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Abstract
A largenumberof heuristicalgorithmshave beendevelopedover theyears

which have beenaimedat solvingexaminationtimetablingproblems.However,
many of thesealgorithmshave beendevelopedspecificallyto solve onepartic-
ular probleminstanceor a small subsetof instancesrelatedto a given real-life
problem.Our aim is to develop a moregeneralsystemwhich, whengiven any
examtimetablingproblem,will produceresultswhich arecomparative to those
of a speciallydesignedheuristicfor thatproblem. We areinvestigatinga Case
basedreasoning(CBR) techniqueto selectfrom a setof algorithmswhich have
beenappliedsuccessfullyto similarprobleminstancesin thepast.Theassump-
tion in CBR is thatsimilar problemshave similar solutions.For our system,the
assumptionis thatanalgorithmusedto find agood solutionto oneproblemwill
alsoproduceagood resultfor a“similar” problem.Thekey to thesuccessof the
systemwill beour definitionof similarity betweentwo examtimetablingprob-
lems. Thestudywill becarriedout by runninga seriesof testsusinga simple
SimulatedAnnealingAlgorithm on a rangeof problemswith differing levelsof
“similarity” andexaminingthedatasetsin detail. In this paperan initial inves-
tigation of the key factorswhich will be involved in this measureis presented
with a discussionof how thedefinitionof good impactson this.

Keywords: Timetabling,HeuristicSearch

1. Introduction

Theautomatedtimetablingproblemhasbeenstudiedin a varietyof forms
for thelast40yearswith a largenumberof algorithmsandapplicationshaving
beendevelopedwhich areaimedat solvingspecificinstancesof theproblem.
Probablythe mostwell known typesof everydaytimetablesarebus & train
timetables.Thesedetail whenandwhereeachresource(bus or train in this
case)shouldbeallocatedandtheir planningmusttake a wide numberof con-
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straintsinto accountregardingdriverworkinghours,startingandendingpoints
for vehiclesandmany otherconstraintswhich are relevant to the individual
timetable.Thesetypesof timetablegive a goodoverview of thekey elements
of a generictimetablingproblem- namelythata setof eventsmustbesched-
uledto certaintimeswhilst obeying anumberof rules,known asconstraints.

Timetablingis mainlyconcernedwith theassignmentof eventsto timeslots
subjectto constraints.Thereis not necessarilyany allocationof resourcesto
theeventstimetabled.In realityhowever, it is almostalwaysrequiredto know
that therearesufficient resourcesavailable for the given event to take place
at its specifiedtime aswell aswhich resourcesareallocated.More formally,
Wren[15], says:

“Timetabling is the allocation,subjectto constraints,of given resourcesto ob-
jectsbeingplacedin spacetime, in suchawayasto satisfyasnearlyaspossible
a setof desirableobjectives”

TheUniversitytimetablingproblemcanbedividedinto two areas,thesebe-
ing course(or lecture)timetablingandexaminationtimetabling.In this paper
we will consideronly theexamtimetablingproblemwhich will bedescribed
in moredetail in Section2.

Somerecentresearch[6] hasfocusedonhyper-heuristicmethodsappliedto
timetablingproblemswith theaim beingto developa moregeneralapproach
thanproducingproblem-specificheuristics.Thesehyper-heuristicswork on a
level of abstractionabove thatof standardheuristics,to selectthebestfrom a
selectionof lower-level heuristicalgorithms. The focusof this paperwill be
onacasebasedreasoningsystemfor examtimetablingproblemswhichworks
at the level of a hyper-heuristic. Case-basedreasoning(CBR) hasbeenap-
plied directly to University coursetimetablingproblems[2], [3] successfully
and the next logical step is to considerusing CBR at a higher level of ab-
stractionto selectfrom a setof previously usedheuristicsto solve any given
timetablingproblem.A moredetaileddescriptionof casebasedreasoningand
its usewithin ourprojectasaheuristicselectorwill begivenin Section3.

The focusof this paperis on investigatingthe datasetsin moredetail to
discover someof thekey elementsthatwill definehow well analgorithmper-
formswhenappliedto theproblem.For thispurpose,wewill beusingasimple
SimulatedAnnealingalgorithmto produceresultson a numberof variantsof
thegivendatasets.A brief descriptionof this algorithmwill begivenin Sec-
tion 4. Ouranalysisof thedatasetsusedandour plansfor furtheranalysisare
reportedin Section5.

2. Examination Timetabling

The examinationtimetablingproblemis a well known NP-hardoptimiza-
tion problemfacedby all universitiesandother teachinginstitutions. There
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area large numberof variationson the themeof exam timetablingwith dif-
ferent institutionshaving different requirementsandconstraints(see[1]). In
somecases,therewill bea limited numberof roomsinto whichexamsmustbe
placedwhilst in othersthis may not be an issue.Similarly, someinstitutions
will have largeamountsof inter-departmentalmodularcourseswhereasothers
will offer morestrictly department-basedcoursesmeaningfewerconflictswith
examsfrom otherdepartments.

In themostbasictimetablingproblem,everyexamtimetablingproblemhas
a set

������� �
	������	 ����� of examsanda set � ����� ��	�������	 ����� of periodsinto
whichall � examsmustbescheduled.A numberof otherside-constraintsmust
alsobeeitherfully or partiallysatisfiedto form thetimetable.Hard constraints
arethosewhich mustbesatisfiedin orderfor thetimetableto befeasible.The
mostimportantof theseare:

any pair of exams,
��� 	 ��� , with studentsin commoncannotboth be as-

signedto thesameperiod
�
.

theremustbesufficient resourcesavailablein eachperiod,
�
, for all the

examstimetabled.

Soft constraints arethosewhoseviolation shouldbeminimisedin orderto
producethebesttimetable.Unlike hardconstraintsthesearenot essential,but
softconstraintsatisfactionprovidesameasureof how goodatimetableis. Soft
constraintsvary greatlybetweeninstitutions.Someof themostcommonones
are[1], [6]:

Time assignment - An exammayneedto bescheduledin a specificpe-
riod

Time constraints between events - Oneexammayneedto bescheduled
before/afteranother

Spreading events over time - Studentsshouldnothave examsin consec-
utive periodsor two examswithin � periodsof eachother

Resource assignment - An exammustbescheduledinto aspecificroom

Examtimetablingproblemscaneasilybemodeledasgraphcolouringprob-
lems[10] with the nodesrepresentingthe examsandthe edgesrepresenting
clashesbetweenexams.Theseedgesmayhaveweightsto show thenumberof
studentsinvolved in eachclash. Many graphcolouringalgorithmshave been
implementedandadaptedto provide goodquality solutionsto theseproblems
aswell asavarietyof heuristicandlocalsearchalgorithmsaimedat improving
aninitial solutionby exploring a smallsubsetof all possiblemoves,known as
a neighbourhood,at eachiteration. Many of theexamtimetablingalgorithms
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which have beendevelopedarevery problem-specificandcannotbe usedto
find high quality solutionsto a wide rangeof probleminstances.In general
though,no onealgorithmwill give bestresultsfor all examtimetablingprob-
lemstowhichit is applied.Somealgorithmswill performwell ononesubsetof
problemswhilst fairingfairly poorlywhendifferentconstraintsareintroduced.

Our aim is to develop a systemwhich canselectthe bestfrom a rangeof
heuristicswhen given a new problemso that good resultscan be obtained
acrossa wide spectrumof probleminstances.A casebasedapproachrequires
a largeamountof knowledgeof pastperformanceof algorithmson particular
problemsin orderto make an intelligentselectionof which algorithmshould
performbeston thenew problem.Eachexamtimetablingproblemhasa land-
scape which is definedon its horizontalplaneby the set of all feasibleso-
lutions1 with the vertical aspectdefinedat eachof the points representinga
solutionby theobjective function for theproblem– this givesthemeasureof
how good the solution is basedon certaincriteria. How successfula given
algorithm is at finding a good solution (a good local minima, or ideally the
global minima) thereforedependson how well it traversesthis landscapeto
escapefrom local minima andnavigatetowardsbetteroneswhilst providing
a goodcoverageof the searchspace.If we canshow that a given algorithm
traversestwo differentproblemlandscapesequallywell, we canconsiderthe
two landscapesto besimilar andthekey elementswhich definetheshapesof
theselandscapesto form goodmeasuresof similarity.

3. Case Based Reasoning (CBR)

Casebasedreasoningis motivatedby aprocessusedby humans,oftensub-
consciouslywhenmakingeverydaydecisions.CBR is a processof learning
from previousexperiences,storingthatknowledgein a usefulmannerandre-
trieving it to reusewhena similar situationpresentsitself later. Kolodner[12]
givesanin-depthexplanationof CBR,its applicationsandthekey ideasbehind
it, of whichabrief summaryis presentedhere.

A Case is a ‘contextualisedpieceof knowledgewhich representsanexpe-
rience.’ Eachcasecontainsknowledgeaboutonepreviousexperience,repre-
sentedandindexedin suchaway thatit canberetrievedeasilywhenasimilar
situationis encountered.The casesareall indexed within a casebase,with
eachcaseaddingaseparatepieceof knowledgeto thesystem.

The motivation underlyingcasebasedreasoningis that similar problems
have similar solutions. Whena new problemis encountered,its key descrip-
tors will be notedand matchedagainstthoseof problemsin the casebase
usingsomemeasureof similarity. The mostsimilar case(s)will be retrieved

1Only thosesolutionswith nohardconstraintsviolated
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to bere-usedfor thenew problem.In somecases,theexactsamesolutioncan
bere-used,but moreoftentherewill bedifferencesbetweenthenew problem
andthe retrieved problemwhich mustbe reconciled. In thesesituations,the
retrievedsolutionmustbeadaptedbeforeit canbeusedto solve thenew prob-
lem. An importantaspectof any successfulCBRsystemis thefeedbackwhich
thesystemreceivesregardinghow goodtheretrievedsolutionwasfor thenew
problem.If thesolutionwasgood,thenthenew problemmaybeaddedto the
systemif it containsany new informationwhichmaybeusefulin thefuture. If
thesolutionwasbad,however, the indexing for theretrievedcaseneedsto be
reconsideredsothatthiscasewouldnolongerberegardedassimilar to thenew
case.Feedbackaboutfailureis justasimportantasfeedbackaboutsuccessfor
the systemto function to the higheststandard.Learningfrom pastmistakes
andmakingsurenot to repeatthemprovidesveryvaluableknowledge.

For example,CBR is usedvery successfullyin the medicalfield for diag-
nosingillnesses.Key descriptorsof patient’s symptomsandother important
informationis storedasa casein the casebase.Whena new patientarrives
with similar symptoms,thecasewill beretrievedandthedifferencesbetween
thetwo mustbereconciled(for instanceadifferencein bloodpressureor heart
beat),thentheold casemaybeadaptedto find adiagnosisfor thenew patient.

CBR for Scheduling

CBR hasbeendiscussedand applieddirectly to schedulingproblemsby
Burke et al. [2], [3] (coursetimetabling),MiyashitaandSycara[14] (job shop
scheduling)andMacCarthy[13] (generalscheduling)amongstothers.Burke
et al. usecasesfrom thecasebaseto helpconstructa solutionto a new prob-
lem by using graphisomorphismof attribute graphs. The main issuesthey
consideredare:

how to representcomplex timetablingproblems

how to organisethecasebase

how to measuresimilarity betweentwo problemsto retrieve the most
usefulcase

how to adapttheretrievedsolutionfor thenew problem.

Thesearediscussedin moredetail in [2] and[6].

Our CBR system for Exam Timetabling

Oneof the next major areasfor CBR is to work on the level of a hyper-
heuristic. This would select,from a rangeof previously usedheuristics,the
best oneto solve a new problemgiven to thesystem.Thekey issuefor such
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a systemis how we definethebest algorithmto beusedfor thenew problem.
Applying thegeneraltheorybehindCBR,we assumethatanalgorithmwhich
performswell on oneproblemwill alsoperformwell on a similar problem.
Thereforethemainareaof considerationis how two problemscanbemeasured
assimilar in suchaway thatthis reasoningholds.

Eachcasein ourcasebasewill consistof aproblemdefinitiontogetherwith
an algorithmusedto successfullysolve the problem. A standardformat for
definingexamtimetablingproblemshasbeendevelopedfor usein thesystem
to enablematchingof any two problemsto measuretheir similarity. Oncea
new problemis presentedto thesystem,thematchingprocesswill retrieve the
mostsimilar problemfrom thecasebasealongwith themostsuccessfulalgo-
rithm(s)usedto solve thatproblem.Basedonhow similar theretrievedcaseis
to thenew one,theretrievedalgorithmmaybeadaptedby tuningits parameters
in somewayor by usingahybridof morethanoneretrievedalgorithm.

Thedevelopmentof sucha systemprovidesa largenumberof researchar-
eas. Of these,the biggestis the definition of similarity which is the onewe
considerhere. In this paperwe considerthe key elementsin the definition
of an exam timetablingproblemandwork towardsa definition for similarity
basedon which featuresseemto have the biggesteffect on how successful
analgorithmis. Of course,for ourpurposes,two similar timetablingproblems
wouldmeanthatthesamealgorithmwouldbesuitablefor bothproblems.Two
problemswould be dissimilar if a particularalgorithm/heuristicworked very
well on oneproblembut noton theother. Essentiallythismeansthattwo sim-
ilar problemsshouldhave a similar landscapeasseenfrom thepoint of view
of the algorithmoperatingon theselandscapes.Given the natureof the do-
main in question,therearea potentially infinite numberof simpleandmore
complex statisticalmeasureswhich couldbeusedto comparetwo givenexam
timetablingproblems.Many of thesewill actuallyhave very little impacton
thesuccessof a givenalgorithmon theproblem,whereasotherscouldbema-
jor factorsin how well thealgorithmnavigatesthesearchspaceto find agood
solution. Our aim hereis to study the make up of the datasetsthemselves
to examinetheeffectsof someof themorelikely problemdescriptorson the
solutionsproducedby ourSimulatedAnnealingAlgorithm.

The resultsobtainedshouldhelp us to betterunderstandthe natureof the
problemdatasetsandtheirkey elementswhilst eliminatingthosefactorswhich
have little or no effect on the successof thealgorithm. Theoriginal ideafor
this researchwasto make relatively smallchangesto our existing datasetsto
observe how thesechangedthequality of solutionsproduced.This leadon to
a numberof otherinterestingresearchquestionswhich arediscussedlateron
in thispaper.
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4. Testing Algorithm

Ultimatelyouraimis to havealargenumberof differenttypesof algorithms
in our systemwhich have beenappliedto a numberof differentproblemsof
varyingdifficulty. Each(problem,algorithm)pair which producesa goodre-
sult will be storedas a casewith someproblemspossiblybeing duplicated
if more thanonealgorithmprovideshigh quality results. Initially, however,
we plan to startbuilding up a casebasefrom thesimplestalgorithmsandde-
velop themandintroducemorecomplex algorithmsin future researchwork.
With our initial algorithmswearerunningaseriesof testsonreallife datasets
from awide varietyof institutionsto provide abetterideaof how theproblem
definition affects the algorithm’s behaviour andleadstowardsa definition of
similarity.

Our definitionof similarity, � , betweentwo cases,�! and �!" hasthe fol-
lowing form:

�$#%�  	 � "'& �)( #
�
�+* �

, � #- ./� �10 ./2 � - &%&
where:

( # & and
, � # & arefunctionswhich will betunedasmorecasesareadded

to thecasebase

� is thenumberof featuresin thesimilarity measure

./� � and ./2 � arethevaluesof the 3 th featureof cases�  and � " respec-
tively

The main purposeof the testswe arecarryingout firstly with our simple
algorithmsandlaterwith morecomplex algorithmsis to eliminatethefeatures
in the problemdefinition which have no effect on the behaviour of the algo-
rithm andto seehow stablecertainalgorithmsareregardingotherfeatures- for
instance,how largeachangein aparticularfeatureis neededto have asignifi-
cantaffect on thequality of solutionproducedby a particularalgorithmwhen
comparedto anotheralgorithm.

Giventhecomplex natureof theproblemlandscapesinvolved it is unlikely
thatour testswill produceany concrete,quantitative resultsregardingexactly
which partsof the problemdefinition have what effect on the algorithmper-
formance,but weaimto acquireasmuchqualitative informationaspossibleto
enableusto make valuejudgementson which featuresto includein our simi-
larity measureandwhat typeof toleranceto allow for eachindividual feature
in orderfor two casesto beconsideredsimilar basedon that feature.Thetol-
erancefor eachfeaturewill bedefinedandtunedasthesetof functions

, �
for

eachfeature3 in thesimilarity functiongiven.
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Weusea largestdegreegraphcolouringheuristicwith backtrackingto pro-
vide aninitial feasiblesolution2 for our initial algorithmwhich will thenonly
explorethesetof feasiblesolutions.Thesimpleneighbourhoodusedis defined
by all solutionsin which oneexam is moved to a new time slot. The objec-
tive functionto beoptimisedfor ourproblemsis discussedin Sections5 and6
whilst abrief descriptionof ourSimulatedAnnealingalgorithmis givenin the
following subsection.

Simulated Annealing

Our SimulatedAnnealingalgorithmselectsbothexam,
�
, andperiod,

�
, at

random,checkingwhethermoving exam
�

to period
�

is alegalmove3. If not,a
maximumof 9 moreperiodsaretestedto find afeasiblemove,otherwiseanew
examis randomlychosenandtheprocessrepeated.Thismoveis thenaccepted
or rejectedusing the standardprobabilisticacceptancecriteria of Simulated
Annealing(seee.g. [11]) with improving movesalwaysacceptedandworse
movesacceptedwith decreasingprobability basedon the geometriccooling
schedule.The startingtemperatureandcooling scheduleareinitially chosen
arbitrarilyandtunedbasedonresults.

Resultsmaybeimprovedby limiting examselectionto only thoseinvolved
in second-orderconflicts,althoughthiswill alsoreducetherangeof thesearch
spaceinvestigated.Hill Climbing couldalsobe incorporatedin someway to
ensurethatlocalminimaarefoundbeforethesearchmovesawayto anew area,
(in a similar mannerto a memeticalgorithm). For thepurposesof this paper,
however, weusedaverysimpleimplementationwhichstill producesresultsof
anacceptablequality sinceour aim isn’t to comparetheabsoluteresultswith
thoseobtainedby otheralgorithmsat this stage.

5. Data Sets

Initially, all our testshave beencarriedout on Carter’s Benchmarkdata
sets[9] without any soft constraints.Theobjective functionusedby Carteris
basedonly on thesumof proximity costsasdefinedbelow:

46587 �:9�;
; 5 	=<8>

��? 	������	�@ �

where465 is theweightgivento clashingexamsscheduled< periodsapart.
Initially the most obvious problemfeatureshave beenidentified and are

presentedin Tables1 and2, althoughmany of thesearelikely to have only a
smalleffect on theperformanceof algorithms.As well asthoseshown, there

2with all hardconstraintssatisfied
3A movewhich retainsthefeasibilityof theoverall timetable
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Table 1. Featuresfor CarterDataSets

Data No. of No. of No. of Conflict Matrix No. of
Set exams students enrolments Density periods

CAR-S-91 682 16925 56877 0.13 35
CAR-F-92 543 18419 55522 0.14 32
EAR-F-83 181 1125 8109 0.27 24
HEC-S-92 81 2823 10632 0.20 18
KFU-S-93 486 5349 25113 0.06 20
LSE-F-91 381 2726 10918 0.06 18
STA-F-83 139 611 5751 0.14 13
TRE-S-92 261 4360 14901 0.18 23
UTA-S-92 622 21267 58979 0.13 35
UTE-S-92 184 2750 11793 0.08 10
YOR-F-83 190 941 6034 0.29 21

area large numberof statisticalmeasureswhich can be appliedto the data
setsin orderto determinethedistributionsof examsandenrolmentsamongst
students.Table2 shows that thereis a wide variationin the averagenumber
of enrolmentsper studentbetweenthe differentdatasetsand the maximum
numberof examsthat any studentis taking. A statisticalanalysisof these
enrolmentsshouldgive an ideaasto how well spreadthey areaway from the
averageandwhetherthereareany significantanomalieswithin any of thedata
sets. Suchanalysisshouldprovide further basisfor our study of similarity
measures.

In this paper, however, we look in more detail at the studentenrolments
themselvesandexaminetheeffect they have on thestructureof theproblem.
We alsoconsiderhow big animpacttheobjective functionhason thesemea-
suresof similarity.

6. Analysis of Data Sets - Results & Conclusions

Our initial plansfor startingour analysisof the datasetscentredaround
makingsomesmallcontrolledchangesto theexistingdatasetsandrunningthe
samealgorithmon theoriginal setandthenew setandexaminingtheeffects
thesesmallchangeshaveon therunningof thealgorithm.Fromthiswehoped
to draw someconclusionsasto whetherthe changein questionhada major
effect on thealgorithmandif so,how big a changefrom theoriginal dataset
wasneededto observe this changein algorithmperformance.In orderto do
this though,we would needto examinethe impact of thesechangeson all
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Table 2. Featuresfor CarterDataSets

enrolments enrolments Largestno.
Data perstudent Examsper perexam of clashes
Set average max(num) period average max for 1 exam

Carleton91 3.36 9 (1) 19.5 83.40 1385 472
Carleton92 3.01 7 (29) 17.0 102.25 1566 381
EarlHaig83 7.21 10 (9) 7.5 44.80 232 134
EdHEC92 3.77 7 (1) 4.5 131.26 634 62

KingFahd93 4.70 8 (11) 24.3 51.67 1280 247
LSE91 4.01 8 (3) 21.2 28.66 382 134

St.Andrews83 9.41 11 (209) 10.7 41.37 237 61
Trent92 3.42 6 (20) 11.4 57.09 407 145

TorontoA&S92 2.77 7 (23) 17.8 94.82 1314 303
TorontoE92 4.29 6 (20) 18.4 64.09 482 58
YorkMills83 6.41 14 (1) 9.0 31.76 175 117

thevariousproblemdescriptors– for instance,whateffectwould removing 10
studentsfrom agivendatasethave on enrolmentsandtheconflictmatrix4?

Removing redundancy from Data Sets

The input files for theCarterDatasetsconsistof setsof # <�ACBED � � A�	 � �EFHG &
pairsrepresentingoneenrolmentfor a given student.Furtherenrolmentsfor
thesamestudentarerecordedin thesamefashionon following lines. It was
observed that in many of thedatasetstherewerea significantnumberof stu-
dentswho hadonly oneenrolment. Thesestudents,it wasdecidedhave no
impacton thedifficulty of theexamtimetablingproblemor its landscapesince
they areinvolved in no clashesandthereforethey do not have any effect on
theendresult– they cansit theironeexamequallyeasilywhenever it is sched-
uledsincecapacityconstraintsarenotconsidered.Ourfirst new datasetswere
thenproducedby removing all thosestudentswith a singleenrolmentfrom
the problemandrunningthe SimulatedAnnealingalgorithmon this reduced
studentset.Table3 shows someof thekey statisticsof thesedatasetsfor 3 of
theCarterproblemsandthe resultsconfirm that removing thesestudentshas
no impacton the final result,5 ascalculatedby dividing the total penaltyfor

4Thematrixof examsdenotingwhichexamshave studentsin commonandthereforeclashwith eachother
5Thesmallvariationin resultsin table3 is dueto therandomelementof theSimulatedAnnealingprocess
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Table 3. ResultsusingSimulatedAnnealingon 3 CarterDataSetswith all singleenrolment
studentsremoved

Data Students Total Average Standard Result
Set enrolment enrolment Deviation

Carleton91 16925 56877 3.36 1.57 6.84
Carleton91minus 13516 53468 3.96 1.15 6.82

Trent92 4360 14901 3.42 1.41 11.32
Trent92minus 3693 14234 3.85 1.15 11.40

EdHEC92 2823 10632 3.77 1.44 15.33
EdHEC92minus 2502 10311 4.12 1.11 15.50

the timetableby the numberof students6. The reduceddatasetsaredenoted
by adding‘ minus’ to theoriginal datasetin thetable.

Themainpointsto notefrom theresultsin Table3 arethat,whilst removing
arelatively largenumberof studentsfrom theproblem( 20%in thecaseof the
Carleton91dataset) thereis no effect at all on the final timetableproduced.
However, it doeshave a fairly noticeableeffecton many of theothermeasures
whichweput forwardasbeingpossiblefactorsin asimilarity measure– many
of which would be statisticalmeasuresbasedon the numberof studentsor
enrolmentsandratiosinvolving thesetwo factors.Fromthepointof view of the
algorithmoperatingon theproblems,theCarleton91datasetandits reduced
Carleton91minusdatasetare identicalandshouldthereforebe regardedas
similar (or indeedidentical)from a Casebasedreasoning‘heuristic selector’
perspective. This resultshows usthata fairly detailedanalysisof thedatasets
andwhat thestudentsin thesedatasetsactuallyaddto theoverall problemis
necessarybeforewe startto considerany measuresof similarity betweentwo
datasets.

On the faceof it, using the measuresshown in Table3, the reduceddata
setsarenot very similar to their equivalent completesetsat all, whencom-
paringthestudents,enrolments,averageenrolmentandthestandarddeviation
of the enrolments,yet aswe have shown, the reducedsetsshouldbe consid-
eredidentical to their completesetsfrom the point of view of selectingan
algorithm to solve the problems. Therefore,if thesefactorsare still to be
consideredwheninvestigatingmeasuresof similarity, we needto make sure
that we have reducedour datasetsto their minimum definition by removing
any redundancy beforecomparingthemfor similarity. For example,if Car-

6Theresultsfor thereducedsetsarecalculatedby dividing by thenumberof studentsin theequivalentfull
setto demonstratethatthey canberemovedfrom thedatasetwithout changingtheproblem
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leton91minusformedpartof acase7 within our casebaseandtheCarleton91
datasetwereinput to the systemto find a match,it would be pre-processed
beforethematchingprocessto remove thesingleenrolmentstudents,thenthe
Carleton91minus casewould be retrieved as an exact matchand its corre-
spondingalgorithmusedto solve theCarleton91set.

This resultprompteda variety of further researchquestionswhich needed
to be examinedfurther. Amongstthesewere the questionsof how a ‘good’
timetableis definedandwhetherthereis any moreredundancy which canbe
removedfrom thedatasetsbeforethematchingprocess.

A measurefor reportingresultsfor the Carterdatasetsis Average penalty
per student which is calculatedby taking the overall penaltyfor the whole
timetable,definedby the objective function, anddividing by the numberof
studentsin thedataset. However, in absolutetermsthis numbermeansvery
little since,asshown above, thenumberof studentsin a datasetis not a very
goodmeasureof similarity. It canbe arguedthat since3409studentsin the
Carleton91dataset areonly taking 1 exam and thereforeaddno penaltyto
theoverall timetable,that thesestudentsshouldn’t be includedin theAverage
penalty per student measure.In anextremecase,adatasetcouldcontain50%
of studentswho take only 1 exam- in this case,dividing thetotal penaltyfor
the timetableby all the studentswould give a result twice asgoodasif you
ignorehalf of thestudentswho addnothingto the“dif ficulty” of theproblem
- yet thetimetableitself would be identicalin bothcases.In itself this isn’t a
majorconcernsincetheresultsproducedfor thesedatasetsareonly usedfor
comparisonpurposesagainsteachothersoaslong aseveryoneusesthesame
measure,algorithmscanbe comparedto seewhich is better. Theseobserva-
tionsdid, however leadusin thedirectionof our furtherresearchinto theissue
of moreredundancy in thedatasets.

Examining subsets of the Data Sets

Having removed all the singleenrolmentstudentsfrom the datasetsand
witnessedtheimpactthis hadon theresultsandpotentialsimilarity measures,
wedecidedto seeif therewasany moreredundancy within theproblemdefini-
tion for thesesets.Thenext obviousareato investigatewastheissueof repeat
students,i.e. 2 or morestudentswith the exact sameenrolments.Theseare
verycommonin real-lifeproblemsgiventhatstudentsonthesamecoursetend
to have many or all examsin common. In additionto exact repeatstudents,
therearealsostudentswhoseenrolmentsform asubsetof 1 or moreotherstu-
dents. With the studentenrolmentfile sortedin descendingorderof number
of enrolmentswe could now readin studentsoneat a time andremove any

7Thebestalgorithmfoundto solve this problemforming theotherpartof thecase
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Table 4. Percentagesandnumbersof studentsin theBaseSet,SingletonSetandWeightsSet
for CarterDataSets

Data Total Base Singleton Weights
Set Students Set Set Set

Carleton91 16925 8194(48%) 3409(20%) 5322(31%)
Carleton92 18419 6195(34%) 3969(22%) 8255(45%)
EarlHaig83 1125 754(67%) 1 (0%) 370(33%)
EdHEC92 2823 444(16%) 321(11%) 2058(73%)

KingFahd93 5349 1367(26%) 276(5%) 3706(69%)
LSE91 2726 1253(46%) 99 (4%) 1374(50%)

St.Andrews83 611 150(25%) 0 (0%) 461(75%)
Trent92 4360 1924(44%) 667(15%) 1769(41%)

TorontoA&S92 21267 7946(37%) 6181(29%) 7140(34%)
TorontoE92 2750 392(14%) 79 (3%) 2279(83%)
YorkMills83 941 670(71%) 1 (0%) 270(29%)

duplicatestudentsfrom the dataset. Thesewould also includeany students
whoseclasheshadalreadybeenrecordedby earlierstudents.For example,if
astudentwith enrolmentsF , I and J is followedby 3 studentswith enrolments
#%F 	 I & , #%F 	 J & and #%I 	 J & respectively, the last 3 studentscan all be discarded
from thedatasetsincetheir clasheswererecordedby thefirst student.

In removing theseduplicate students,it wasnotedthattheir absencewould
have an impacton the final penaltyfor the timetable,unlike the removal of
the single enrolmentstudents. The reasonfor this being that the objective
function usedweightsall clashesby the numberof studentsinvolved in the
clashso that clasheswith a large numberof studentsarea higherpriority to
spreadwell apartthan thosewith only a few students.Therefore,duplicate
studentsdo addto the overall penaltyof the timetable. Despitethis, it was
still consideredworthwhileto remove themto examinetheremainingset.The
justification for this being that while duplicatestudentsdo contribute to the
problemdefinition, they only do so relative to the objective function usedto
definea goodtimetable. In termsof the hardconstraintsthey don’t alter the
problemandwe areinterestedto examinetheeffect of theobjective function
on measuringthe similarity of problems. The resultsobtainedareshown in
Table4.

The Singleton Set is thesetof singleenrolmentstudentsremoved initially,
the weightsset is the setof duplicatestudents(asdefinedabove) whilst the
Base Set is thesetof studentsremainingafterall studentsin boththeSingleton
setandtheWeightssetareremoved.TheBaseSetis a(smaller)setof students
whichdefinetheconflictmatrixsinceall studentsremovedto theothertwo sets
did not addany extra knowledgeto theconflict matrix. Hence,this setdefines
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the set of feasiblesolutionsto the larger problemwhilst the Weightsset is
so namedbecausethe studentsin that setsimply addweightsto the already
existingclashes.

Onemajorpoint to notefrom the3 setsis thatwhilst theSingletonsetcan
be taken on its own, theBasesetandtheWeightssetarelesseasyto split in
a meaningfulway sincethe Basesetdoesstill includea numberof weights
on variousedges.This is dueto the fact that only studentswhoseentireset
of clasheshadalreadybeennotedwereremoved to the weightsset, leaving
thosewho have only someof their clashesalreadynotedto beincludedin the
Basesetastheirremainingclashesaddnew informationto theset.If any single
studentis removedfrom theBaseset,thedefinitionof thefeasibleproblemwill
changebecauseoneor moreclasheswill belost. Removing studentsfrom the
weightsset,whilst keepingtherestfor theproblemwouldretainthesamebasic
problemdefinition,but will changetheweightingsandthereforethebiasof the
clasheswhentheSimulatedAnnealingalgorithmoperateson theproblem.

Using the objective function given by Carter[9] to provide resultsfor the
problemstherefore,it is difficult to usetheinformationdiscoveredby splitting
the datasetsup in this way dueto the above mentionedweightsincludedin
the Baseset. However, we decidedthat this splitting up of the datasetsinto
subsetslooked promisingasa potentially importantfactor in comparingdif-
ferentdatasetssincethe percentageof studentsforming the basesetvaries
greatlybetweendatasets- for instance,the fact that only 14% of the 2750
studentsin theTorontoE92datasetarerequiredto definetheproblemin terms
of feasibilitycomparedto 71%of the941YorkMills83 studentsis asignificant
difference.

Asaresultof thiswedecidedto re-considerthedefinitionof agood timetable
asproposedby Carter’sobjective function.Fromthepointof view of astudent
takingtheexams,their criteria for how importantparticularclashesarecould
includea varietyof individual reasonsbasedon how difficult they find certain
examschedulesto be,but noneof thesecanbetakeninto accountin theoverall
timetablesincethey areindividual preferences.However, thenumberof other
studentsinvolved in a particularclashis completelyunimportantto any indi-
vidual student.Whetherthey aretheonly studentdoingtwo particularexams
or whetherthereare100otherstudentsalsotaking thosetwo examsdoesnot
matterto themandthereforeweightingclashesby thenumberof studentsin-
volved in theclashgiveswhatcouldbeconsideredanunbalancedbiasin the
timetable.8 Examswith many studentsin commonmay often be easierones

8Thisis ahighly debatableissueandoursis justoneperspectiveonhow to considerwhata"good"timetable
is. Weightingclashesby the numberof studentsinvolved is widely acceptedasa methodfor measuring
"good"andin noway aretheauthorstrying to suggestthatthismethodis notvalid. Ouraimhereis simply
to considerotherpotentialmethodsof defininga "good" timetableandexaminetheir impacton measuring
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from the point of view of the studenthaving to revise for andsit the exam.
Conversely, examswith relatively few studentsmay be morespecialisedand
difficult from astudent’sperspective- studentswouldneedmoreintensiverevi-
sionfor suchexamsif they arescheduledclosetogether. Weightingtheformer
far morethanthe latter would result in the ‘easier’ examsbeingspreadwell
apartfor lower overall penaltywhilst the‘harder’ examsfor thestudentsmay
berelatively closetogethersincetheir totalpenaltyin thetimetableis small.

Using this justification we decidedthat removing all studentweightings
from the objective function and weighting clashespurely by the numberof
periodsapartin thetimetablewouldproducewhatcouldbeconsidereda“f air”
timetablefrom thestudent’s pointof view andwouldvastlysimplify theprob-
lem from thepoint of view of thedatasets,meaningthatwe couldtotally dis-
cardall theWeightssetsandconcentratepurelyon theBaseSetsof students
whichdefinetheconflict matrix9.

Experimentscarriedoutonthewholedatasetandonjustthebasesetof each
datasetusingsuchanobjective functionwith no studentweightingsshowed,
asexpected,thattheresultsproduced(thetotalpenaltyfor thetimetableasde-
finedby thenew objective function)wereidenticalfor the full setof students
andfor thebaseset.Theconclusionto bedrawn from this is thatthedefinition
of agood timetablecanhaveahugeimpacton therelevantstatisticsof agiven
dataset.Usingournew definitionof good,the2750studentTorontoE92prob-
lemis identicalto the392studentTorontoE92BaseSetproblemandtherefore,
shouldbematchedassuchby oursimilarity measure.

Conclusions and Further Work

To summarisethe main conclusionsfound in our work so far, in order to
useany of thestatisticalmeasuresproducedfor a givendatasetasa measure
of similarity within our CBR system,we mustfirst strip awayany redundancy
from the databasedon the particularobjective function usedand useonly
the minimum setof studentswhich adequatelydefinethe problemto match
againstdatasetsexisting in the database.Our experimentshave shown that,
dependingonhow youdefineagood timetable,thesamedatasetcanbesplit up
andstrippeddown into very differentlooking datasets,but whichareactually
identicalfor thepurposesof runninganalgorithmto find thebestresults.

Our future work will continuewith this analysisand introducea number
of new statisticalmeasuresof thedatasets,examiningtheir distributionsand
seeinghow theremoval of setsof studentsor examsfrom thedatasetchanges
theproblem. As hasbeenshown in this paper, removing studentsat random,

similarity - our justificationbeingthatpurelyfrom astudent’s perspective, thenumberof studentsinvolved
in any givenclashis not a relevant factorfor theschedulingof exams
9Theweightingsincludedin theBaseSetwould alsoberemovedimplicitly by thenew objective function
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even a large number, from theoriginal datasetmayhave no impactat all on
the problem,whereasremoving just 1 or 2 studentsfrom the BaseSet can
completelychangethe problemdefinition anddifficulty. We will alsocarry
out testsof the samekind using our other algorithmsas well as examining
theeffect on oneoptimisationfunctionof optimisingresultsusinga different
function. - i.e. wewill outputtheresultsfrom two functionswhilst optimising
thesolutionusingonly oneof themandobserve how theresultsfrom theother
functionalter.
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