

Abstract— When an agent observes its environment, there are
two important characteristics of the perceived information. One
is the relevance of information and the other is redundancy. The
irrelevant and redundant features which commonly exists
within an environment, commonly leads to agent state explosion
and associated high computational cost within the learning
process. This paper presents an efficient method concerning
both the relevance of information and the correlation in order to
improve the learning of reinforcement learning agent. We
introduce a new concurrent online learning method to calculate
the match count C(s) and relevance degree I(s) to quantify the
redundancy and correlation of features with respect to a desired
learning task. Our analysis shows that the correlation
relationship of the features can be extracted and projected to
concurrent biased learning threads. By comparing the
commonalities of these learning threads, we can evaluate the
relevance degree of a feature that contributes to a particular
learning task. We explain the method using random walk
examples and then demonstrate the method on the chase object
domain. Our validation results show that, using the concurrent
learning method, we can efficiently detect redundancy and
irrelevant features from the environment on sequential tasks,
and significantly improve the efficiency of learning. After
relevant features are extracted, the agent can remarkably
accelerate its succeeding learning speed.

I. INTRODUCTION
Reinforcement learning (RL) provides a fundamental

framework for intelligent agents to improve their behavior
through interacting with the environment [1]. In a delayed
feedback and non-deterministic environment, RL proves to
be an effective way to train an agent to perform at a high
standard [2]. However, in real environments, the agent suffers
from the consequence of redundant and irrelevant
information which causes the state dimensions to explode. It
is desirable for agents to develop an ability to generalize over
the state space [3; 4]. One important step toward a higher
level of state generalization is to find the most relevant
aspects of a learning task [5]. Selecting observation
perspective is a basic ability of the humans. When performing
a task, even though we may see everything, we intuitively
concentrate on the most relevant aspects for the current task.
To develop such ability in an intelligent agent, it needs an
algorithm to search for and evaluate the relevance degree of
environment features. Furthermore, the agent also needs
methods to utilize the discovered relevant features to assist
task learning and performance.

Manuscript received Nov 29, 2007.
Zhihui Luo, David Bell and Barry McCollum are with the School of

Computer Science, Queen’s University Belfast, Belfast City, UK (e-mail:
zluo02@qub.ac.uk, da.bell@qub.ac.uk, b.mccollum@qub.ac.uk).

Qingxiang Wu is with School of Physics and Opto-Electronic Technology,
Fujian Normal University, Fuzhou, China (e-mail: qxwu@fjnu.edu.cn).

Environmental relevant feature evaluation and extraction is
aimed at discover and remove as much as possible of the
irrelevant and redundant information, and at identifying the
relevant information from a desired task. Relevant feature
extraction can be beneficial to learning by reducing the
dimensions of task, compacting the size of the state space,
and hence allowing learning to converge faster. Another
potential benefit is that the discovered relevant features can
be used as core learning elements for further learning on
similar or related tasks. For example, the relevant feature can
be used to generate options [6; 7], or as reusable knowledge
[8; 9; 10].

We aim to develop a reinforcement agent that can
automatically learn to select the most relevant state features in
dynamic environments. We define a state feature as relevant
if its information makes a contribution to the current learning;
otherwise the state feature is irrelevant. And we define state
features as redundant if they provide duplicate information
for the learning. Both irrelevant and redundant features can be
discarded intentionally by the agent to improve its learning.

In this paper, we will present a new online concurrent
learning method that can distinguish core state features from
the irrelevant and redundant features in the observed
environment. Our method automatically evaluates the state
features’ relevance degree when the agent is performing a
reinforcement learning task. After discovering relevant
features, our algorithm removes irrelevant and redundant
features from the ranked features list based on comparing
commonalities between features in each state. Using the most
relevant state feature, the agent forms a compact state
representation of the current tasks and improves the learning
efficiency for current and future related tasks in a dynamic
environment.

II. FEATURE CORRELATION DEFINITION

A. State Feature
In a dynamic environment which exhibits more than one

feature, an agent perceives a lot of information. Not all of the
acquired information is useful to achieve the task. For
example, see figure 1, a robot can detect four different objects
moving in the environment. At specific time t, the robot can
see the status of these objects, which forms the state
features 1

ts , 2
ts , 3

ts , and 4
ts . If only one of these objects is

related to the rewarding task, how can the robot decide which
of the objects is relevant? Further more, for some complex
tasks in a dynamic environment; the real relevant features are
usually dynamically dependent on the current progress of the
task. The agent need to specify which feature is relevant to the
current stage of learning. So it is desirable for the agent to

Learning to Select Relevant Perspective in a Dynamic Environment
Zhihui Luo, David Bell, Barry McCollum, and Qingxiang Wu

find and select those state features that contribute to current
task. In this paper, we combine the relevant feature discovery
process with online reinforcement learning, so that our
method can not only be beneficial for the current learning task,
but also for later related learning tasks.

Figure 1. Sample environment containing several features

We consider an agent solving a problem with state space
S and n state features. Suppose at the thj state js S∈ , the

learning task contains the features 1
jf , 2

jf , 3
jf … n

jf . These
features represent different aspects within the environment,
so the condition of each of these features can be used as
sub-state of current state js , represented as 1

js 2
js 3

js … n
js .

These state features determine the state dimension of the
problem. So the thj state in state space S consisting n
features is represented as:
 { } { }1 2 3, , , | 1,...,n i

j j j j j js s s s s s i n= = = (1)

Note that in the following sections of this paper, we will
omit state index j . We are not concerned with the state index
j in this paper. So in the following sections, we will use a

state with superscript 1 2 3, , , ns s s s to represent the
corresponding sub-states for different features in state s .

B. Correlation Definition
Let ,x y be the only two independent state features at state

s , then state s can be defined as (,)x ys s s= according to (1)
. The learned policy for task S using both of the features is
defined as:

 * *() (,) arg max (s ,s ,a)x y x y

a A
s s s Qπ π

∈
= = (2)

Similarly, we define the learned action policy which only
referring to feature xs as * ()xsπ , and * ()ysπ referring to ys
in the same learning task. We can then define the correlation
relationship of features based on comparing the learned
policies.
Definition 1: relevance and irrelevance definition

In a learning task S with independent features xs and ys , if

 ()* *Pr (,) ()x y xs s sπ π ρ= > (3)

 ()* *Pr (,) ()x y xs s sπ π κ≠ > (4)

are satisfied, we say feature x is a relevant while feature y is

irrelevant at state s in task S . In this definition,
threshold ρ and κ are used to determine whether the
probability is high enough.
Definition 2: redundancy definition

In a learning task S with independent feature xs and ys , if

 ()* * *Pr (,) () ()x y x ys s s sπ π π ω= = > (5)

is satisfied, then we say xs and ys are redundant at state s in
task S at level ω . In this definition, threshold ω is used to
determine whether the probability is high enough.

The relevance and irrelevance definition is based on
comparison of learned policies. Definition 2 implies that, if
two features are redundant to the same task, they must be both
relevant to the learning. Relevance is a necessary condition
for redundancy. When more than one features providing
duplicate information, we say they are redundant.

A straightforward approach to evaluate the definitions’
probability is to use task performing experience to estimate
the defined conditions.

 ()* *Pr (,) () expx y xs s sπ π ρ= > (6)

 ()* *Pr (,) () expx y ys s sπ π κ≠ > (7)

In (6) and (7), exp is the observed experience in task
learning. Statistical analysis of the experience data can be
used to evaluate the real probability of the correlation
relationship.

III. CONCURRENT BIASED LEARNING
We aim to develop a criterion to measure the correlation

relationship among features defined in the previous section.
We can see from the definitions in section II.B, irrelevance
and redundancy features are defined based on the learned
action policy. It is intuitive to develop a method to compare
the similarities among the features’ policies. However,
learning and comparing each feature’s policy one by one is
extremely time-consuming and resource intensive. In order to
compare the policies more efficiently, we introduce a new
reinforcement learning method called concurrent biased
learning. This is a multi-thread learning method, in which
each learning thread refers to one feature of the environment.
If an agent intentionally focuses on part of these
environmental features to learn a policy of a task, we call this
method a biased learning; otherwise, if an agent uses all
features that it perceives to learn a task, we call this unbiased
learning.

We use Q-learning [11] to learn a policy. Suppose the
agent performed an action 1ta − at state 1ts − , and after state
transition, it reaches state ts . The Bellman update function [1;
12] for unbiased learning is:

1 1 1 1 1 1(,) (,) [max (,) (,)]t t t t t t t t tQ s a Q s a r Q s a Q s aα γ− − − − − −← + + − (8)

Using (8) to update the action-state value Q, the agent will

converge to an optimal policy *π . At each state s , the learned
policy can be extract from the learned action state value:

arg max (,)a Q s a= . If the agent learns a policy ()isπ with
respect to one of the environmental features is , according to
(1), we call this biased learning with respect to feature is . The
biased Q-value can be denoted as (,)iQ s a . Then the Bellman
update function of the biased Q-value is:

1 1 1 1 1 1(,) (,) [max (,) (,)]i i i i
t t t t t t t t tQ s a Q s a r Q s a Q s aα γ− − − − − −← + + − (9)

Comparing the update functions (8) and (9), we know that
biased learning is updated on state feature is while unbiased
learning is updated on all the features.

To compare the policies, we equip the agent with all the
biased and unbiased learning threads. When executing a task,
the agent performs these biased learning threads
simultaneously. We call this concurrent biased learning.
These concurrent learning threads with different state features
are updated from the experience of the same task. But each
thread only concentrates on the changing aspect from its own
prospect of view and ignores others. Differences among these
concurrent learning threads provide useful information about
the environment. These differences will be analyzed in next
section.

IV. CORRELATION ANALYSIS
In this section, we analyze the information generated by the

concurrent biased learning and develop a method to evaluate
the relevance degree of state features. The basic idea of this
method is to compare the learned action policy among biased
learning threads. If there is a high probability that two threads
will select the same greedy action at a certain state, then we
propose that these two features provide redundant
information (see definition 2) at this state. Otherwise, if there
is a high probability that two threads provide different greedy
actions at a certain state, then we can say that at least one of
the state features is irrelevant to current learning (see
definition 1).

In Q-learning, the updating of action state value always
selects the greedy action *a on current value state s . The
greedy action for the unbiased learning thread is defined as:

 * : arg max (,)

a A
Unbiased Greedy Action a Q s a

∈
= (10)

For a biased learning thread, the updating selects the
greedy action with respect to current state feature is . The
greedy action for the thi biased learning thread is defined as:

 * : arg max (,)i i i

a A
Biased Greedy Action a Q s a

∈
= (11)

The greedy action actually represents the greedy policy at
that state. If the greedy action provided by state feature is the
same with the greedy action of unbiased state at time t , we
record this matching as evidence. We define match

trace ()c s :

 { * *

* *
1 if () 0 if

i
i

iMt
a ac s a a

== ≠ (12)

The match trace records a value of 1 when a biased
learning thread provides the same greedy action as the
unbiased learning thread at time t in state s . Otherwise, if
they are not the same, ()c s records a value 0. We sum up the
count trace across a certain period learning time and get a
match count ()i

MC s of each state. It is a measure of how the
biased learning threads coordinate with the unbiased learning
thread.

'() ()ti i
M Mtt

C s c s=∑ (13)

It shows how many times a biased learning thread makes
the same greedy decision with the current learning thread.
Similarly to the definition of match matrix, we can define and
calculate the unmatched count ()i

NC s that does not coordinate
with the unbiased learning:

'() ()ti i
N Ntt

C s c s=∑ (14)

Using the two matrixes define above, we can calculate the
relevance degree of a biased learning thread:

()()

() ()

i
i M
M i i

M N

C sI s
C s C s

=
+

 (15)

And the irrelevance degree of a biased learning thread is
calculated as follow:

()

()
() ()

i
i N
N i i

M N

C s
I s

C s C s
=

+
 (16)

which is the number of times state s is visited. From
equation (15) and (16), we have:

()()() () 1

() () () ()

ii
i i NM
M N i i i i

M N M N

C sC sI s I s
C s C s C s C s

+ = + =
+ +

 (17)

The sum of ()i
MI s and ()i

NI s equals 1. If one of them is
known, value of the other degree can be easily calculated. We
use ()i

MI s to evaluate the probabilities for definition (6) and
()i

NI s to evaluate the probabilities of definition (7).

V. ALGORITHMS
To automate the evaluation of the relevance degree, we

combine the online Q-learning with the implementation of
concurrent biased learning presented in this paper. Algorithm
1 begins with initialization to the required variables (line 1-4).
Then the agent performs concurrent learning on unbiased and
biased threads (line 10, 11). During the learning, the match
count ()iC s value is updated based on the accumulation of

the current acquired greedy policy (line 12). After a certain
period of learning, the most relevant feature is selected (line
13, 14). The selected features can be used for further learning
or indeed directly applied to current learning.

Algorithm 1:
Concurrent RL to find the most relevant feature
1. Initialize all ith biased learning thread
2. Initialize all () and () to assign 0
3. Use unbiased learning thread TC as default
4. Use policy : ε-greedy
5. Repeat (for each episode):
6. Initial

i iC s I s

π

　

1

ize state
7. While not terminal goal do:
8. Choose from using policy
9. Take action , observe ,
 //Update state value of the unbiased learning thread:
10. (,) (,) max (

t

t t t t

s
s

a s
a r s

Q s a Q s a r Q

π

α γ

+

← + +

　

　 　

　 　

　 　 　 　

　 　 []

[]

1 1

1

1 1

1

,) (,)
 //Update state value of EACH biased learning thread:
11. (,) (,) max (,) (,)

//Update match matrix for EACH feature:
12. IF : (

t t t t

t t t

t

i i i i i
t t t t t

i i
t M

s a Q s a

Q s a Q s a r Q s a Q s a

a a C

α γ

+ +

+

+ +

+

−

← + + −

=

　 　 　 　

　 　

　
　

1 1

1 1 11

) () 1
 ELSE IF : () () 1

//Calculate relevant degree for EACH feature:
13. Update relevant degree () based on function (15)

t t

t t t

i
M

i i i
t N N

i
M

s C s
a a C s C s

I s

+ +

+ + ++

← +
≠ ← +

//Find and select the most relevant perspect:
14. IF relevant degree () is MAX among all features
 THEN select feature as the current learning perspective in state .
15.

i
M

i
I s

s s

1
 Update state ;

16. End when is a terminal state
17. End when learning has converged across all states

t
s s

s
+

←

Algorithm 1 implements the correlation analysis we

described in section IV. After some period of learning, the
relevance degree ()i

MI s for each feature is calculated. The
algorithm will automatically select the most relevant feature
for the current state.

Algorithm 2 evaluates the detected features across the task

based on function 16. If the irrelevance degree of a feature
exceeds the predefined threshold, this feature will be removed
in current learning threads. Note that in algorithm 2, the
irrelevance degree () i

NI S is calculated on all states in a task.
So once the agent gains enough experience to decide that a
feature is irrelevant, it will ignore this feature in the whole
process of task performance.

Algorithm 2:
Irrelevant feature elimination

1 1 1

1 1 1

1

1

//Update match matrix and unmatch matrix for EACH feature:
12. IF : () () 1
 ELSE IF : () () 1

//Calculate relevant degree & i

t t t

t t t

i i i
t M M

i i i
t N N

a a C s C s
a a C s C s

+ + +

+ + +

+

+

= ← +
≠ ← +

　

rrelevant degree for EACH feature:
13. Update irrelevant degree () based on function (16)

//Select the most relevant perspective:
14. IF irrelated degree () , a prede

i
N

i
N

I S

I S κ>

1

fined threshold
 THEN remove this feature thread.
15. IF only one feature exsits,
 select this feature as current learning feature
15. Update state ;
16. End

t
s s

+
←

 when is a terminal state
17. End when learning is stable across all states

s

Algorithm 2 calculates and eliminates the irrelevant

features (line 13, 14). After irrelevant feature elimination, the
agent will find the relevant state feature and make use of the
selected feature in the current learning. Action policies will
be generated only from the relevant states after relevant
feature discovery.

VI. EXPERIMENTAL METHODOLOGY
In this section, we first test our algorithm in the random

walk domain. We analyze and explain the recorded results.
Then we compare the performance of traditional
reinforcement learning with our current method in a chasing
moving objects example.

A. Random Walk Experiment
1) Examples of Relevance and Irrelevance

We illustrate our definitions of relevant and irrelevant in a
random walk example (See figure 2). In this setting, the agent
A can move one step left or right or stay still. There are also

two moving lights in this world, one emitting blue light
marked B and the other emitting red light marked R . Both
lights walk randomly one step to the left or right or stay still in
the original position. The agent is equipped with light sensors
that can obtain the distance and direction of these two lights.
A hidden reward is linked to the red light. Only when the
agent reaches a predefined distance from the red light will it
receive a positive reward +10 and achieve this task. The blue
object has no linked reward.

Figure 2: Example of relevant feature and irrelevant feature

From this description, we know the red light is relevant to

the learning task while the blue object is irrelevant. But the

agent has to discover the correlations of these objects in this
dynamic environment. In order to observe the learning speed
under different feature elimination parameters, we apply
algorithm 2 in the experiment. The irrelevant feature is
determined and eliminated based on evaluating all feature
states.

Figure 3: Learning curve of random walk example

Figure 3 shows that learning curve 2 converges much faster
than learning curve 1. Curve 1 is an unbiased full feature
learning, in which all features are taken into account
regardless they are relevant or not, while curve 2 is obtained
from the discovered relevant feature – the red object. The
other curves show that with smaller irrelevant feature
elimination threshold, the agent converges earlier and faster.
Note that the agent may draw a wrong conclusion if we set the
feature elimination threshold too small. In this example, if we
set 0.5κ < to eliminate irrelevant features, the agent will
make a decision on what features are reverent at very early
stage of learning. At that time, experience may not be enough
to find the real irrelevant features. It is always safe to make
such decisions after the current learning task converges. In
this way, the current task learning cannot benefit from the
feature discovery, but the discovered relevant features are still
potentially be useful to succeeding related tasks.

Figure 4: Recorded states of random walk example

Figure 4 shows that, if the agent cannot tell which feature is

relevant, it will construct a much larger state space comparing
to agent who learns only from the relevant feature. In this
example (see figure 4 gray bars), learning with both features
generates 2640 different states, while learning with the
relevant feature only generates 88 states. Further more, for
both features each state is represented by two light’s
coordinates, so its state space is double in size comparing to a
state using only the relevant feature (see figure 4 black bars).

2) Examples of Redundancy

Similar to previous experiment, the agent can perceive 3
lights in this experiment: red light R , blue light B , and green
light G . The agent can move left or right, but all light stay still
in the random generated position. A positive reward +10 is
located at a randomly generated position, but agent cannot
directly detect the position of this reward.

Figure 5: An example of redundant feature

In this experimental setting, either of the lights provides

enough information to solve the problem. These lights
features in the environment just provide duplicated
information for states.

Figure 6: Learning curve with redundant feature

Figure 6 shows the learning curve of agents using

algorithm 1. We can see that redundant features do not slow
down or improve the current task learning, because every
feature in the environment provides enough information to
learn an optimal policy to get the reward. All 4 learning
threads converge to stable at nearly the same speed. After
sufficient learning at each state all of them generate exact the
same learned policy.

 Figure 7: Recorded states of redundant feature

Figure 7 shows the recorded states in the random walk

example with redundant features. In the state number graph
(see figure 7 gray bars), we find that no matter what features
the agent used, they generated exactly the same number of
states, even using all learning features, the agent still
generates 88 states which is the same with other features. But
on the other hand, the state size (see figure 7 black bars) of
full feature learning is 3 times larger than other states. The
reason is that each full feature learning state contains the
status of all three learning features. Hence removing
redundant feature can reduce state size. It will also potentially
reduce the computational requirement for comparing the state
values at each learning step.

B. Chasing Objects Experiment
Chasing objects is a common scenario in the robotics area.

In this section, we simulated this in a discrete grid world. This
world is composed of 10*10 grids. There are 3 objects in this
world marked object ①, object ②, and object ③. All objects
can move one step randomly either in vertical, horizontal or
diagonal directions. They can also choose to stay still in the
original position. The agent in this world also can move one
step randomly in each direction. It knows the exact locations
of all objects.

The task for the agent is to follow and catch these objects
one by one in a predefined sequence. We define the task for
agent to catch these objects in a sequence of ①, ②, ③. Only
when the agent performs this sequential task correctly, will it
receive a positive reward +10 at object ③. In this example,
the environment is highly dynamic due to the movement of
three target objects and complex as there is only one delayed
positive reward. So using simple Q-learning, the learning
speed will be quite slow. We apply algorithm 1 to find the
relevant feature, and then compare the learning speed before
and after using our feature discovery method.

Figure 8: Learning before & after relevant feature discovery

Figure 8 compares the learning efficiency of learning the

agent before relevant features discovery and after relevant
feature discovery. The graph shows that after relevant
features being discovered in each state, the agent can learn
significantly faster than when using all features. An agent
using relevant state features converges in the initial 500
episodes while an agent using full state features slowly
converges after over 50000 episodes.

Table 1: Relevance degree at different stages of learning

Task Stage Chase ① Chase ② Chase ③
Average value of ()i

MI s
1 ()objcet

MI s ★0.548 0.323 0.358
2 ()objcet

MI s 0.317 ★0.672 0.325
3 ()objcet

MI s 0.291 0.307 ★0.886

Table 1 summarizes the average relevance degree for all
three features at different stages of learning. At each stage,
the maximal relevant feature is marked with a star sign. It can
be clearly seen that our method successfully distinguishes the
most relevant object at each stage of learning. Object ① has
the highest relevance degree at learning stage chasing object
①, and object ② at stage 2 so on. Overall, object ③ has the
highest relevant degree at stage 3. The reason is that this part
of the states is close to the reward and converges earlier than
other states. We believe that, if the agent uses the knowledge
discovered in table 1 to assist learning, it will perform even
better (See figure 9).

Figure 9: Compare knowledge discovery on task

If the agent uses the discovered knowledge in table 1 to

perform the task, it can focus only on the most relevant
features at different stages of learning. The learning results
are compared in figure 9. This shows that, using an relevance
observing method on this task, the learning is not only
significantly faster but also smoother in nature than simple
Q-learning.

VII. DISCUSSION
In the experiments outlined in the previous section, we

show that our relevant feature discovery method can
successfully discover the relevant features in a dynamic
environment. The automated relevant feature discovery
algorithm also can significantly increase the learning speed of
the agents. Although our methods are tested on small grid
world examples, we believe this is an import step toward
higher levels of state generalization. Experimental results in
section VI.B shows promising results.

From these experiments, we find that after the relevant
features are discovered, the agents form a much smaller state
space. We use the big O notation to describe the
computation complexity of the agent’s state space, and we
use n to denote the number of learning features in the task
and k to stand for the state size of a learning feature.
Suppose in a dynamic environment, there is no constrain
between these n set of features. Then the scalability of the
agent’s unbiased learning thread is ()nO k . On the other hand,
the state space for one of agent’s biased learning thread
is ()O k . The agent has n piece of biased learning threads, so
the overall scale for all these learning threads is (*)O n k
which is a linear function of variables n and k . We know that

()nO k grows exponentially in respect of the features
number n , while (*)O n k is only a linear growth. For
example, supposed in a fully dynamic environment, there are
5 independent features and each has 10 states. The traditional
unbiased reinforcement learning forms a state space
with 510 numbers of states. If the agent uses our biased

learning threads to search for relevant features, it forms
additional 5 learning threads which in sum have 5*10 states.
We can see 510 >> 5*10 . From this analysis, we know that the
computational complexity of relevant feature discovery is
trivial comparing to traditional reinforcement learning. Our
experimental results in the previous section conforms our
analysis. These analyses also show the potential improvement
of using only the most relevant feature.

VIII. RELATED WORK
Prior research exists on the topic of discovering relevant

state features in reinforcement learning. One example of this
reported by Jong and Stone [13]. They define irrelevance
based on the assumption that there exists some action that
achieves maximum reward regardless of the state feature Y at
state s. They use a Bayesian approach to estimated the
probability that Q(x,y,a)=V(x). The method can find an
ignorable feature y. However, from their definition, it is
possible that feature y is not irrelevant (which is relevant) for
the learning, but just redundant for the learning. In their
experiment on a Taxi world, either passenger source or
destination position provides enough information to solve the
task. These two variables are redundant to each other,
although one of them can be ignored. In contrast, our method
defines relevance based on comparison of learned action
policies which discover both relevance and redundancy
relationships among state features. The concurrent
reinforcement learning algorithm evaluates the relevance
degree of each efficiently.

Other related work is presented by Jonsson and Barto [14].
They apply the UTree [15] to form option context based state
abstraction. This work makes the UTree algorithm suitable
for state abstraction on option framework. However, this
work required a predefined structure of options to be provided
before the abstraction. We believe our method is one
important way toward automated option generation.

An early work on this topic is named UTree developed by
McCallum [15; 16] . The UTree algorithm records all
experience instances based on action-perception-reward
triple. This method connects predecessor and successor
experience in the transition chain. A tree structure is used to
organize these recorded instances. By statistically evaluating
the value of the fringe of the UTree, useful features can be
discovered. This method requires agent’s to remember the
chain of instances, and hence it potentially generates a very
large experience memory. Especially in highly dynamic
environments, both of the instances chain and the tree will
require a large memory. Compared to UTree, our method
handles the dynamic environment well by using concurrent
learning. Also, the UTree method does not concern
information correlation among features, whereas our method
makes clear definitions on the correlation relationship among
features.

IX. CONCLUSIONS AND FUTURE WORK
In this paper, we present a relevant feature discovery

method for reinforcement learning. We define relevant,
irrelevant and redundant relationships among features based
on comparing action policies of the RL agent. Subsequently,
we develop an online concurrent learning method to evaluate
the correlation of state features. Our experimental results
suggest that using most relevant features, the agent has
remarkable improvements in relation in learning speed.
Furthermore, this method also has good potential to be used to
develop hierarchical abstractions upon the task. We believe
the relevant feature extraction is an important step toward
higher level of knowledge abstraction.

In the future study, we will estimate the performance of our
algorithm in more complex and realistic tasks. We also find
that concurrent learning method can possibly be applied to
multi-agent learning, and this can also be a topic of our future
work.

REFERENCES
[1] R. Sutton, and A. Barto, Reinforcement Learning: An

Introduction, MIT Press, 1998.
[2] S. Russell, and P. Norvig, Artificial Intelligence: A Modern

Approach, Prentice Hall Series in Artificial Intelligence, 2003.
[3] A.G. Barto, and S. Mahadevan, Recent advances in hierarchical

reinforcement learning. Discrete Event Dynamic Systems:
Theory and Applications, 2003.

[4] P. Tadepalli, R. Givan, and K. Driessens, Relational
Reinforcement Learning: An Overview, International
Conference on Machine Learning, 2004.

[5] L.P. Kaelbling, T. Oates, N. Hernandez, and S. Finney, Learning
in Worlds with Objects AAAI Stanford Spring Symposium on
Learning Grounded Representations, 2001.

[6] R.S. Sutton, D. Precup, and S.P. Singh, Intra-Option Learning
about Temporally Abstract Actions, Proceedings of the Fifteenth
International Conference on Machine Learning, Morgan
Kaufmann Publishers Inc. , San Francisco, CA, USA, 1998, pp.
556 - 564

[7] T. Croonenborghs, K. Driessens, and M. Bruynooghe, Learning
Relational Options for Inductive Transfer in Relational
Reinforcement Learning, The 17th Annual International
Conference on Inductive Logic Programming 2007.

[8] G.D. Konidaris, and A.G. Barto, Building Portable Options: Skill
Transfer in Reinforcement Learning. Proceedings of the
Twentieth International Joint Conference on Artificial
Intelligence, Hyderabad, India, January 6-12, 2007.

[9] M.E. Taylor, and P. Stone, Representation Transfer for
Reinforcement Learning, In AAAI 2007 Fall Symposium on
Computational Approaches to Representation Change during
Learning and Development, November, 2007.

[10] Z. Luo, D. Bell, and B. McCollum, Skill Combination in
Reinforcement Learning, In proceeding of the 8th International
Conference on Intelligent Data Engineering and Automated
Learning (IDEAL'07), Birmingham, UK, 2007.

[11] C. Watkins, and P. Dayan, Q-Learning. Machine Learning,
8(3-4):279--292, 1992.

[12] R.E. Bellman, Dynamic Programming, Princeton University
Press, 1957.

[13] N.K. Jong, and P. Stone, Towards Learning to Ignore Irrelevant
State Variables, The AAAI-04 Workshop on Learning and
Planning in Markov Processes, San Jose, CA, 2004.

[14] A. Jonsson, and A.G. Barto, Automated State Abstraction for
Options using the U-Tree Algorithm, In Advances in Neural
Information Processing Systems 14., 2001.

[15] A.K. McCallum, Reinforcement Learning with Selective
Perception and Hidden State, Department of Computer Science,
University of Rochester, Rochester, New York, 1995.

[16] A.K. McCallum, Learning to Use Selective Attention and
Short-Term Memory in Sequential Tasks, From Animals to
Animats, Fourth International Conference on Simulation of
Adaptive Behavior, Cape Cod, Massachusetts, 1996.

