
The Second International Timetabling
Competition (ITC-2007): Curriculum-based

Course Timetabling Track
— preliminary presentation —

Luca Di Gaspero1, Barry McCollum2, and Andrea Schaerf1

1 DIEGM, University of Udine
via delle Scienze 208, I-33100, Udine, Italy

{l.digaspero | schaerf}@uniud.it
2 School of Electronics, Electrical Engineering and Computer Science,

Queen’s University
SARC Building, Belfast, United Kingdom

b.mccollum@qub.ac.uk

Abstract. Following the success of the First International Timetabling
Competition in 2002, the timetabling research community is organising
a new competition on this problem (opening June 1st). This new com-
petition will be on three different timetabling problems, and one of the
tracks concerns the course timetabling formulation that applies to Italian
universities (called Curriculum-based Course Timetabling). The dataset
is composed by real-world instances provided by the University of Udine.
In this work, we overview the general rules of the competition and we
describe in details the problem formulation and the instances proposed
for this track.

1 Introduction

Timetabling within Universities has long been recognised as a difficult combi-
natorial problem of practical relevance. Whether it be timetabling exams or
courses, much (human or computing) effort is spent for producing solutions that
are workable and of a high quality (see, e.g., [5]).

The First International Timetabling Competition (ITC-2002), which was or-
ganised by the International Metaheuristic Network, attracted 24 feasible sub-
missions from all over the world. Information relating to the problem definition,
instances, rules, and solution evaluation of ITC-2002 is available at the webpage
http://www.idsia.ch/Files/ttcomp2002/.

The ITC-2002 was based on a problem formulation specifically proposed for
the competition, and on a set of artificially generated instances, but it contained
many of the characteristics found in certain university settings. Thanks to the
competition, this formulation has successively become a standard, and many
researchers have used it within their work (see, e.g., [1, 3, 2]). ITC-2002 therefore



had a positive effect of generating common ground for cross-fertilisation of ideas
within research groups in the timetabling community.

The Second International Timetabling Competition (ITC-2007), opening June
1st, follows the main ethos of the first edition, but also aims at advancing upon
it in a number of respects. The first innovation consists in being subdivided
in three tracks so as to better cover the main formulations of the field of edu-
cational timetabling problems. Specifically, the tracks will be on: Examination
timetabling, Post Enrolment Course Timetabling (the evolution of the formula-
tion of ITC-2002), and Curriculum-based Course Timetabling. The second inno-
vation aims at bridging the gap between research and practice: the competition
introduces a significant degree of complexity in all tracks so that the new formu-
lations employed are closer (in more aspects, although not all) to those of ‘real
world’ problems [4].

In this paper, we describe the Curriculum-based Course Timetabling track,
which is under the responsibility of the authors. We present the general rules
of ITC-2007, the problem formulation of the track, and the description of the
instances. Some discussion closes the paper.

The information presented here are preliminary, because the organisation
is still on-going and some rules still can change up to the actual opening of
the competition. All updated information will appear in the ITC-2007 web site:
http://www.cs.qub.ac.uk/eventmap/.

2 Competition rules

The competition will have a set of rules that the participants have to satisfy. The
rules of ITC-2007 are in large part taken from those of ITC-2002, but obviously
some modifications have been made based on the previous experience.

1. The competition has an opening day and a deadline (approximately 6 months
later). All coding and experimenting must be finished by the deadline.

2. Participants have to implement an algorithm to tackle the problem on a sin-
gle processor machine. It can be expressed using any programming language.

3. The goal is to produce feasible timetables, in which a number of hard con-
straints are satisfied, and to minimise the number of broken soft constraints.
If feasibility cannot be reached, information outlined on the solution pro-
duced should be provided, and the number of violated hard constraints is
used for evaluation.

4. The dataset will be split into three sets of instances:
Early instances: A first set of instances will appear on the web at the

opening of the competition.
Late instances: A second set of instances will be published two weeks be-

fore the deadline.
Hidden instances: A third set of instances will be revealed only after the

competition has closed and the participants have submitted their solvers.
These will be used internally to rank the solvers submitted.



5. All solvers will be granted a fixed CPU time. Participants have to benchmark
their machine with a program provided to them in order to know for how
much time they can run their program on their machines.

6. The algorithms should run on a single processor machine, take as input
a problem file in the format described, and produce as output a feasible
timetable (if found) with a minimum number of soft constraint violations
in the allowed CPU time. The output timetable must adhere to the data
format determined by the organisers.
The algorithm should not take account of additional knowledge about the
instance (e.g., results from previous runs). The same version (and fixed pa-
rameters) of the algorithm must be used for all instances. That is, the al-
gorithm should not “know” which instance it is solving: although it might
analyse the problem instance and set parameters accordingly, it should not
“recognise” the particular instance.

7. The participants must be prepared to show that those results are repeat-
able in the given computer time. In particular the participants should make
their program in such a way that the exact run that produced each solution
submitted can be repeated (by providing the random seed, etc.). They can
try several runs to produce each submitted solution (each with the allowed
computer time), but they must be able to repeat the run for any solution
submitted.

8. Participants should submit for each instance (early and late) the best score
found by their algorithm in the specified computer time, by uploading it onto
the competition web site. Participants should also submit a concise and clear
description of their algorithm, so that in principle others can reproduce it.

9. Classification will be based on the scores provided. The actual list will be
based on the ranks of the solvers on each single instance. Ranks will be based
hierarchically on hard constraint violations and scores on the soft ones. The
average of the ranks will produce the final place-list.

10. Based on the place-list a set of top solvers, the finalists, will be asked to
provide the executable that will be run and tested by the organisers. The
finalists’ solver will be rerun by the organisers on all instances (including the
hidden ones).

11. In some circumstances, finalists may be required to show source code to the
organisers. This is simply to check that they have stuck to the rules.

12. Finalists’ place-list will be again based on the ranks on each single instance
for a set of trials on the hidden instances.

3 Problem formulation and Instances

The Curriculum-based timetabling problem consists of the weekly scheduling of
the lectures for several university courses within a given number of rooms and
time periods, where conflicts between courses are set according to the curricula
published by the University and not on the basis of enrolment data. This for-
mulation applies to University of Udine (Italy) and to many Italian and indeed



International Universities, although it is slightly simplified with respect to the
real problem to maintain a certain level of generality.

The problem consists of the following entities:

Days, Timeslots, and Periods. We are given a number of teaching days in
the week (typically 5 or 6). Each day is split in a fixed number of timeslots,
which is equal for all days. A period is a pair composed by a day and a
timeslot. The total number of scheduling periods is the product of the days
times the day timeslots.

Courses and Teachers. Each course consists of a fixed number of lectures to
be scheduled in distinct periods, it is attended by given number of students,
and is taught by a teacher. For each course there is a minimum number of
days that the lectures of the course should be spread in, moreover there are
some periods in which the course cannot be scheduled.

Rooms. Each room has a capacity, expressed in terms of number of available
seats. All rooms are equally suitable for all courses (if large enough).

Curricula. A curriculum is a group of courses such that any pair of courses
in the group have students in common. Based on curricula, we have the
conflicts between courses and other soft constraints.

The solution of the problem is an assignment of a period (day and timeslot)
and a room to all lectures of each course.

3.1 Hard constraints

Lectures: All lectures of a course must be scheduled, and they must be assigned
to distinct periods.

RoomOccupancy: Two lectures cannot take place in the same room in the
same period.

Conflicts: Lectures of courses in the same curriculum or taught by the same
teacher must be all scheduled in different periods.

Availabilities: If the teacher of the course is not available to teach that course
at a given period, then no lectures of the course can be scheduled at that
period.

3.2 Soft constraints

RoomCapacity: For each lecture, the number of students that attend the
course must be less or equal than the number of seats of all the rooms
that host its lectures.Each student above the capacity counts as 1 point of
penalty.

MinimumWorkingDays: The lectures of each course must be spread into a
minimum number of days. Each day below the minimum counts as 5 points
of penalty.



CurriculumCompactness: Lectures belonging to a curriculum should be ad-
jacent to each other (i.e., in consecutive periods). For a given curriculum
we account for a violation every time there is one lecture not adjacent to
any other lecture within the same day. Each isolated lecture in a curriculum
counts as 2 points of penalty.

RoomStability: All lectures of a course should be given in the same room.
Each distinct room used for the lectures of a course, but the first, counts as
1 point of penalty.

4 Instances, File Formats, and Validation

There will be 21 instances available: 7 for each set (early, late, and hidden). All
instances are real data coming from the University of Udine. For all instances
there exists at least one feasible solution (no hard constraint violations), but at
present it is not known which is the optimal value for the soft constraints.

In order to model cases in which the number of timeslots is not the same for
all days (e.g. Saturday afternoon free), there might be periods unavailable for
all courses. For all instances there cannot be two curricula composed by exactly
the same courses.

Each instance comes in a single file, containing a file header and four sections:
courses, rooms, curricula, and constraints. The header provides all scalar values
and each section provides the arrays for that specific aspect of the problem. The
exact format is described in the web site.

The output also must be provided in a single file such that each line represents
the assignment to one lecture in the following format (lines can be in any order).

We provide the C++ source code of a solution validator, so that the par-
ticipant can compile it themselves at their machine and also inspect the code.
In case it is necessary, executables for various platforms could be provided on
request.

The validator takes two command-line arguments: the input file and the
output file and it produces on the standard output the evaluation of the solution
along with the detailed description of all violations (hard and soft). If the output
file is not formatted correctly, the validator produces an error message on the
standard error and aborts. Conversely, the input is assumed always correct. An
input file validator, in case the participants want to create new instances, is
available and can be provided upon request.

5 Discussion

As already mentioned, the description proposed here is preliminary due to the
timing of the competition. More details will be added when available to the
public.

We believe that the most important advances w.r.t. the previous competition
is the employment of both more realistic problem formulations and data coming
from the real world.



In addition, in ITC-2002 only feasible solutions were accepted and it was
purposely rather simple to produce a feasible one for all instances. This time,
participants that reach only infeasible solutions for some instances can submit
their solution, although all of them have a feasible one.

In order to compare different solvers in cases of unfeasible solutions for some
instances, we use an evaluation based on ranking of solutions on each instance,
rather than on the actual scores (which might be incomparable). Due to this
scoring based on rankings, an infeasible solution on an instance does not neces-
sarily prejudice the overall performance.

Finally, in ITC-2002 the ranking was fully based on the solution provided
by the participants. In case of stochastic solvers, this CPU time was to grant
the maximum time for each single trial. Therefore, the participants could take
advantage of what we call the Mongolian Horde approach (in [6]): “Run as many
trials as you can and report only the best of all of them”. In ITC-2007, the re-
running of finalist solvers on organisers machine (with new seeds) and the use
of hidden instances should be able to provide against this approach. It is worth
mentioning that in order to provide against the excessive use of the Mongolian
Horde approach, the competition organisers tested the best few algorithms also
on unseen instances, and indeed the results were found to be broadly in-line with
the known instances.

References

1. M. Chiarandini, M. Birattari, K. Socha, and O. Rossi-Doria. An effective hybrid
approach for the university course timetabling problem. Journal of Scheduling,
9(5):403–432, 2006.

2. Luca Di Gaspero and Andrea Schaerf. Neighborhood portfolio approach for local
search applied to timetabling problems. Journal of Mathematical Modeling and
Algorithms, 5(1):65–89, 2006. DOI: 10.1007/s10852-005-9032-z.

3. Philipp Kostuch. The university course timetabling problem with a three-phase
approach. In Edmund Burke and Michael Trick, editors, Proc. of the 5th Int. Conf.
on the Practice and Theory of Automated Timetabling (PATAT-2004), selected pa-
pers, volume 3616 of Lecture Notes in Computer Science, pages 109–125, Berlin-
Heidelberg, 2005. Springer-Verlag.

4. Barry McCollum. University timetabling: Bridging the gap between research and
practice (invited paper). In E. Burke and H. Rudová, editors, Proc. of the 6th Int.
Conf. on the Practice and Theory of Automated Timetabling (PATAT-2006), pages
15–35, Brno, The Czech Republic, 2006.

5. Andrea Schaerf. A survey of automated timetabling. Artificial Intelligence Review,
13(2):87–127, 1999.

6. Andrea Schaerf and Luca Di Gaspero. Measurability and reproducibility in
timetabling research: State-of-the-art and discussion (invited paper). In E. Burke
and H. Rudová, editors, Proc. of the 6th Int. Conf. on the Practice and Theory of
Automated Timetabling (PATAT-2006), pages 53–62, Brno, The Czech Republic,
2006.


