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Abstract We study the timetable conflict graphs produced by an artificial generator of student en-
rollments. We find correlations of their chromatic number with their density and clustering coeffi-
cient. The work gives evidence that the clustering coefficient is a useful measure of a graph.

1 Introduction

A task with large financial implications for Universities is the planning and management of teaching
space. There is evidence that teaching space is currently poorly utilised (HEFCE 1999), and we
are developing methods with the aim of improving this situation (Beyrouthy et al 2006, 2007c,b).
However, significant barriers in such development are (i) the lack of realistic data instances, and (ii)
the lack of good understanding of the nature of the timetabling problems that arise in practice, and
for which the space provisions need to be targetted.

For good space planning, we believe it is advantageous to be able to simulate many future sce-
narios, but this cannot be done well without the ability to create realistic scenarios, tailored to a
particular institution. Such creation inevitably requires a good understanding of the structure of
problems that arise, as well as a good ability to solve them close to optimality. A lot of work in
the timetabling community has been directed at the solvers. In this project we are also studying the
structures of the problems themselves.

We reported some initial studies in Beyrouthy et al (2007a) of timetabling conflict graphs: ver-
tices represent events, and edges correspond to conflicts between events preventing them taking
place at the same time. We introduced their study from the perspective of the clustering coefficient,
c, of the graphs. The clustering coefficient has achieved significant usage in the study of networks
(Watts and Strogatz 1998). Roughly speaking, it measures the probability that for any node in the
graph, any two of its neighbours are also neighbours of each other.

Specifically, the clustering coefficient, ci of a node, i (of degree at least two) is the density of
induced subgraph given by the set of nodes that are adjacent to i. That is, ci is the probability that
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Fig. 1 “Bi-Clustered” scatter plot of enrollments from a real instance; “sta-f-83” of the Toronto Benchmarks.
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two distinct nodes adjacent to node i are also adjacent to each other. The clustering coefficient, c, of
the graph is then the average of the coefficients for the nodes.1

This clustering naturally complements the usual density, d, which can be thought of as the prob-
ability that two randomly selected nodes are neighbours of each other. We briefly report here on
further studies related to these “(density,clustering)”, (d,c), measures of a graph.

2 Student Enrollment Generator

Our study is based on developing methods to create graphs artificially but with realistic proper-
ties. Conflict graphs are likely to have significant large sets of tightly-interacting events because of
courses being grouped together by year of student entry, or curriculum, etc. Hence, at the least, the
values for the clustering and the density of artificial instances should be reasonably close to those
we expect in a realistic timetabling problem. For example, Figure 1 shows the enrollments in an
instance ““sta-f-83” from the Toronto benchmarks2 introduced by Carter et al (1996) The ordering
of the students and courses on the axes was selected so as to reveal a significant block structure by
performing a simplified form of bi-clustering. (Bi-clustering is a standard problem of permuting the
rows and columns of a matrix so to as reveal hidden block structures: it is used, for example, within
gene-expression analysis (Madeira and Oliveira 2004).)

Accordingly, we designed a generator of student enrollments to mimic such blocks. Currently
the generator mimics the blocks, but not yet the sub-blocks. The generator takes as part of its input
a set of course sizes, for example, from a real instance (though in future work we intend to also
generate these). It also has many parameters that control properties such as: the number of blocks;
the maximum enrollment per student; and the amount of overlap between the blocks. Details are
given in Beyrouthy (2008) where it is extensively used to study the issue of “Partial Inheritance”
in sectioning (see also Beyrouthy et al (2008)). That is, it was used to study the extent to which
conflicts between courses are resolved when the course is taught in sections at different times.

1 The exact definitions can depend on details of how nodes of degree 0 and 1 are handled, however, in our studies, such
nodes are rare, and so the differences are not important here.

2 ftp://ftp.mie.utoronto.ca/pub/carter/testprob/
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Fig. 2 “Slice plot”. Scatter plot of results for many instances of conflict graphs at a fixed density. The x-axis is the clustering
coefficient of each graph. The y-axis gives the number of colours, and the size of the max clique found for each graph instance.
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3 Chromatic Properties

Core problems within timetabling are graph colouring and max-clique determination. Hence, it is
natural to study the chromatic and clique numbers of the conflict graphs arising from the generated
student enrollments.

Chromatic numbers are already well-known to (generally) increase with density. So we focussed
on the effects of the clustering coefficient, by produced “slice plots” to study the variation of chro-
matic and clique numbers as a function of clustering at a fixed density.

Specifically, based on a fixed set of course sizes, many instances of enrollments were generated
by giving a wide variety of parameters to the enrolment generator. Each instance was converted to a
conflict graph. Then any graphs with a density not within a small range centered on a target density
were discarded. For the remaining graphs, we measured the clustering coefficient, the best-found
number of colours, and the best-found clique-size. Specifically, the clique and chromatic numbers
are bounded using best results obtained by publicly available software. For the colouring we used
the implementation of tabu search of Culberson3. For the cliques we used an implementation4 of
Reactive Local Search (Battiti and Protasi 2001).

An example of such results is given in Figure 2, based upon the course sizes from the instance
“yor-f-83” of the Toronto benchmarks.

Notice that the gap between the colours needed and the max clique size is generally fairly small,
and this gives a fairly tight bound on the chromatic number. This gap is small enough that we can
make two significant observations:

1. Density alone does not act as a good predictor of chromatic number – the instances have essen-
tially the same density but still have a wide range of chromatic numbers,

2. Density and clustering together do act as a good (statistical) predictor of chromatic number.
Given a fixed (d,c) then the spread of the chromatic numbers obtained is fairly small compared
to the mean value.

3 Available from http://www.cs.ualberta.ca/∼joe/Coloring/Colorsrc/index.html
4 We used version 1.2 from http://rtm.science.unitn.it/ (but no longer available there).
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Furthermore, we found that the resulting chromatic number was often fairly close to that of the
original instance whose course sizes were used in order to generate the artificial enrollments. This
provides evidence that the generator is capturing at least some of the salient features of the conflict
graph.

4 Conclusion

We provide further evidence that the clustering coefficient of the conflict graph is a measure that
should be exploited.
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ences Research Council (EPSRC) under grant GR/T26115/01.

References

Battiti R, Protasi M (2001) Reactive local search for the maximum clique problem. Algorithmica 29(4):610–637.
Beyrouthy C (2008) Models, solution methods and threshold behaviour for the teaching space allocation problem. PhD thesis,

School of Computer Science, University of Nottingham
Beyrouthy C, Burke EK, Landa-Silva JD, McCollum B, McMullan P, Parkes AJ (2006) Understanding the role of UFOs

within space exploitation. In: Proceedings of the 6th International Conference on the Practice and Theory of Automated
Timetabling (PATAT 2006), Brno, Czech Republic, pp 359–362.

Beyrouthy C, Burke EK, Landa-Silva D, McCollum B, McMullan P, Parkes AJ (2007a) Clustering within timetabling conflict
graphs. In: Baptiste P, Kendall G, Munier A, Sourd F (eds) Proceedings of the 3rd Multidisciplinary International
Scheduling Conference: Theory and Applications (MISTA 2007), Paris, France, pp 553–556.

Beyrouthy C, Burke EK, Landa-Silva D, McCollum B, McMullan P, Parkes AJ (2007b) The teaching space allocation prob-
lem with splitting. In: Burke EK, Rudova H (eds) Revised Selected papers from the 6th International Conference on
the Practice and Theory of Automated Timetabling (PATAT 2006), Brno, Czech Republic, Lecture Notes in Computer
Science, vol 3867, Springer-Verlag, pp 228–247.

Beyrouthy C, Burke EK, Landa-Silva JD, McCollum B, McMullan P, Parkes AJ (2007c) Towards im-
proving the utilisation of university teaching space. Journal of the Operational Research Society URL
http://dx.doi.org/10.1057/palgrave.jors.2602523, to appear.

Beyrouthy C, Burke EK, McCollum B, McMullan P, Parkes AJ (2008) Conflict inheritance in sectioning and space plan-
ning. In: Burke EK, Gendreau M (eds) Proceedings of the 7th International Conference on the Practice and Theory of
Automated Timetabling (PATAT 2008), Montreal, Canada.

Carter MW, Laporte G, Lee SY (1996) Examination timetabling: Algorithmic strategies and applications. Journal of the
Operational Research Society 47(3):373–383.

HEFCE (1999) Estates management statistics project. Tech. rep., Higher Education Funding Council for England, report
99/18. http://www.hefce.ac.uk/pubs/hefce/1999/99 18.htm.

Madeira SC, Oliveira AL (2004) Biclustering algorithms for biological data analysis: A survey. IEEE Transactions on Com-
putational Biology and Bioinformatics 1(1):24–45.

Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442.


