
 
 

  

Abstract— When an agent observes its environment, there are 
two important characteristics of the perceived information. One 
is the relevance of information and the other is redundancy. The 
irrelevant and redundant features which commonly exists 
within an environment, commonly leads to agent state explosion 
and associated high computational cost within the learning 
process. This paper presents an efficient method concerning 
both the relevance of information and the correlation in order to 
improve the learning of reinforcement learning agent. We 
introduce a new concurrent online learning method to calculate 
the match count C(s) and relevance degree I(s) to quantify the 
redundancy and correlation of features with respect to a desired 
learning task. Our analysis shows that the correlation 
relationship of the features can be extracted and projected to 
concurrent biased learning threads.  By comparing the 
commonalities of these learning threads, we can evaluate the 
relevance degree of a feature that contributes to a particular 
learning task.  We explain the method using random walk 
examples and then demonstrate the method on the chase object 
domain. Our validation results show that, using the concurrent 
learning method, we can efficiently detect redundancy and 
irrelevant features from the environment on sequential tasks, 
and significantly improve the efficiency of learning. After 
relevant features are extracted, the agent can remarkably 
accelerate its succeeding learning speed. 

I. INTRODUCTION 
Reinforcement learning (RL) provides a fundamental 

framework for intelligent agents to improve their behavior 
through interacting with the environment [1]. In a delayed 
feedback and non-deterministic environment, RL proves to 
be an effective way to train an agent to perform at a high 
standard [2]. However, in real environments, the agent suffers 
from the consequence of redundant and irrelevant 
information which causes the state dimensions to explode. It 
is desirable for agents to develop an ability to generalize over 
the state space [3; 4]. One important step toward a higher 
level of state generalization is to find the most relevant 
aspects of a learning task [5]. Selecting observation 
perspective is a basic ability of the humans. When performing 
a task, even though we may see everything, we intuitively 
concentrate on the most relevant aspects for the current task. 
To develop such ability in an intelligent agent, it needs an 
algorithm to search for and evaluate the relevance degree of 
environment features. Furthermore, the agent also needs 
methods to utilize the discovered relevant features to assist 
task learning and performance.  
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Environmental relevant feature evaluation and extraction is 
aimed at discover and remove as much as possible of the 
irrelevant and redundant information, and at identifying the 
relevant information from a desired task. Relevant feature 
extraction can be beneficial to learning by reducing the 
dimensions of task, compacting the size of the state space, 
and hence allowing learning to converge faster. Another 
potential benefit is that the discovered relevant features can 
be used as core learning elements for further learning on 
similar or related tasks. For example, the relevant feature can 
be used to generate options [6; 7], or as reusable knowledge 
[8; 9; 10].  

We aim to develop a reinforcement agent that can 
automatically learn to select the most relevant state features in 
dynamic environments. We define a state feature as relevant 
if its information makes a contribution to the current learning; 
otherwise the state feature is irrelevant. And we define state 
features as redundant if they provide duplicate information 
for the learning. Both irrelevant and redundant features can be 
discarded intentionally by the agent to improve its learning.  

In this paper, we will present a new online concurrent 
learning method that can distinguish core state features from 
the irrelevant and redundant features in the observed 
environment. Our method automatically evaluates the state 
features’ relevance degree when the agent is performing a 
reinforcement learning task. After discovering relevant 
features, our algorithm removes irrelevant and redundant 
features from the ranked features list based on comparing 
commonalities between features in each state. Using the most 
relevant state feature, the agent forms a compact state 
representation of the current tasks and improves the learning 
efficiency for current and future related tasks in a dynamic 
environment.  

 

II. FEATURE CORRELATION DEFINITION 

A. State Feature 
In a dynamic environment which exhibits more than one 

feature, an agent perceives a lot of information. Not all of the 
acquired information is useful to achieve the task. For 
example, see figure 1, a robot can detect four different objects 
moving in the environment. At specific time t, the robot can 
see the status of these objects, which forms the state 
features 1

ts , 2
ts , 3

ts , and 4
ts . If only one of these objects is 

related to the rewarding task, how can the robot decide which 
of the objects is relevant? Further more, for some complex 
tasks in a dynamic environment; the real relevant features are 
usually dynamically dependent on the current progress of the 
task. The agent need to specify which feature is relevant to the 
current stage of learning. So it is desirable for the agent to 
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find and select those state features that contribute to current 
task. In this paper, we combine the relevant feature discovery 
process with online reinforcement learning, so that our 
method can not only be beneficial for the current learning task, 
but also for later related learning tasks. 

 
Figure 1. Sample environment containing several features 

We consider an agent solving a problem with state space 
S  and n  state features. Suppose at the thj  state js S∈ , the 

learning task contains the features 1
jf , 2

jf , 3
jf … n

jf . These 
features represent different aspects within the environment, 
so the condition of each of these features can be used as 
sub-state of current state js , represented as 1

js 2
js 3

js … n
js . 

These state features determine the state dimension of the 
problem. So the thj  state in state space S consisting n 
features is represented as: 
 { } { }1 2 3, , , | 1,...,n i

j j j j j js s s s s s i n= = =  (1) 

Note that in the following sections of this paper, we will 
omit state index j . We are not concerned with the state index 
j  in this paper. So in the following sections, we will use a 

state with superscript 1 2 3, , , ns s s s  to represent the 
corresponding sub-states for different features in state s . 

B. Correlation Definition 
Let ,x y  be the only two independent state features at state 

s , then state s  can be defined as ( , )x ys s s=  according to (1)
. The learned policy for task S using both of the features is 
defined as: 

 
 * *( ) ( , ) arg max (s ,s ,a)x y x y

a A
s s s Qπ π

∈
= =  (2) 

Similarly, we define the learned action policy which only 
referring to feature xs  as * ( )xsπ , and * ( )ysπ  referring to ys  
in the same learning task. We can then define the correlation 
relationship of features based on comparing the learned 
policies. 
Definition 1: relevance and irrelevance definition 

In a learning task S with independent features xs and ys , if 
 

 ( )* *Pr ( , ) ( )x y xs s sπ π ρ= >  (3) 

 ( )* *Pr ( , ) ( )x y xs s sπ π κ≠ >  (4) 

are satisfied, we say feature x  is a relevant while feature y is 

irrelevant at state s in task S . In this definition, 
threshold ρ and κ are used to determine whether the 
probability is high enough. 
Definition 2: redundancy definition 

In a learning task S with independent feature xs and ys , if 
 

 ( )* * *Pr ( , ) ( ) ( )x y x ys s s sπ π π ω= = >   (5) 

is satisfied, then we say xs  and ys  are redundant at state s in 
task S  at level ω . In this definition, threshold ω is used to 
determine whether the probability is high enough. 

The relevance and irrelevance definition is based on 
comparison of learned policies. Definition 2 implies that, if 
two features are redundant to the same task, they must be both 
relevant to the learning. Relevance is a necessary condition 
for redundancy. When more than one features providing 
duplicate information, we say they are redundant.  

A straightforward approach to evaluate the definitions’ 
probability is to use task performing experience to estimate 
the defined conditions.  

 
 ( )* *Pr ( , ) ( ) expx y xs s sπ π ρ= >  (6) 

 ( )* *Pr ( , ) ( ) expx y ys s sπ π κ≠ >  (7) 

In (6) and (7), exp is the observed experience in task 
learning. Statistical analysis of the experience data can be 
used to evaluate the real probability of the correlation 
relationship. 
 

III. CONCURRENT BIASED LEARNING 
We aim to develop a criterion to measure the correlation 

relationship among features defined in the previous section. 
We can see from the definitions in section II.B, irrelevance 
and redundancy features are defined based on the learned 
action policy. It is intuitive to develop a method to compare 
the similarities among the features’ policies. However, 
learning and comparing each feature’s policy one by one is 
extremely time-consuming and resource intensive. In order to 
compare the policies more efficiently, we introduce a new 
reinforcement learning method called concurrent biased 
learning. This is a multi-thread learning method, in which 
each learning thread refers to one feature of the environment. 
If an agent intentionally focuses on part of these 
environmental features to learn a policy of a task, we call this 
method a biased learning; otherwise, if an agent uses all 
features that it perceives to learn a task, we call this unbiased 
learning.  

We use Q-learning [11] to learn a policy. Suppose the 
agent performed an action 1ta − at state 1ts − , and after state 
transition, it reaches state ts . The Bellman update function [1; 
12] for unbiased learning is: 
 

1 1 1 1 1 1( , ) ( , ) [ max ( , ) ( , )]t t t t t t t t tQ s a Q s a r Q s a Q s aα γ− − − − − −← + + − (8) 

 
Using (8) to update the action-state value Q, the agent will 



 
 

converge to an optimal policy *π . At each state s , the learned 
policy can be extract from the learned action state value: 

arg max ( , )a Q s a= . If the agent learns a policy ( )isπ  with 
respect to one of the environmental features is , according to 
(1), we call this biased learning with respect to feature is . The 
biased Q-value can be denoted as ( , )iQ s a . Then the Bellman 
update function of the biased Q-value is:  
 

1 1 1 1 1 1( , ) ( , ) [ max ( , ) ( , )]i i i i
t t t t t t t t tQ s a Q s a r Q s a Q s aα γ− − − − − −← + + − (9) 

 
Comparing the update functions (8) and (9), we know that 
biased learning is updated on state feature is while unbiased 
learning is updated on all the features.  

To compare the policies, we equip the agent with all the 
biased and unbiased learning threads. When executing a task, 
the agent performs these biased learning threads 
simultaneously. We call this concurrent biased learning. 
These concurrent learning threads with different state features 
are updated from the experience of the same task. But each 
thread only concentrates on the changing aspect from its own 
prospect of view and ignores others. Differences among these 
concurrent learning threads provide useful information about 
the environment. These differences will be analyzed in next 
section.  

 

IV. CORRELATION ANALYSIS 
In this section, we analyze the information generated by the 

concurrent biased learning and develop a method to evaluate 
the relevance degree of state features.  The basic idea of this 
method is to compare the learned action policy among biased 
learning threads. If there is a high probability that two threads 
will select the same greedy action at a certain state, then we 
propose that these two features provide redundant 
information (see definition 2) at this state. Otherwise, if there 
is a high probability that two threads provide different greedy 
actions at a certain state, then we can say that at least one of 
the state features is irrelevant to current learning (see 
definition 1).  

In Q-learning, the updating of action state value always 
selects the greedy action *a on current value state s . The 
greedy action for the unbiased learning thread is defined as:  

 
 *  :  arg max ( , )

a A
Unbiased Greedy Action a Q s a

∈
=  (10) 

For a biased learning thread, the updating selects the 
greedy action with respect to current state feature is . The 
greedy action for the thi  biased learning thread is defined as:  

 
 *  :  arg max ( , )i i i

a A
Biased Greedy Action a Q s a

∈
=  (11) 

The greedy action actually represents the greedy policy at 
that state. If the greedy action provided by state feature is the 
same with the greedy action of unbiased state at time t , we 
record this matching as evidence. We define match 

trace ( )c s : 
 

 { * *

* *
1  if  ( ) 0  if  

i
i

iMt
a ac s a a

== ≠  (12) 

The match trace records a value of 1 when a biased 
learning thread provides the same greedy action as the 
unbiased learning thread at time t  in state s . Otherwise, if 
they are not the same, ( )c s  records a value 0. We sum up the 
count trace across a certain period learning time and get a 
match count ( )i

MC s  of each state. It is a measure of how the 
biased learning threads coordinate with the unbiased learning 
thread.  

 
 

'( ) ( )ti i
M Mtt

C s c s=∑  (13) 

It shows how many times a biased learning thread makes 
the same greedy decision with the current learning thread. 
Similarly to the definition of match matrix, we can define and 
calculate the unmatched count ( )i

NC s that does not coordinate 
with the unbiased learning: 

 
 

'( ) ( )ti i
N Ntt

C s c s=∑  (14) 

Using the two matrixes define above, we can calculate the 
relevance degree of a biased learning thread:  

 

 
( )( )

( ) ( )

i
i M
M i i

M N

C sI s
C s C s

=
+

 (15) 

And the irrelevance degree of a biased learning thread is 
calculated as follow: 

 

 
( )

( )
( ) ( )

i
i N
N i i

M N

C s
I s

C s C s
=

+
 (16) 

which is the number of times state s  is visited. From 
equation (15) and (16), we have: 

 
( )( )( ) ( ) 1

( ) ( ) ( ) ( )

ii
i i NM
M N i i i i

M N M N

C sC sI s I s
C s C s C s C s

+ = + =
+ +

 (17) 

The sum of ( )i
MI s  and ( )i

NI s equals 1. If one of them is 
known, value of the other degree can be easily calculated. We 
use ( )i

MI s  to evaluate the probabilities for definition (6) and 
( )i

NI s  to evaluate the probabilities of definition (7).  
 

V. ALGORITHMS 
To automate the evaluation of the relevance degree, we 

combine the online Q-learning with the implementation of 
concurrent biased learning presented in this paper. Algorithm 
1 begins with initialization to the required variables (line 1-4). 
Then the agent performs concurrent learning on unbiased and 
biased threads (line 10, 11). During the learning, the match 
count ( )iC s  value is updated based on the accumulation of 



 
 

the current acquired greedy policy (line 12). After a certain 
period of learning, the most relevant feature is selected (line 
13, 14).  The selected features can be used for further learning 
or indeed directly applied to current learning. 

 
Algorithm 1:  
Concurrent RL to find the most relevant feature 
1. Initialize all ith biased learning thread 
2. Initialize all ( ) and ( ) to assign 0
3. Use unbiased learning thread TC as default
4. Use  policy : ε-greedy 
5. Repeat (for each episode):
6. Initial

i iC s I s

π

　

1

ize state 
7. While  not terminal goal do:
8. Choose  from  using policy 
9. Take action , observe ,
 //Update state value of the unbiased learning thread:
10. ( , ) ( , ) max (

t

t t t t

s
s

a s
a r s

Q s a Q s a r Q

π

α γ

+

← + +

　

　 　

　 　

　 　 　 　

　 　 [ ]

[ ]

1 1

1

1 1

1

, ) ( , )
 //Update state value of EACH biased learning thread:
11. ( , ) ( , ) max ( , ) ( , )

//Update match matrix for EACH feature:
12.   IF : (

t t t t

t t t

t

i i i i i
t t t t t

i i
t M

s a Q s a

Q s a Q s a r Q s a Q s a

a a C

α γ

+ +

+

+ +

+

−

← + + −

=

　 　 　 　

　 　

　  
　    

1 1

1 1 11

) ( ) 1
             ELSE IF  : ( ) ( ) 1

//Calculate relevant degree for EACH feature:
13.         Update relevant degree ( )  based on function (15)
          

         

t t

t t t

i
M

i i i
t N N

i
M

s C s
a a C s C s

I s

+ +

+ + ++

← +
≠ ← +

//Find and select the most relevant perspect:
14.        IF  relevant degree ( ) is MAX among all features
             THEN select feature  as the current learning perspective in state .
15.     

 
i
M

i
I s

s s

1
   Update state ;

16.    End when  is a terminal state
17. End when learning has converged across all states

t
s s

s
+

←

 
Algorithm 1 implements the correlation analysis we 

described in section IV. After some period of learning, the 
relevance degree ( )i

MI s  for each feature is calculated. The 
algorithm will automatically select the most relevant feature 
for the current state. 

 
Algorithm 2 evaluates the detected features across the task 

based on function 16. If the irrelevance degree of a feature 
exceeds the predefined threshold, this feature will be removed 
in current learning threads. Note that in algorithm 2, the 
irrelevance degree ( ) i

NI S is calculated on all states in a task. 
So once the agent gains enough experience to decide that a 
feature is irrelevant, it will ignore this feature in the whole 
process of task performance. 

 
Algorithm 2:  
Irrelevant feature elimination 

1 1 1

1 1 1

1

1

//Update match matrix and unmatch matrix for EACH feature:
12.   IF : ( ) ( ) 1
              ELSE IF  : ( ) ( ) 1

//Calculate relevant degree & i          

t t t

t t t

i i i
t M M

i i i
t N N

a a C s C s
a a C s C s

+ + +

+ + +

+

+

= ← +
≠ ← +

　  
  

rrelevant degree for EACH feature:
13.         Update irrelevant degree ( )  based on function (16)

//Select the most relevant perspective:
14.        IF  irrelated degree ( )  , a prede
          

i
N

i
N

I S

I S κ>

1

fined threshold
             THEN remove this feature thread.
15.        IF only one feature exsits, 
             select this feature as current learning feature
15.        Update state ;
16.    End

t
s s

+
←

 when  is a terminal state
17. End when learning is stable across all states

s

 

 
Algorithm 2 calculates and eliminates the irrelevant 

features (line 13, 14). After irrelevant feature elimination, the 
agent will find the relevant state feature and make use of the 
selected feature in the current learning. Action policies will 
be generated only from the relevant states after relevant 
feature discovery. 

 

VI. EXPERIMENTAL METHODOLOGY 
In this section, we first test our algorithm in the random 

walk domain. We analyze and explain the recorded results. 
Then we compare the performance of traditional 
reinforcement learning with our current method in a chasing 
moving objects example. 
 

A. Random Walk Experiment 
1) Examples of Relevance and Irrelevance 

We illustrate our definitions of relevant and irrelevant in a 
random walk example (See figure 2). In this setting, the agent 
A  can move one step left or right or stay still. There are also 

two moving lights in this world, one emitting blue light 
marked B  and the other emitting red light marked R . Both 
lights walk randomly one step to the left or right or stay still in 
the original position. The agent is equipped with light sensors 
that can obtain the distance and direction of these two lights. 
A hidden reward is linked to the red light. Only when the 
agent reaches a predefined distance from the red light will it 
receive a positive reward +10 and achieve this task. The blue 
object has no linked reward. 
 

 
Figure 2: Example of relevant feature and irrelevant feature  

 
From this description, we know the red light is relevant to 

the learning task while the blue object is irrelevant. But the 



 
 

agent has to discover the correlations of these objects in this 
dynamic environment. In order to observe the learning speed 
under different feature elimination parameters, we apply 
algorithm 2 in the experiment. The irrelevant feature is 
determined and eliminated based on evaluating all feature 
states.  

 
Figure 3: Learning curve of random walk example 

Figure 3 shows that learning curve 2 converges much faster 
than learning curve 1. Curve 1 is an unbiased full feature 
learning, in which all features are taken into account 
regardless they are relevant or not, while curve 2 is obtained 
from the discovered relevant feature – the red object. The 
other curves show that with smaller irrelevant feature 
elimination threshold, the agent converges earlier and faster. 
Note that the agent may draw a wrong conclusion if we set the 
feature elimination threshold too small. In this example, if we 
set 0.5κ <  to eliminate irrelevant features, the agent will 
make a decision on what features are reverent at very early 
stage of learning. At that time, experience may not be enough 
to find the real irrelevant features. It is always safe to make 
such decisions after the current learning task converges. In 
this way, the current task learning cannot benefit from the 
feature discovery, but the discovered relevant features are still 
potentially be useful to succeeding related tasks.  
 

  
Figure 4: Recorded states of random walk example 

 
Figure 4 shows that, if the agent cannot tell which feature is 

relevant, it will construct a much larger state space comparing 
to agent who learns only from the relevant feature. In this 
example (see figure 4 gray bars), learning with both features 
generates 2640 different states, while learning with the 
relevant feature only generates 88 states. Further more, for 
both features each state is represented by two light’s 
coordinates, so its state space is double in size comparing to a 
state using only the relevant feature (see figure 4 black bars). 

 
2) Examples of Redundancy 

Similar to previous experiment, the agent can perceive 3 
lights in this experiment: red light R , blue light B , and green 
light G . The agent can move left or right, but all light stay still 
in the random generated position. A positive reward +10 is 
located at a randomly generated position, but agent cannot 
directly detect the position of this reward.  
 

 
Figure 5: An example of redundant feature 

 
In this experimental setting, either of the lights provides 

enough information to solve the problem. These lights 
features in the environment just provide duplicated 
information for states.  
 

 
Figure 6: Learning curve with redundant feature 

 
Figure 6 shows the learning curve of agents using 

algorithm 1. We can see that redundant features do not slow 
down or improve the current task learning, because every 
feature in the environment provides enough information to 
learn an optimal policy to get the reward. All 4 learning 
threads converge to stable at nearly the same speed. After 
sufficient learning at each state all of them generate exact the 
same learned policy. 



 
 

 Figure 7: Recorded states of redundant feature 

 
Figure 7 shows the recorded states in the random walk 

example with redundant features. In the state number graph 
(see figure 7 gray bars), we find that no matter what features 
the agent used, they generated exactly the same number of 
states, even using all learning features, the agent still 
generates 88 states which is the same with other features. But 
on the other hand, the state size (see figure 7 black bars) of 
full feature learning is 3 times larger than other states. The 
reason is that each full feature learning state contains the 
status of all three learning features. Hence removing 
redundant feature can reduce state size. It will also potentially 
reduce the computational requirement for comparing the state 
values at each learning step. 

 

B. Chasing Objects Experiment 
Chasing objects is a common scenario in the robotics area. 

In this section, we simulated this in a discrete grid world. This 
world is composed of 10*10 grids. There are 3 objects in this 
world marked object ①, object ②, and object ③. All objects 
can move one step randomly either in vertical, horizontal or 
diagonal directions. They can also choose to stay still in the 
original position. The agent in this world also can move one 
step randomly in each direction. It knows the exact locations 
of all objects.  

The task for the agent is to follow and catch these objects 
one by one in a predefined sequence. We define the task for 
agent to catch these objects in a sequence of ①, ②, ③. Only 
when the agent performs this sequential task correctly, will it 
receive a positive reward +10 at object ③. In this example, 
the environment is highly dynamic due to the movement of 
three target objects and complex as there is only one delayed 
positive reward. So using simple Q-learning, the learning 
speed will be quite slow. We apply algorithm 1 to find the 
relevant feature, and then compare the learning speed before 
and after using our feature discovery method.  

 
Figure 8: Learning before & after relevant feature discovery 

 
Figure 8 compares the learning efficiency of learning the 

agent before relevant features discovery and after relevant 
feature discovery. The graph shows that after relevant 
features being discovered in each state, the agent can learn 
significantly faster than when using all features. An agent 
using relevant state features converges in the initial 500 
episodes while an agent using full state features slowly 
converges after over 50000 episodes. 
 

Table 1: Relevance degree at different stages of learning 

Task Stage Chase ① Chase ② Chase ③ 
Average value of ( )i

MI s  
1 ( )objcet

MI s  ★0.548 0.323 0.358 
2 ( )objcet

MI s  0.317 ★0.672 0.325 
3 ( )objcet

MI s  0.291 0.307 ★0.886 
 

Table 1 summarizes the average relevance degree for all 
three features at different stages of learning. At each stage, 
the maximal relevant feature is marked with a star sign. It can 
be clearly seen that our method successfully distinguishes the 
most relevant object at each stage of learning. Object ① has 
the highest relevance degree at learning stage chasing object 
①, and object ② at stage 2 so on. Overall, object ③ has the 
highest relevant degree at stage 3. The reason is that this part 
of the states is close to the reward and converges earlier than 
other states. We believe that, if the agent uses the knowledge 
discovered in table 1 to assist learning, it will perform even 
better (See figure 9). 



 
 

 
Figure 9: Compare knowledge discovery on task  

 
If the agent uses the discovered knowledge in table 1 to 

perform the task, it can focus only on the most relevant 
features at different stages of learning. The learning results 
are compared in figure 9. This shows that, using an relevance 
observing method on this task, the learning is not only 
significantly faster but also smoother in nature than simple 
Q-learning.  
 

VII. DISCUSSION 
In the experiments outlined in the previous section, we 

show that our relevant feature discovery method can 
successfully discover the relevant features in a dynamic 
environment. The automated relevant feature discovery 
algorithm also can significantly increase the learning speed of 
the agents. Although our methods are tested on small grid 
world examples, we believe this is an import step toward 
higher levels of state generalization. Experimental results in 
section VI.B shows promising results.  

From these experiments, we find that after the relevant 
features are discovered, the agents form a much smaller state 
space. We use the big O  notation to describe the 
computation complexity of the agent’s state space, and we 
use n  to denote the number of learning features in the task 
and k  to stand for the state size of a learning feature. 
Suppose in a dynamic environment, there is no constrain 
between these n  set of features. Then the scalability of the 
agent’s unbiased learning thread is ( )nO k . On the other hand, 
the state space for one of agent’s biased learning thread 
is ( )O k .  The agent has n  piece of biased learning threads, so 
the overall scale for all these learning threads is ( * )O n k  
which is a linear function of variables n and k . We know that 

( )nO k  grows exponentially in respect of the features 
number n , while ( * )O n k is only a linear growth. For 
example, supposed in a fully dynamic environment, there are 
5 independent features and each has 10 states. The traditional 
unbiased reinforcement learning forms a state space 
with 510 numbers of states. If the agent uses our biased 

learning threads to search for relevant features, it forms 
additional 5 learning threads which in sum have 5*10 states.  
We can see 510 >> 5*10 . From this analysis, we know that the 
computational complexity of relevant feature discovery is 
trivial comparing to traditional reinforcement learning. Our 
experimental results in the previous section conforms our 
analysis. These analyses also show the potential improvement 
of using only the most relevant feature. 

 

VIII. RELATED WORK 
Prior research exists on the topic of discovering relevant 

state features in reinforcement learning. One example of this 
reported by Jong and Stone [13]. They define irrelevance 
based on the assumption that there exists some action that 
achieves maximum reward regardless of the state feature Y at 
state s. They use a Bayesian approach to estimated the 
probability that Q(x,y,a)=V(x). The method can find an 
ignorable feature y. However, from their definition, it is 
possible that feature y is not irrelevant (which is relevant) for 
the learning, but just redundant for the learning. In their 
experiment on a Taxi world, either passenger source or 
destination position provides enough information to solve the 
task. These two variables are redundant to each other, 
although one of them can be ignored. In contrast, our method 
defines relevance based on comparison of learned action 
policies which discover both relevance and redundancy 
relationships among state features. The concurrent 
reinforcement learning algorithm evaluates the relevance 
degree of each efficiently.  

Other related work is presented by Jonsson and Barto [14]. 
They apply the UTree [15] to form option context based state 
abstraction. This work makes the UTree algorithm suitable 
for state abstraction on option framework. However, this 
work required a predefined structure of options to be provided 
before the abstraction. We believe our method is one 
important way toward automated option generation.  

An early work on this topic is named UTree developed by 
McCallum [15; 16] . The UTree algorithm records all 
experience instances based on action-perception-reward 
triple. This method connects predecessor and successor 
experience in the transition chain. A tree structure is used to 
organize these recorded instances. By statistically evaluating 
the value of the fringe of the UTree, useful features can be 
discovered. This method requires agent’s to remember the 
chain of instances, and hence it potentially generates a very 
large experience memory. Especially in highly dynamic 
environments, both of the instances chain and the tree will 
require a large memory. Compared to UTree, our method 
handles the dynamic environment well by using concurrent 
learning. Also, the UTree method does not concern 
information correlation among features, whereas our method 
makes clear definitions on the correlation relationship among 
features. 
 

 



 
 

IX. CONCLUSIONS AND FUTURE WORK 
In this paper, we present a relevant feature discovery 

method for reinforcement learning. We define relevant, 
irrelevant and redundant relationships among features based 
on comparing action policies of the RL agent. Subsequently, 
we develop an online concurrent learning method to evaluate 
the correlation of state features. Our experimental results 
suggest that using most relevant features, the agent has 
remarkable improvements in relation in learning speed. 
Furthermore, this method also has good potential to be used to 
develop hierarchical abstractions upon the task. We believe 
the relevant feature extraction is an important step toward 
higher level of knowledge abstraction.  

In the future study, we will estimate the performance of our 
algorithm in more complex and realistic tasks. We also find 
that concurrent learning method can possibly be applied to 
multi-agent learning, and this can also be a topic of our future 
work.  
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