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Abstract: The course timetabling problem deals with the assignment 

of a set of courses to specific timeslots and rooms within a 
working week subject to a variety of hard and soft 
constraints. Solutions which satisfy the hard constraints are 
called feasible. The goal is to satisfy as many of the soft 
constraints as possible whilst constructing a feasible 
schedule. In this paper, we present a composite 
neighbourhood structure with a randomised iterative 
improvement algorithm. This algorithm always accepts an 
improved solution and a worse solution is accepted with a 
certain probability. The algorithm is tested over eleven 
benchmark datasets (representing one large, five medium 
and five small problems). The results demonstrate that our 
approach is able to produce solutions that have lower 
penalty on all the small problems and two of the medium 
problems when compared against other techniques from the 
literature. However, in the case of the medium problems, 
this is at the expense of significantly increased 
computational time. 

 
1. INTRODUCTION 

 
In this paper, a randomised iterative improvement algorithm with 

composite neighbourhood structures for university course timetabling is 
presented. The approach is tested over eleven benchmark datasets that were 
introduced by Socha et al. (2002). The results demonstrate that our approach 
is capable of producing high quality solutions against others that appear in 
the literature. An extended abstract that describes this work was published in 
Abdullah et al. (2005b). The paper is organised as follows. The next section 
describes the university course timetabling problem in general and very 
briefly discusses the relevant timetabling literature. Section 3 presents a 
discussion of the literature on composite neighbourhood structures with a 
particular emphasis upon the employment of such structures in a variety of 
applications. Section 4 describes, in some detail, our randomised iterative 
improvement algorithm. The pseudo code of the implemented algorithm is 
also presented in this section. Experiments and results to evaluate the 
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performance of the heuristic are discussed in Section 5. Section 6 presents a 
brief summary of the paper.  

 
2. THE UNIVERSITY COURSE TIMETABLING 

PROBLEM 
 

Carter and Laporte (1998) defined course timetabling as: 
 

“a multi-dimensional assignment problem in 
which students, teachers (or faculty members) 

are assigned to courses, course sections or 
classes; events (individual meetings between 

students and teachers) are assigned to 
classrooms and times” 

 
In university course timetabling, a set of courses is scheduled into a 

given number of rooms and timeslots within a week and, at the same time, 
students and teachers are assigned to courses so that the meetings can take 
place.  

The course timetabling problem is subject to a variety of hard and soft 
constraints. Hard constraints need to be satisfied in order to produce a 
feasible solution. In this paper, we test our approach on the problem 
instances introduced by Socha et al. (2002) who present the following hard 
constraints: 

• No student can be assigned to more than one course at the same 
time. 

• The room should satisfy the features required by the course. 
• The number of students attending the course should be less than or 

equal to the capacity of the room. 
• No more than one course is allowed to be assigned to a timeslot in 

each room. 
Socha et al. also present the following soft constraints that are equally 
penalised: 

• A student has a course scheduled in the last timeslot of the day. 
• A student has more than 2 consecutive courses. 
• A student has a single course on a day. 

The problem has 
• A set of N courses, e = {e1,…,eN}. 
• 45 timeslots. 
• A set of R rooms. 
• A set of F room features. 
• A set of M students. 
The objective of this problem is to satisfy the hard constraints and to 

minimise the violation of the soft constraints.  
In the last few years, several university course timetabling papers have 

appeared in the literature. Socha et al. (2002) presented a local search 
technique and an ant based methodology. They tested their approach on 
eleven test problems. These eleven problems were produced by Paechter’s1 
course timetabling test instance generator and are the instances used to 
evaluate the method described in this paper. Since then, several papers have 
appeared which have tested their results on the same instances. Burke et al. 
                                                 
1 http://www.dcs.napier.ac.uk/~benp/ 
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(2003a) introduced a tabu-search hyperheuristic where a set of low level 
heuristics compete with each other. The goal was to raise the level of 
generality of search systems and the method was tested on a nurse rostering 
problem in addition to course timetabling. A graph hyper-heuristic was 
presented by Burke et al. (2006) where, within a generic hyper-heuristic 
framework, a tabu search approach is employed to search for permutations 
of constructive heuristics (graph colouring heuristics). Abdullah et al. 
(2005a) employed a variable neighbourhood search with a fixed tabu list 
which is used to penalise the unperformed neighbourhood structures. Other 
papers which test against these instances can be seen in Socha et al. (2003) 
who discuss ant algorithm methodologies at length and Rossi-Doria et al. 
(2003) who compare several metaheuristic methods. 

In addition to the problem instances introduced by Socha et al (2002), 
Paechter’s generator was also used to produce the problem sets for a 
timetabling competition held in 2002 (see http://www.idsia.ch/Files/ 
ttcomp2002). They generated twenty instances for the competition itself and 
another three unseen instances to further check the performance of the 
algorithms. Some papers have recently appeared which test their 
methodologies on these competition problems. Kostuch (2005) presented a 
three phase approach which employs Simulated Annealing. This approach 
won the competition mentioned above and had 13 best results of the 20 
instances in the competition. Burke et al. (2003b) employed a Great Deluge 
method which generated 7 best results out of the 20 competition problems 
mentioned above. This method also produced some poor results on some 
problems which is why it came 3rd in the competition (because the 
competition used an average measure). The hybrid local search methodology 
which came 4th in the competition is described in Di Gaspero and Schaerf 
(2006). Arntzen and Løkketangen (2004) developed a tabu search method 
which came 5th in the competition. Lewis and Paechter (2004) designed 
several crossover operators and tested them against the competition datasets. 
They concluded that their results were not “state of the art”. A hybrid 
metaheurstic approach has recently appeared in the literature which is tested 
on these competition problems and which produces improved results to those 
generated by the competition (Chiarandini et al. 2006).  Also, Kostuch and 
Socha (2004) investigated the possibility of using a statistical model to 
predict the difficulty of timetabling problems and they employed the 
competition instances. 

In 2005, Lewis and Paechter used the same instance generator to create 
another sixty “hard” test instances (Lewis and Paechter 2005). They tested 
their grouping genetic algorithm on these sixty instances but were concerned 
only with feasibility. 

In addition to the university course timetabling papers which have used 
problems produced by Paechter’s generator, several other articles have 
recently appeared which represent case studies on real university timetabling 
instances. Examples include Avella and Vasil’Ev (2005), Daskalaki et al. 
(2004), Dimopoulou and Miliotis (2004) and Santiago-Mozos et al. (2005).  

Other aspects of university course timetabling have been widely 
discussed in the literature over the last thirty years or so. A survey of 
practical approaches to the problem, up to 1998, can be seen in Carter and 
Laporte (1998). The following papers represent a comprehensive list of 
surveys and overviews of educational timetabling (which include issues 
related to University course timetabling) i.e. Bardadym (1996), Burke et al. 
(1997), Burke and Petrovic (2002), Burke et al. (2004), Carter (2001), 
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Petrovic and Burke (2004), Schaerf (1999), de Werra (1985) and Wren 
(1996). 
 
3. COMPOSITE NEIGHBOURHOOD STRUCTURES: 

RESEARCH AND DEVELOPMENTS 
 
 A composite neighbourhood structure subsumes two or more 
neighbourhood structures. The advantage of combining several 
neighbourhood structures is that it helps to compensate against the 
ineffectiveness of using each type of structure in isolation (Grabowski and 
Pempera, 2000 and Liaw 2003). For example, a solution space that is easily 
accessible by insertion moves may be difficult to reach using swap moves. 
Some examples of composite neighbourhood structures that are available in 
the literature are discussed here. 
 Grabowski and Pempera (2000) applied a composite neighbourhood 
structure for sequencing jobs in a production system that consists of 
exchanges and the insertion of elements. Gopalakrishnan et al. (2001) used 
three moves (swap, add and drop) in a tabu search heuristic for preventive 
maintenance scheduling. The decision on which move to use depends on the 
current state of the search. The interaction of the moves makes it possible to 
carry out a strategic search. The computational results show that the 
approach can improve the solution quality when compared to the local 
heuristics employed by Gopalakrishnan et al. (1997). 

Liaw (2003) also used a composite neighbourhood structure in the tabu 
search approach for the two-machine preemptive open shop scheduling 
problem. The tabu search switches to the other neighbourhood structures 
(between an insertion move that shifts one job from its current position to a 
new position and a swap move that exchanges the position of two jobs) after 
a number of iterations without any improvements. Computational 
experiments have shown that this scheme significantly improves the 
performance of tabu search in terms of solution quality. The neighbourhood 
used in Ouelhadj (2003) has a composite structure where the tabu search 
approach, applied to the dynamic scheduling of a hot strip mill agent, 
employed three neighbourhood schemes (swap, shift and inversion) 
alternately. Computational experiments showed that the composite structure 
improves the solution quality compared with tabu search using a single 
neighbourhood. Another example of a composite neighbourhood structure 
was presented by Landa Silva (2003). He employed several neighbourhood 
structures (relocate, swap and interchange) in different metaheuristics 
(iterative improvement, simulated annealing and tabu search) and applied 
this to a space allocation problem in an academic institution. 

Bilge et al. (2004) used a “hybrid” neighbourhood structure in a tabu 
search algorithm for the parallel machine total tardiness problem. The 
“hybrid” structure consists of the complete “insert neighbourhood” with the 
addition of a partial “swap neighbourhood”. In an insert move operation, two 
jobs are identified and the first job is placed in the location that precedes the 
location of the second job. Then, a swap move places each job in the location 
that was previously occupied by the other job.  
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4. THE RANDOMISED ITERATIVE IMPROVEMENT 

ALGORITHM 
 

This algorithm presented here always accepts an improved solution and 
a worse solution is accepted with a certain probability. 
 
4.1 The Neighbourhood Structures 
 

The different neighbourhood structures and their explanation can be 
outlined as follows: 
N1: Select two courses at random and swap timeslots. 
N2: Choose a single course at random and move to a new random 

feasible timeslot. 
N3: Select two timeslots at random and simply swap all the courses in 

one timeslot with all the courses in the other timeslot. 
N4: Take 2 timeslots (selected at random), say ti and tj (where j>i) where 

the timeslots are ordered t1, t2, …, t45. Take all the exams in ti and 
allocate them to tj. Now take the exams that were in tj and allocate 
them to tj-1. Then allocate those that were in tj-1 to tj-2 and so on until 
we allocate those that were in ti+1 to ti and terminate the process.   

N5: Move the highest penalty course from a random 10% selection of the 
courses to a random feasible timeslot. 

N6: Carry out the same process as in N5 but with 20% of the courses.  
N7: Move the highest penalty course from a random 10% selection of the 

courses to a new feasible timeslot which can generate the lowest 
penalty cost. 

N8: Carry out the same process as in N7 but with 20% of the courses.  
N9: Select one course at random, select a timeslot at random (distinct 

from the one that was assigned to the selected course) and then 
apply the kempe chain from Thompson and Dowsland (1996).  

N10: This is the same as N9 except the highest penalty course from 5% 
selection of the courses is selected at random. 

N11: Carry out the same process as in N9 but with 20% of the courses.  
 
4.2 The Algorithm 
 

In the approach presented in this paper, a set of the neighbourhood 
structures outlined in subsection 4.1 is applied. The hard constraints are 
never violated during the timetabling process.  

The pseudo code for the algorithm implemented in this paper is given in 
Figure 1. The algorithm starts with a feasible initial solution which is 
generated by a constructive heuristic as discussed in Abdullah et al. (2005a). 
Let K be the total number of neighbourhood structures to be used in the 
search (K is set to be 11 in this implementation) and f(Sol) is the quality 
measure of the solution Sol. At the start, the best solution, Solbest  is set to be 
Sol. In a do-while loop, each neighbourhood i where i ∈ {1,…,K} is applied 
to Sol to obtain TempSoli. The best solution among TempSoli is identified, 
and is set to be the new solution Sol*. If Sol* is better than the best solution 
in hand, Solbest, then Sol* is accepted. Otherwise, the exponential Monte 
Carlo acceptance criterion is applied. This accepts a worse solution with a 
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certain probability. The criterion is discussed in Ayob and Kendall (2003). 
The new solution Sol* is accepted if the generated random number in [0,1], 
RandNum, is less than the probability which is computed by e-δ where δ is 
the difference between the cost of the old and new solutions (i.e. δ = f(Sol*) 
– f(Sol)). The Monte Carlo method will exponentially increase the 
acceptance probability if δ is small. The process is repeated and stops when 
the termination criteria is met (in this work the termination criteria is set as 
the number of evaluations i.e. 200000 evaluations or when the penalty cost is 
zero). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Set the initial solution Sol by employing a 
constructive heuristic; 
Calculate initial cost function f(Sol); 
Set best solution Sol  ← Sol; best

do while (not termination criteria) 
for i = 1 to K where K is the total number of 
neighbourhood structures 
Apply neighbourhood structure i on Sol, TempSoli;
Calculate cost function f(TempSoli); 

end for 
Find the best solution among TempSoli where i ∈ 
{1,…,K} call new solution Sol*; 

 if (f(Sol*) < f(Solbest)) 
Sol ← Sol*; 
Solbest ← Sol*; 

else 
Apply an exponential Monte Carlo where: 
δ = f(Sol*) -  f(Sol)); 
Generate RandNum, a random number in [0,1]; 
if (RandNum < e-δ ) 

Sol ← Sol*; 
end if 

end do 

Figure 1. The pseudo code for the randomised iterative improvement algorithm 
 
 
5. EXPERIMENTS AND RESULTS 

 
The approaches are coded in Microsoft Visual C++ version 6 under 
Windows. All experiments were run on an Athlon machine with a 1.2GHz 
processor and 256 MB RAM running under Microsoft Windows 2000 
version 5. We evaluate our results on the instances taken from Socha et al 
(2002) and which are available at http://iridia.ulb.ac.be/~msampels/tt.data/. 
We employed the same initial solutions as in Abdullah et al. (2005a).  The 
experiments were run for 200000 iterations which takes approximately eight 
hours for each of the medium datasets and at most 50 seconds for the small 
datasets. Note that course timetabling is a problem that is usually tackled 
several months before the schedule is required. An eight hours run for course 
timetabling is perfectly acceptable in a real world environment. This is a 
scheduling problem where the time taken to solve the problem is not critical. 
The emphasis in this paper is on generating good quality solutions and the 
price to pay for this can be taken as being a large amount of computational 
time. 

The experiments for the course timetabling problem discussed in this 
paper were tested on the benchmark course timetabling problems proposed 
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by the Metaheuristics Network that need to schedule 100-400 courses into a 
timetable with 45 timeslots corresponding to 5 days of 9 hours each, whilst 
satisfying room features and room capacity constraints. They are divided 
into three categories: small, medium and large. We deal with 11 instances: 5 
small, 5 medium and 1 large. The parameter values defining the categories 
are given in Table 1. 
 
Table 1. The parameter values for the course timetabling problem categories 

Category small medium large 
Number of courses 100 400 400 
Number of rooms 5 10 10 
Number of features 5 5 10 
Number of students 80 200 400 
Maximum courses per student 20 20 20 
Maximum student per courses  20 50 100 
Approximation features per room 3 3 5 
Percentage feature use 70 80 90 

 
The best results out of 5 runs obtained are presented. Table 2 shows the 

comparison of the approach in this paper with other available approaches in 
the literature on the five small problems. Table 3 illustrates our comparison 
on the medium/large problems.  The term “x%Inf.” in Table 3 indicates a 
percentage of runs that failed to obtain feasible solutions.  
 The best results are presented in bold in both tables. Note that the only 
methods that were able to obtain feasible solutions for the large problem 
were the ant method (Socha et al, 2002) and the graph based hyper-heuristic 
(Burke et al, 2006) with the ant method being better. 

It can be seen that the randomised iterative improvement algorithm has 
better results than Abdullah et al. (2005a) on all five medium datasets with 
the same (best result) penalty cost for the small instances. Our approach has 
better results than the local search method (Socha et al, 2002) on three of the 
medium instances and on all five of the small datasets.  Our method has 
higher quality results when compared against the ant approach (Socha et al, 
2002) on four of the small problems, with both approaches being able to 
obtain zero penalty on the other.  Our algorithm gets better results than the 
ant technique on two of the medium instances.  The iterative improvement 
approach is has better penalty values than the tabu search hyper-heuristic 
(Burke et al. 2003a) on three of the small datasets and both methods get zero 
penalty on the other two.  It was better values on just two of the medium 
sets. The iterative approach obtained better results than the graph based 
hyper-heuristic (Burke et al. 2006) on all datasets except the large one.  

Note that our approach has the very best results across seven of the 
eleven datsets (although it does perform very poorly on the large one). It is 
particularly effective on the small problems, taking approximately 50 
seconds to obtain zero penalties as opposed to, for example, the algorithms 
of (Socha et al) which take 90 seconds.  It is quite effective on the medium 
problems but at the expense of a high level of computational time. It takes 
our algorithm about 8 hours to produce these solutions for the medium 
problems whereas, for example, it takes the (Socha et al, 2002) methods 900 
seconds (15 minutes).  The need for the long run time is probably due to 
some neighbourhood structures in our method being less effective on this 
type of problem.  
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Table 2. Comparison of results on the small datasets 
Randomised 

Iterative 
Improvement 

Algorithm 

 
 
 
 
 

Data 
Set 

 
 
 
 

 
Initial  

Solution 

 
 

Best 

 
 

Median 

VNS 
with 
tabu  

(Abdull
ah et al. 
2005a) 
(Best) 

Local 
search 
(Socha 
 et al. 
2002) 

 
(Median) 

Ant  
Algorithm 

(Socha 
 et al. 
2002) 

 
(Median) 

Tabu- 
based 
hyper- 

heuristic 
(Burke et 
al. 2003a) 

(Best) 

Graph 
hyper- 

heuristic 
(Burke 
et al. 
2006) 
(Best) 

s1 261 0 0 0 8 1 1 6 
s2 245 0 0 0 11 3 2 7 
s3 232 0 0 0 8 1 0 3 
s4 158 0 0 0 7 1 1 3 
s5 421 0 0 0 5 0 0 4 

Table 3. Comparison of results on the medium/large datasets 
Randomised 

Iterative 
Improvement 

Algorithm 

 
 
 
 
 

Data 
Set 

 
 
 
 

 
Initial  

Solution 

 
 

Best 

 
 

Median 

VNS 
with 
tabu  

(Abdull
ah et al. 
2005a) 
(Best) 

Local 
search 
(Socha 
 et al. 
2002) 

 
(Median) 

Ant  
Algorithm 

(Socha 
 et al. 
2002) 

 
(Median) 

Tabu- 
based 
hyper- 

heuristic 
(Burke et 
al. 2003a) 

(Best) 

Graph 
hyper- 

heuristic 
(Burke 
et al. 
2006) 
(Best) 

m1 914 242 245 317 199 195 146 372 
m2 878 161 162.6 313 202.5 184 173 419 
m3 941 265 267.8 357 77.5% Inf. 248 267 359 
m4 865 181 183.6 247 177.5 164.5 169 348 
m5 780 151 152.6 292 100% Inf. 219.5 303 171 
l 100% 

Inf 
- - 100% 

Inf. 
100%  
Inf. 

851.5 80% Inf. 
1166 

1068 

Data Set Key:  l = large, m1 = medium1, m2 = medium 2 and so on. 

 
 Figures 2 and 3 show the behaviour of the randomised iterative 
improvement algorithm applied to the small1 and medium5 datasets, 
respectively. In all the figures, the x-axis represents the number of 
evaluations whilst the y-axis represents the penalty cost. The graphs 
illustrate the exploration of the search space. The curves move up and down 
because worse solutions are accepted with a certain probability in order to 
escape from local optima. The penalty cost can be quickly reduced at the 
beginning of the search where there is (possibly) a lot of room for 
improvement. It is believed that better solutions can be obtained in these 
experiments (particularly on the smaller problems) because the composite 
neighbourhood structures offer flexibility for the search algorithm to explore 
different regions of the solution space. The graphs for the small datasets 
show that our algorithm is able to obtain zero penalties in less than 1500 
evaluations which is an improvement upon Burke et al. (2003a) which set 
the number of evaluations at 12000 for small datasets.  
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Figure 2. The behaviour of the randomised iterative improvement algorithm on the 

small1 dataset 
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Figure 3. The behaviour of the randomised iterative improvement algorithm on the 

medium5 dataset 

 Figures 4 and 5 show the frequency charts of the neighbourhood 
structures that have been selected to be used by the randomised iterative 
improvement algorithm for the small and medium datasets, respectively. The 
x-axis represents the datasets while the y-axis represents the frequency of the 
neighbourhood structures being employed throughout the search. 

Frequency chart of the neighbourhood structures for the small 
datasets
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Figure 4. Frequency of the neighbourhood structures used for the small datasets 

Frequency chart of the neighbourhood structures for the 
medium datasets
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Figure 5. Frequency of the neighbourhood structures used for the medium datasets 
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It can be seen, from Figure 4, that the neighbourhood structures “N1”, 
“N2”, “N7” and “N8” are the most popular structures used in the algorithm 
for small datasets. The popular structures for the medium datasets are “N1”, 
“N2”, “N5”, “N6”, “N7” and “N8” as shown in Figure 5. This illustrates that 
the most popular neighbourhood structures that are being supplied to the 
randomised iterative improvement algorithm are almost the same between 
the small and medium datasets (i.e. “N1”, “N2”, “N7” and “N8”). However, 
as the problem gets larger, there may be fewer and more sparsely distributed 
solution points (feasible solutions) in the solution space since too many 
courses are conflicting with each other. Thus, the approach may need extra 
neighbourhood structures (i.e. “N5” and “N6” in this case) to force the 
search algorithm to diversify its exploration of the solution space by moving 
from one neighbourhood structure to another. Further investigation was 
carried out to support the claim that the composite neighbourhood structure 
performs better than the single neighbourhood structure by employing 
selected neighbourhood structures separately i.e. “N1”, “N2”, “N5”, “N6”, 
N7” and “N8” (which are the most popular neighbourhood structures used 
for the small and medium datasets). The small datasets are able to obtain 
zero penalty in less than 1500 evaluations.  Thus, for the experiments carried 
out here, the number of evaluations for the small datasets is set as equal to 
the number of evaluations where the best solutions are obtained (i.e. 873, 
707, 413, 1012 and 1329 evaluations for small1, small2, small3, small4 and 
small5, respectively). The number of evaluations for the medium datasets 
remains the same. Table 4 gives the comparison of the performance of 
variants of the randomised iterative improvement algorithm in terms of 
penalty cost (objective function value). The results demonstrate that the 
algorithm with composite neighbourhood structures is uniformly the best in 
terms of penalty cost compared to other randomised iterative improvement 
algorithm variants.  

 
Table 4. Comparison of the performance of the randomised iterative improvement 

algorithm on single and composite neighbourhood structures 
Randomised iterative improvement algorithm 

neighbourhoods 
 
Dataset 

Initial 
solution 

N1 N2 N5 N6 N7 N8 Composite 
small1 261 76 21 26 54 5 8 0 
small2 245 64 27 47 59 9 6 0 
small3 232 68 45 69 33 6 18 0 
small4 158 63 39 44 18 5 9 0 
small5 421 112 33 49 64 7 12 0 
medium1 914 381 345 548 713 539 701 242 
medium2 878 364 337 556 675 555 643 161 
medium3 941 420 401 731 773 764 774 265 
medium4 865 332 317 549 615 546 603 181 
medium5 780 414 355 650 685 702 699 151 
large 100%Inf. - - - - - - - 

 
Figures 6 and 7 illustrate the behaviour of the randomised iterative 

improvement algorithm using a single neighbourhood structure compared to 
the composite neighbourhood structure applied on the small1 and medium5 
datasets, respectively. 
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Figure 6. The behaviour of the randomised iterative improvement algorithm using 
single and composite neighbourhood structures applied on the small1 dataset 
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Figure 7. The behaviour of the randomised iterative improvement algorithm using 
single and composite neighbourhood structures applied on the medium5 dataset 

 
The diagrams show the convergence of the penalty cost of the algorithm 

for small1 and medium5 for a number of evaluations for which the best 
solution is found. It can be seen that the randomised iterative improvement 
algorithm with the composite neighbourhood is significantly better than 
other variants with single neighbourhood in terms of solution quality given 
the same number of evaluations. All the other problems of the family have 
the same behaviour as in Figures 6 and 7. 
 
6. CONCLUSION AND FUTURE WORK 
 

This paper has focused on investigating a composite neighbourhood 
structure with a randomised iterative improvement algorithm for the 
university course timetabling problem. Preliminary comparisons indicate 
that this algorithm is competitive with other approaches in the literature. 
Indeed, it produced seven solutions that were better than or equal to the 
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published penalty values on these eleven instances although it did require 
significant computational time for the medium/large problems. It is an 
approach that is particularly effective on smaller problems. Further 
experiments were carried out to demonstrate that it is more effective to 
employ composite neighbourhood structures rather than a single 
neighbourhood structure because of the different ways of search that are 
represented by various neighbourhood structures.  

Future research will be aimed at exploring how the algorithm could 
intelligently select the most suitable neighbourhood structures according to 
the characteristics of the problems. Another direction of future research will 
investigate the integration of a population-based approach with a local 
search method. 
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