
A New Neural Network Based Construction Heuristic
for the Examination Timetabling Problem

P.H.Corr, B.McCollum, M.A.J.McGreevy, P.McMullan

Queens University of Belfast, Northern Ireland
p.corr@qub.ac.uk

Abstract. This paper examines the application of neural networks as a con-
struction heuristic for the examination timetabling problem. Building on the
heuristic ordering technique, where events are ordered by decreasing scheduling
difficulty, the neural network allows a novel dynamic, multi-criteria approach
to be developed. The difficulty of each event to be scheduled is assessed on
several characteristics, removing the dependence of an ordering based on a sin-
gle heuristic. Furthermore, this technique allows the ordering to be reviewed
and modified as each event is scheduled; a necessary step since the timetable
and constraints are altered as events are placed. Our approach uses a Kohonen
self organising neural network and is shown to have wide applicability. Results
are presented for a range of examination timetabling problems using standard
benchmark datasets.

Introduction

The examination timetabling problem is principally concerned with the scheduling of
a number of events into a restricted number of time-periods, subject to a set of con-
straints [1]. Conflicting events which have students in common must not be scheduled
into the same time-period. This essential condition is a hard constraint. Another such
hard constraint is that seating capacity much not be exceeded in any time-period (the
so called capacitated problem). A timetable satisfying all hard constraints with all
events scheduled is a feasible solution. While there may be many feasible solutions to
a given problem, the timetabler’s task is to find a good quality solution, satisfying as
many desirable conditions as possible. These desirable conditions, or soft constraints,
often vary between data sets but typically involve placing events such that each stu-
dent has a reasonable gap between any two exams. These conditions are rarely, if
ever, completely satisfied, and often vary extensively between data sets. The degree to
which the soft constraints are met - and hence the quality of the timetable - is meas-
ured by a cost function or penalty function. Therefore, the principal objective of the
timetabler is to construct a timetable with an acceptably low, ideally optimum, pen-
alty function.

Over the years various researchers have considered several methods of timetable
construction. A detailed discussion of these techniques is given by Carter et al [2] and
an excellent review of the field is provided by Burke et al [3].

Early approaches include techniques such as Graph Colouring and Constraint Pro-
gramming [3]. Subsequently, metaheuristic approaches have been used to help im-
prove the solution. Simulated annealing [4], Tabu search [5] and other techniques
such a Great Deluge [6] and Memetic Algorithms [7] have all proved useful. In gen-
eral metaheuristic approaches have performed well on benchmark problems though
they are time consuming compared with graph colouring based approaches. Another
avenue of research can be found in evolutionary and genetic approaches [8, 9]. Hybrid
approaches involving combinations of heuristics and metaheuristics such as genetic
algorithms and hill climbing techniques [10, 11] have produced good results on
benchmark datasets. Other successful approaches taken include multi-criteria ap-
proaches [12], constraint based techniques [13], case based reasoning [14], and re-
cently hyper-heuristics [15]. Recent papers note that on the whole, methods used to
tackle the examination problem tend to use problem specific information and heuris-
tics in particular.

Construction of a timetable is normally accomplished in two phases. An initial
timetable is built using a construction heuristic; this initial timetable is then enhanced
using an improvement heuristic [2]. Heuristic ordering is one approach to the con-
struction phase. Events are ordered in decreasing order of perceived scheduling diffi-
culty and then placed sequentially into available positions in the timetable within the
conditions imposed by the hard constraints. If necessary, events are left unscheduled
at this initial stage rather than violating the constraints with a high penalty being at-
tributed to the incomplete timetable. Heuristic ordering may take either a static or a
dynamic approach to construction. In the static approach a complete ordering is estab-
lished at the start of the construction phase prior to scheduling and remains constant
throughout the process. Events may be ordered using a single heuristic such as; larg-
est degree, weighted degree, or exam size, all of which contribute to scheduling diffi-
culty. In the dynamic approach, the order in which events are placed may change as
the timetable is built. For example, if events are scheduled by the number of available
slots remaining in the timetable (saturated degree) the placement order will change as
events are placed in the timetable.

In recent years, improvement heuristics have received much more attention from
researchers than the construction phase. As outlined above, a wide range of different
techniques have been applied, such as: local search, simulated annealing, tabu-search,
genetic algorithms, great deluge algorithm, and hybridised methods. The research re-
ported here focuses on the construction phase and seeks to improve the quality of the
initial timetable produced prior to the application of an improvement heuristic.

The well-established heuristic ordering approach has proved very effective and of-
fers a firm foundation for further development. However, a feature of the approach is
that the order in which events are scheduled is typically determined based on a single
criteria. In reality, timetabling is a multi-criteria problem. For example, recent work
by Asmuni et al [16] has shown how fuzzy techniques that incorporate characteristics
from a number of established heuristic orderings can be used in establishing the initial
order. Another approach explored in recent research has focused on heuristic adapta-
bility, in which the scheduling order is adapted to suit the problem leading to an im-
provement in the quality of the initial timetable [17]. Heuristic adaptability also intro-
duces a degree of generality to the system since the solution, as it develops, adapts to
the environment. Each time an event is scheduled, the timetabling environment has

been altered. In essence, an available position has been removed from the timetable,
resource availability is reduced and a new and more difficult problem has been cre-
ated. It is into this modified environment, a partially completed timetable, that the re-
maining events must be placed. As the timetable is generated, the scheduling order
must be reviewed after every placement, and modified if necessary, to ensure that the
most difficult exam is scheduled at each stage.

In this paper we propose a novel, neural network based multi-criteria methodology
for dynamically modifying scheduling order during the construction of an initial ex-
amination timetable.

The Timetabling System

In order to investigate the effectiveness of the neural network as a multi-criteria adap-
tive scheduling component the construction of a feasible timetable is viewed concep-
tually as a two stage process. Firstly, the neural network ranks all remaining exams by
perceived difficulty and chooses the most difficult to be scheduled next. A placement
component then places the chosen exam in the timetable. Following placement, the
process repeats – the remaining exams are ranked by difficulty and the most difficult
is placed in the timetable – until all exams have been placed or the chosen exam can-
not be placed. The quality of the final timetable is determined by a penalty function
which measures the extent to which each student’s exams are spread across the avail-
able periods. Clearly, before the neural network can rank exams by difficulty it must
be appropriately trained. Details of both network training and the penalty function
used are given later.

The Neural Network

The system is based on a Kohonen self-organising neural network. As illustrated in
figure 1, the network consists of two layers of processing elements or neurons; an in-
put layer and a mapping layer. Neurons (prototypes) in the mapping layer are spatially
arranged as a 2-D grid of five neurons by eight. The network employs an unsuper-
vised learning algorithm in which it is not necessary to know in advance the 'correct'
output for a given input. Once trained the organised network topology reflects the sta-
tistical regularities of the input data. Inputs (feature vectors) are projected onto the
prototypes in the mapping layer such that the topology of the input space is preserved.

During training the Kohonen layer undergoes a self-organising process in which a
two-dimensional map is produced representing the higher dimensional input space.
An essential feature of the map produced is that it preserves the topology of the input
space in that inputs which are ‘close together’ in input space are mapped to points
‘close together’ on the Kohonen layer. In effect, points on the Kohonen map represent
prototypes, or cluster centres, for the feature vectors used during training. Thus, a fea-
ture vector input to the trained network will be represented by a single prototype on
the mapping layer.

The choice of inputs and the extent to which the data used to train the network is
an accurate and adequate representation of the problem are crucial to the success of

the network. The purpose of the network is to determine the difficulty of each event
such that the most difficult exam can be scheduled at each point during the construc-
tion phase. As such, it is important that the feature vectors that form the input to the
network reflect those characteristics of the problem which contribute to scheduling
difficulty. At any point during the construction of the timetable the concept of diffi-
cultly is highly dependent upon both the data set and the current state of the timetable.
An examination may be perceived as ‘easy’ or ‘difficult’ based on characteristics such
as, for example, the number of conflicts (degree), the number of students enrolled
(exam size) or the number of available slots left (saturation degree). The input feature
vector used in this work contains both static components, such as degree, weighted
degree and exam size, and a dynamic component reporting the current state of the
timetable.

Mapping layer

Feature Vectors

Input layer

Weighted connections between the
Input Layer and the Mapping Layer -

full connectivity

Winning
Prototype

Neurons (prototypes) arranged as
a 2-D grid to form the Mappimg

Layer

Fig. 1. Schematic of the Kohonen Network. Further information on the Kohonen network and
neural networks in general may be found in Haykin [18]

The Training Process

Having defined the input feature vector it is necessary to establish a corpus of vectors
which are representative of the particular timetabling problem and which may be used
to train the network. In defining the training data it is essential that the corpus should
capture the complexities of the scheduling problem. In this work the training data was
generated by building a series of timetables using a random ordering heuristic. An
event is chosen at random and an attempt made to schedule it using the placement
system described above. Should placement succeed, the characteristics (of both the
event and the current state of the timetable) are recorded and stored to the training
corpus as a valid feature vector. Nothing is stored should placement fail. In this way a
corpus of feature vectors is constructed containing examples of successful scheduling
situations for the problem in hand. This approach allows each exam to be encountered
in a variety of ordering positions; scheduled early, mid or late in the construction. The

training corpus then contains a wide spread of possible scenarios that may arise dur-
ing the course of building the timetable.

The Kohonen network is trained using a competitive learning algorithm. As input
data is presented to the network the neurons on the mapping layer compete amongst
each other for activation, resulting in a winning neuron. The weights associated with
this winning neuron are then adjusted as dictated by the learning algorithm to align
more closely with the input [18]. Through this process the neurons on the mapping
layer become tuned to particular input patterns. The mapping layer is initially ar-
ranged as a two dimensional lattice of neurons as shown in figure 1. As the neurons
become tuned, and patterns are identified, they arrange topologically so that their po-
sition is representative of the input characteristics.

As training progresses, a two-dimensional, topological preserving map of the input
space is formed, made up of prototypes representing a range of inputs. The essence of
the methodology then is to label each prototype represented in the Kohonen layer with
a relative scheduling difficulty. Since the Kohonen network uses an unsupervised
learning algorithm it is not necessary to know a priori how difficult it is to actually
schedule the event represented by each of the feature vectors. However, it is a funda-
mental assumption in this work that feature vectors (events) that map to the same pro-
totype on the Kohonen mapping layer, and are therefore ‘close together’ in input
space, will have a similar scheduling difficulty.

Since all components in the feature vector are individually positively correlated
with perceived difficulty it is possible to allocate a relative difficulty to each proto-
type based on a simple linear distance measure based on the normalised values of the
prototype’s weighted inputs. Prototypes with the largest value represent the most dif-
ficulty exams to schedule; prototypes with the smallest value represent the easiest ex-
ams to place. This method presupposes that all features contribute equally to schedul-
ing difficulty. In reality, some features are more influential than others and some can
exhibit non-linear relationships with scheduling difficulty. The relative importance of
the features and their non-linear relationships must be accounted for by a pre-
processing stage prior to input to the network.

Construction of a timetable

Construction of a timetable can begin once the network has been trained and the pro-
totypes labelled. Scheduling begins with an empty timetable. A feature vector is gen-
erated for each event to be placed and presented in turn to the trained network. The
order of presentation is irrelevant. The network will map each input to one of the forty
prototypes. Since each prototype is labelled with perceived relative difficulty, it is
relatively straightforward to find all those events which are perceived to be most dif-
ficult at this stage. One of this group of events is chosen to be placed; at the moment
the choice is random since each event in the group is assumed to be equally difficult.
The chosen event is placed using the placement algorithm already described.

When an event is successfully placed, the resulting change in the timetable can in-
crease the scheduling difficulty of events yet be timetabled. These changes are cap-
tured in the updated feature vectors which are again presented to the network as the
first stage in choosing the next event to be scheduled. And so the process continues

with the scheduling difficulty of the remaining events changing and adapting as more
events are scheduled until either a feasible solution is obtained or the selected event
cannot be placed.

Results

The proposition to use a neural network as a critical component in a multi-criteria
adaptive scheduling system is entirely new. In order to accurately evaluate the contri-
bution of the network to the overall scheduling task it is important that the experimen-
tal system is kept stable and simple. To that end, a two-phase iterative timetable con-
struction system was developed as outlined above. Determining the order in which
exams should be placed in the timetable is the responsibility of the first phase. In the
second phase a placement system schedules exams in the chosen order. In all of the
results reported below, timetables are produced by a construction heuristic only; im-
provement heuristics have not been used.

A relatively straightforward placement system is used in this work. When an exam
is to be placed all remaining slots in the timetable which do not contravene a hard
constraint are considered. The exam is placed in the slot which contributes least to the
overall penalty. Should more than one timetable slot meet this criteria, the exam is
placed randomly in one of these slots. Importantly, recursive backtracking is not used
during timetable construction; once placed, an exam cannot be moved. This simplistic
placement regime is necessary to ensure that the impact of the neural network compo-
nent is clearly visible and, in the context of proving the neural network based ap-
proach, can be evaluated without masking by an unnecessarily complex placement al-
gorithm.

Establishing Feasibility of the Method

The first experimental task was to verify that the neural network could act as a multi-
criteria adaptive component in a scheduling system. Carter’s collection of benchmark
examination datasets was used for this purpose1.

Each dataset was ordered by degree, weighted degree and exam size. These static
orderings were passed to the placement system and exams scheduled in the estab-
lished order. To enable a range of possible timetables, exams were placed randomly in
the timetable with the only proviso being that placement did not break a hard con-
straint. It is practically impossible to generate a feasible timetable using such a sim-
plistic placement mechanism. A number of runs were made for each ordering and the
number of unplaced exams was recorded.

An eight-by-five Kohonen network was then constructed and trained for each data-
set as described above. A number of timetables were constructed for each dataset. For
each run, the number of unplaced exams was recorded. Again, the objective is not to
construct a feasible timetable but to determine the contribution of the neural network.

Results of the experiment are shown in table 1.

1 Benchmark datasets may be downloaded from ftp://ftp.mie.utoronto.ca/pub/carter/testprob

ftp://ftp.mie.utoronto.ca/pub/carter/testprob

Table 1. Number of unplaced events in the construction of a timetable

Data Set By
Degree

By
Size

By
W.Degree

Best Result Best Result
using NN

CAR-F-92 15 17 19 15 1
CAR-S-91 22 21 15 15 5
EAR-F-83 8 13 14 8 3
HEC-S-92 3 8 6 3 0
KFU-S-93 13 12 8 8 3
LSE-F-91 7 5 7 5 0
STA-F-83 31 31 30 30 22
UTA-S-92 6 7 7 7 1
UTE-S-92 9 7 11 5 0
TRE-S-92 10 10 5 6 0
YOR-F-83 15 28 26 15 10

In all cases, use of the network component has reduced the number of unplaced

events, sometimes significantly, when compared to the use of established event order-
ing heuristics based on a single criterion. Indeed, despite the highly restrictive place-
ment algorithm, use of the neural network to order events for placement generated
feasible timetables for four of the datasets. It was not possible to produce a feasible
timetable for any of the datasets using traditional ordering heuristics.

Refining the Methodology

Having established the feasibility of the neural network based methodology the task
now is to tune the method so that high quality feasible timetables can be produced for
all datasets. For this it is necessary to introduce a penalty function so that the quality
of the final timetable can be determined and results compared with those of other re-
searchers.

The penalty function is motivated by the goal of spreading out each student’s ex-
amination schedule. If two exams, i and j, scheduled for a particular student are t time
slots apart, the weight is set to

t
tw −= 52 where { }5,4,3,2,1∈t (1)

The weight is multiplied by the number of students that sit for both of the sched-
uled exams. The average penalty per student is calculated by dividing the total penalty
by total number of students T. The goal is to minimise the following formulation:

ij pp

N

i

N

ij
ij ws

T −

−

= +=
∑ ∑

1

1 1

1

(2)

where N is the number of exams, sij is the number of students enrolled in both
exam i and j, pi is the time slot where exam i is scheduled, subject to 1 ≤ |pj – pi| ≥ 5

A number of refinements were made to the methodology. In particular, the network
training regime was revised. Training data was originally generated using the method
outline above in which events are chosen at random and a feature vector added to the
training corpus if that event can be scheduled. This method takes no account of diffi-
culty during training and can result in feature vectors representing intrinsically easy
events (e.g. small events with low degree) scheduled early in the process being added
to the training corpus. Similarly, it is inevitable that the training data will contain fea-
ture vectors representing intrinsically difficult events (e.g. large events with high de-
gree) scheduled late in the process. Neither of these eventualities is likely to occur
while the timetable is being constructed. Consequently, it can be argued that the net-
work should not be trained with such unlikely exemplars.

New training data was generated for each of the datasets. In each case events were
ordered by each of the established ordering heuristics before placement. A number of
random orderings were retained in generating the training data. In addition, the
placement system used was modified such that the chosen event was placed by least
cost. For each dataset, a new trained network was developed and used in the construc-
tion of a timetable. The results are shown in table 2.

Table 2. Best cost achieved for each dataset using the revised training method. The ease with
which timetables can be generated and an indication of time taken is also shown. The work was
carried out using a standard desktop PC with AMD Athlon (tm) XP 1800+ 1.54GHz processor
and 256MB RAM.

Data Set Proportion of
feasible

timetables

Best
Cost

Average time
to produce a

timetable(sec)

Best
Reported

Results [16]
CAR-F-92 0.002 6.2456 10.51 4.1
CAR-S-91 0.008 7.2129 17.28 4.65
EAR-F-83 0.0004 49.4436 2.03 29.3
HEC-S-92 0.095 13.57 0.60 9.2
KFU-S-93 0.008 19.9 3.17 13.5
LSE-F-91 0.0504 14.9938 2.25 9.6
STA-F-83 0.24275 159.2831 0.96 134.9
UTA-S-92 0.04 4.489 14.04 3.2
UTE-S-92 0.30436 31.25 1.31 24.4
TRE-S-92 0.0584 10.7791 3.01 8.3
YOR-F-83 0 1 unplaced 2.07 36.2

With the modified training regime feasible timetables were constructed for all

datasets with the exception of YOR-F-83. For some datasets generating a feasible
timetable is relatively straightforward, for others it is problematic. For example, 30%
of attempts to generate a timetable for the UTE-S-92 dataset result in a feasible solu-
tion. With the exception of the YOR-F-83 dataset, EAR-F-83 was found to be most
difficult with only 0.04% of attempts resulting in a feasible timetable.

The costs recorded for each dataset represent the value of the penalty function at
the end of the construction phase only; improvement heuristics have not been used in
this work. As such, our results are not directly comparable with other published re-

sults for these datasets, invariably recorded after an improvement phase. Our primary
motivation in this work is to prove the effectiveness of the neural network as a multi-
criteria, adaptive construction heuristic; not necessarily to obtain best results on these
test datasets. With this proviso, best published results are also shown in table 2.

Application to of the Methodology to Capacitated Data

The datasets above do not contain constraints on the seating available in each period.
Such uncapacitated data is useful for developing and proving the methodology but
most real-world problems will have a limited set of rooms of varying capacities avail-
able. In reality, different institutions must satisfy a range of different constraints in
generating an institution-wide timetable [19].

The neural network methodology has been applied to a rich dataset from the Uni-
versity of Nottingham – Nottingham 94. This dataset contains many constraints addi-
tional to those found in the benchmark datasets used above. Extra conditions include;
specific period assignments, room assignments, timetabling events in a particular or-
der, the requirement for some events to be placed in a room of their own and groups
of events to be scheduled together in the same period/room. A neural network was
trained, using the technique presented above, with all of these conditions treated as
hard constraints. This presents a much more realistic, highly constrained scheduling
problem than that posed by the benchmark datasets considered previously. Again,
without the use of recursive backtracking or an improvement heuristic the neural net-
work based system succeeded in constructing valid timetables but only by contraven-
ing the desirable condition that conflicting events should be scheduled at least one pe-
riod apart.

It is important to note that the methodology used to order events for placement has
not changed from that used with the benchmark datasets. The only component of the
timetabling system which is, of necessity, tailored to the institution is the placement
system; this component must be tuned such that all institution-specific hard con-
straints are respected when events are scheduled.

This is a significant result. Taken with the results on the benchmark datasets it il-
lustrates that the neural network methodology has general applicability across a range
of data and can be used successfully in real timetabling situations. In essence, the neu-
ral network provides a generalisation technique, designed to recognise patterns in the
data that may be exploited in the generation of high quality timetables. This provides
a high degree of generality resulting in a methodology which is largely independent of
institution or dataset.

Conclusions and Further Work

The work presented here has shown the feasibility of using a neural network based
methodology as a generally applicable, multi-criteria, adaptive, construction heuristic
for the examination timetabling problem. Work is progressing on two fronts; firstly,
to refine the method to improve both the proportion of feasible timetables produced

and the quality of the final schedule and secondly, to evaluate the applicability of the
methodology to related scheduling problems such as course timetabling for example.

References

1 Burke, E.K., Jackson, K.S., Kingston, J.H. and Weare R.F., Automated Timetabling: The
State of the Art, The Computer Journal, Vol 40, No 9, pp 565-571, 1997.

2. Carter. M.W., and Laporte, G. Recent developments in practical examination timetabling.
PATAT 1996, Lecture Notes in Computer Science Vol 1153 pp3-21, 1996.

3. Burke, E.K. and Petrovic, S. Recent research directions in automated timetabling. Euro-
pean Journal of Operational Research 140 pp 266-280, 2002.

4. Thompson, J.M. and Sowsland, K.A. A Robust Simulated Annealing Based Examination
Timetabling System. Computers and Operations Research 25(7-8), pp 637-648, 1998.

5. White, G.M. and Xie B.S. Examination Timetables and Tabu Search with Longer-Term
Memory. PATAT 2001, Lecture Notes in Computer Science Vol 2079, pp 85-103, 2001

6. Burke, E.K. and Newall, J.P. Enhancing Timetable Solutions with Local Search Methods.
PATAT 2002, Lecture Notes in Computer Science Vol 2740, pp. 195-206, 2003.

7. Burke, E.K., Newall, J.P. and Weare, R.F. A Memetic Algorithm for University Exam Time-
tabling. PATAT 1996, Lecture Notes in Computer Science Vol 1153, pp 241-250, 1996

8. Corne, D., Fang, H.L. and Mellish, C. Solving the Modular Exam Scheduling Problem with
Genetic Algorithms. In Proc of the 6th International Conference on Industrial and Engineer-
ing Applications of Artificial Intelligence and Expert systems, pp 370-373, 1993.

9. Ross, P., Corne, D. and Fang, H.L. Improving Evolutionary Timetabling and Delta Evalua-
tion and Directed Mutation. In Y. Davidor, H. P. Schwefel, and R.Manner (eds.), Parallel
Program Solving in Nature, Vol. III, pp. 565-566. Berlin: Springer. 1994

10. Burke, E.K., Newall, J.P. and Weare, R.F. Initialisation Strategies and Diversity in Evolu-
tionary Timetabling. Evolutionary Computation 6(1), pp 81-103, 1998

11. Burke, E.K. and Newall, J.P. A Multi-Stage Evolutionary Algorithm for the Timetabling
Problem. IEEE Transactions on Evolutionary Computation 3(1), pp 63-74, 1999.

12. Burke, E.K., Bykov, Y and Petrovic, S. A Multi-Criteria Approach to Examination Time-
tabling, PATAT 1996, Lecture Notes in Computer Science Vol 1153, pp 118-131, 1996.

13. Carter, M.W. and Johnson, D.G. Extended Clique Initialisation in Examination Time-
tabling. Journal of the Operational Research Society 52(5), pp 538-544, 2001.

14. Burke, E.K., Petrovic, S. and Qu. R. Case-Based Heuristic Selection for examination Time-
tabling. Proceedings of the Seal’02 conference, Singapore, pp 277-281, 2002.

15. Burke, E.K., McCollum, B., Meisels, A., Petrovic, S. and Qu, R., A Graph-Based Hyper-
Heuristic for Timetabling Problems, accepted for publication in the European Journal of
Operational Research, to appear 2006.

16. Asmuni, H., Burke, E.K., Garibaldi, J.M. and McCollum, B. Fuzzy Multiple Heuristic Or-
dering for Examination Timetabling. PATAT 2004, Lecture Notes in Computer Science
Vol 3616, pp 334-353, 2004.

17. Burke, E.K. and Newall, J.P. Solving Examination Timetabling Problems through the
Adaption of Heuristic Orderings. Annals of Operational Research 129, pp 107-134, 2004.

18. Haykin, S.S. and Saher S. Neural Networks: a comprehensive foundation. - 2nd ed.. -
Englewood Cliffs, N.J. : Prentice Hall, 1998 . -ISBN 0132733501

19. Burke, E.K., Elliman, D.G., Ford, P. and Weare, R.F. Examination Timetabling in British
Universities: A survey. PATAT 1996, Lecture Notes in Computer Science Vol 1153 pp76-
90. 1996.

