as the best heuristics for the Nottingham data set. This result is quite
significant due to the large space of the heuristics and the small number of total itera-
tions, 500.

0

250

500

750

1000

Clas
he

s

Con
se

cu
tiv

es

Coin
cid

en
ce

s

Foll
ow

ed
s

Exc
lud

es

Per
iod

s

Roo
m

ss

Size
Con

str
ain

t

Una
ss

ign
ed

Constraint types

W
ei

gh
ts

 in
 d

ec
is

io
n

fu
nc

tio
n

Run1
Run2
Run3
Run4
Run5
Run6
Run7
Ave.

 11

A second observation is the value of the weights of the constraints in period selection
heuristics. There are an infinite number of combinations of weights in the [0,1000].
Due to the complex relations between changes of weights and their effect on other
constraints, finding the right values (or ranges of values) for the weights is a complex
decision. Figure 1, shows the weights of the constraints found for the best solution of
all the randomly started runs. In this figure each column shows the weights of one of
the constraints in different runs. For example weights of clash constraints are in the
first column of the graph and their values are 999.768, 633.522, 968.234, 419.51,
744.362, 763.224, 952.837 and 852.015. We also report the average weights and
average plus and minus standard deviation of the weights (vertical line). Results of our
7 randomly started runs, shows that the weights associated with best solutions found
in all the random runs are quite homogenous and algorithm manages to suggest spe-
cific ranges for the weights of different constraints. Note that this approach will find

Figure 2: Best solutions in each neighbourhood explored by the search algorithm
for the 5th run

the weights suitable for solving each given instance of the problem and hence could be
viewed as a valuable tool for finding instance-specific information. The averages
(Ave), which can be used to define the order of importance and severity of the con-
straints, are very similar to the weights defined experimentally for Nottingham 94 data
set in PATAT 2002 competition and our other experiments.

2500

3000

3500

4000

4500

5-
12

43
50

-0
-2

-1

5-
12

43
50

-0
-2

-1

5-
12

50
34

-0
-0

-1

5-
12

50
34

-0
-0

-1

5-
12

50
34

-0
-0

-1

5-
12

54
03

-0
-0

-1

5-
12

54
03

-0
-0

-1

5-
12

54
03

-0
-0

-1

5-
13

54
02

-0
-0

-1

5-
13

54
02

-0
-0

-1

5-
13

54
02

-0
-0

-1

5-
13

54
02

-0
-0

-1

5-
13

54
20

-0
-1

-1

0 50 91 96 103 141 157 171 325 328 329 337 358

Run5
Random
Weight Perturbations
Heur. Perturbs

7414

 12

Figure 2 summarises the search procedure for the best run (Run 5) by showing the
quality of the best solutions in the explored neighbourhoods. On the horizontal axis
the combination of heuristics used to generate the solution and its iteration number
are reported. Neighborhoods are generated by fixing the heuristics and perturbing the

weights of Bh and also by fixing the weights of Bh and perturbing its heuristics. The

process of alternating between two different types of neighbourhoods, demonstrates
our Variable Neighbourhood Seach procedure in perturbation based neighbourhoods.

Success of 5th run in relatively small number of iterations is mainly due to its good
starting solution, 5-000124350-0-2. The search procedure manages to refine the struc-
ture of the heuristics and their associated weights of constraints even further. For ex-
amples of cases, starting from more different starting points see Figure 3. Quality of
all the visited solutions during the search procedure for run 5 are reported in Figure 4.

Figure 3: Best solutions in each neighbourhood explored by the search algo-
rithm for another run

5000

15000

25000

3-
X

-0
-1

-1

5-
35

04
20

10
-0

-2
-1

0-
X

-0
-0

-1

2-
X

-0
-1

-1

2-
X

-0
-1

-1

2-
X

-0
-2

-1

2-
X

-0
-2

-1

2-
X

-0
-2

-1

2-
X

-0
-2

-1

5-
30

45
20

10
-0

-2
-1

0 1 2 4 54 76 409 423 441 448

All
Random
Weight Perturbations
Heur. Perturbs

 13

Figure 4: quality of all the visited solutions during the search procedure for
run 5

Figure 5: Summary of the search procedure in terms of number of visited
neighbourhoods in each run

2000

22000

42000

62000

82000

0 100 200 300 400 500

Iterations

P
en

al
ty

Run 5

2000

7000

12000

17000

1 3 5 7 9 11 13 15 17 19 21

No. of searched neighbourhoods

P
en

al
ty

Run1
Run2
Run3
Run 4
Run 6
Run5
Run 7

 14

Figure 5 summarizes quality of the best solutions in visited neighbourhoods for all the
runs. As the graph shows, different runs take different number of neighbourhoods to
find their best solution. In general the algorithm shows robustness in terms of search-
ing the space of heuristics efficiently with different random starts. This may provide a
good tool to be used in the context of the selection of heuristics for solving different
instances of a problem and also in finding the values of parameters in experimental
design.

7 Further research

In this paper we presented an approach for searching the space of heuristics for ex-
amination timetabling problem with perturbation based neighbourhood structures. The
algorithm is promising in terms of its capacity to find good combinations of heuristics
and their associated weights in a small number of iterations. This may provide a good
tool to be used in the context of selection of heuristics for solving different instances
of a problem and also in finding the values of parameters in experimental design.
Further work will investigate application of this procedure on other datasets from the
examination timetabling literature and also on selecting local search heuristics. Simi-
larities between this approach and human strategies of discovery will be investigated.

References

1. Ahmadi, S. (1998). Metaheuristics for the Capacitated Clustering Problem. Operational
Research. Canterbury, University of Kent at Canterbury: 223.

2. Ahmadi, S., R. Barone, et al. (2002). Integrating human abilities and automated systems
for timetabling: A competition using STARK and HuSSH representations at the PATAT
2002 conference”. 4th international conference on the practice and theory of automated
timetabling (PATAT), KaHo St.-Lieven, Gent Gent, Department of Industrial Engineering,
Belgium.

3. Ahmadi, S. and I. H. Osman (2003). "Density based problem space search for capacitated
clustering problem." special issue of the Annals of Operations Research on Metaheuristics.

4. Arani, T. and V. Lotfi (1989). "A 3-Phased Approach to Final Exam Scheduling." Iie
Transactions 21(1): 86-96.

5. Burke, E. K., Y. Bykov, et al. (2001). "A Multicriteria Approach to Examination Time-
tabling." Lecture Notes in Computer Science 2079: 118--??

6. Burke, E. K. and J. P. Newall (1999). "A multistage evolutionary algorithm for the timeta-
ble problem." Ieee Transactions on Evolutionary Computation 3(1): 63-74.

7. Carter, M. W., G. Laporte, et al. (1997). "Examination timetabling: Algorithmic strategies
and applications (vol 47, pg 373, 1996)." Journal of the Operational Research Society
48(2): 225.

8. Cheng, P. C.-H., R. Barone, et al. (2003). Integrating human abilities with the power of
automated scheduling systems: Representational epistemological interface design. AAAI
Spring Symposium on Human Interaction with Autonomous Systems in Complex Envi-
ronments, Palo Alto, CA, AAAI Press.

 15

9. Cowling, P. I., S. Ahmadi, et al. (2002). Combining Human and Machine Intelligence to
Produce Effective Examination Timetables. The 4th Asia-Pacific Conference on Simulated
Evolution And Learning (SEAL2002), Singapore.

10. McCollum, B., S. Ahmadi, et al. (2002). A review of existing interfaces of automated
examination and lecture scheduling systems. The 4th international conference on the prac-
tice and theory of automated timetabling (PATAT), KaHo St.-Lieven, Gent Gent, Depart-
ment of Industrial Engineering, Belgium.

11. P.Cheng, R.Barone, et al. (2002). Opening the information bottleneck in complex schedul-
ing problems with a novel representation: STARK diagrams, Springer-Verlag, Heidelberg.

12. Ross, P., E. Hart, et al. (1998). "Some observations about GA-based exam timetabling."
Practice and Theory of Automated Timetabling Ii 1408: 115-129.

13. Storer, R. H., S. D. Wu, et al. (1992). "New Search Spaces for Sequencing Problems with
Application to Job Shop Scheduling." Management Science 38(10): 1495-1509.

14. Terashima-Marin, H., P. Ross, et al. (1999). Evolution of constraint satisfaction strategies
in examination timetabling. Gecco-99: Proceedings of the Genetic and Evolutionary Com-
putation Conference. San Francisco, MORGAN KAUFMANN PUB INC: 635-642.

15. Thompson, J. M. and K. A. Dowsland (1998). "A robust simulated annealing based ex-
amination timetabling system." Computers & Operations Research 25(7-8): 637-648.

