

Three Methods to Automate the Space
Allocation Process in UK Universities

E.K. Burke1, P. Cowling1, J.D. Landa Silva1*, Barry McCollum2

1 Automated Scheduling, Optimisation and Planning Research Group
School of Computer Science and IT, University of Nottingham,

{ekb,pic,jds}@cs.nott.ac.uk
http://www.asap.cs.nott.ac.uk/ASAP/

2 School of Computer Science
The Queen’s University of Belfast, UK

B.McCollum@queens-belfast.ac.uk

Abstract. The space allocation problem within UK universities is highly
constrained, has multiple objectives, varies greatly among different institutions,
requires frequent modifications and has a direct impact on the functionality of the
university. As in every optimisation problem, the application of different
advanced search methodologies such as local search, metaheuristics and
evolutionary algorithms provide a promising way forward. In this paper we
discuss three well-known methods applied to solve the space allocation problem:
hill-climbing, simulated annealing and a genetic algorithm. Results and a
comprehensive comparison between all three techniques are presented using real
test data. Although these algorithms have been extensively studied in different
problems, our major objective is to investigate the application of these techniques
to the variants of the space allocation problem, comparing advantages and
disadvantages to achieve a better understanding of the problem and propose
future hybridisation of these and additional methods.
Keywords: space allocation, neighbourhood search, metaheuristics.

1 Introduction

The space allocation problem in academic institutions is described as the allocation of
resources to areas of space such as rooms, satisfying as many requirements and
constraints as possible. Resources are staff, students, meeting rooms, lecture rooms,
special rooms, etc. Requirements are certain conditions to be fulfilled such as the
amount of space needed for each resource. Constraints (see section 2.3) are rules that
cannot be violated (hard constraints) or ones that can be broken but penalised (soft
constraints).

The aims of our research are to carry out a complete and detailed investigation of
the space allocation problem, to produce a model of this problem and to propose a set
of well studied techniques to find solutions for the different forms of the space
allocation problem not only in academic institutions, but also in commercial and
industrial areas. Developing hybrid metaheuristic techniques and focusing on
initialisation, decomposition and multicriteria decision-making, we expect to provide

* JDLS acknowledges support from Universidad Autónoma de Chihuahua and PROMEP in México.

fast and high quality solutions to large space allocation problems in universities and
other environments.

In its simplest form, space allocation can be regarded as a bin packing or knapsack
problem [2]. These two optimisation problems are frequently used to describe a wide
range of industrial and commercial problems. Finding a new set of metaheuristics to
solve the space allocation problem may well benefit these related applications. The
space allocation problem is also related to scheduling, which is defined by Wren [19]
as “the arrangement of objects into a pattern in time or space in such a way that some
goals are achieved, or nearly achieved, and that constraints on the way the objects may
be arranged are satisfied, or nearly satisfied”. Research work within the Automated
Scheduling, Optimisation and Planning group has demonstrated that the use of hybrid
metaheuristic approaches in real applications of scheduling-related problems, offers a
significant opportunity of success [4], [5], [6], [9], [10].

Some approaches have been proposed for solving space allocation and space
planning problems related to teaching facilities [1], [3], [13], [18]. In [7], the results of
a survey on the space allocation problem within UK universities were published. A
detailed description of the variety, complexity, characteristics of the problem and
available solutions in each institution was obtained. Later, in [8] it was stated that the
implementation of metaheuristic methodologies is a promising way to tackle the space
allocation problem in universities and that the more highly constrained a real situation
is, the less likely it is that we can ensure an acceptable level of space utilisation.

In this paper, we summarise the problem domain and define what a good solution is
in terms of our evaluation function. Then we discuss the performance of three well-
known techniques applied to the space allocation problem: hill-climbing, simulated
annealing and genetic algorithms and present a detailed comparison between these
three approaches. Finally, some conclusions are established and future research
directions are suggested.

2 Problem Description

2.1 Problem Domain

The problem of allocating resources into rooms in UK universities can be summarised
as follows: the process of assigning rooms or areas of space for specific resources,
ensuring the efficient utilisation of the space and satisfying as many requirements and
constraints as possible. Types of rooms considered here are non-residential, i.e.
focusing on academic-related space. Resources are considered to be staff, students,
laboratories, storage areas, common rooms, lecture theatres, etc. Requirements and
constraints vary from one university to another, so for each problem instance different
requirements and constraints exist. However, most of those requirements and
constraints are considered here as a result of our previous work [7]. Solving real
instances of the space allocation problem is a multicriteria decision-making process
because to determine the quality of an allocation it is necessary to consider different
objectives such as: achieve an efficient space utilisation, maximise the satisfaction of
constraints, minimise costs and guarantee people’s satisfaction.

2.2 Phases and Modes of the Process

The process of allocating rooms in UK universities can be performed in three stages:
1. The centralised office allocates space to faculties and assigns common areas
2. Faculties assign areas to schools and departments
3. Departments allocate specific rooms to resources

During these three phases, the problem can be solved in different ways at each stage:
• Fitting all resources into a limited amount of space
• Minimising the amount of space required to allocate a set of resources
• Reorganising because of the addition or removal of space and/or resources
• Reorganising/optimising the current allocation due to the possible variation of

requirements and/or constraints

2.3 Types of Constraint

Constraints considered so far in the domain of this problem, can be any of the
following classes:

• Sharing restrictions, e.g. head of department does not share a room
• Proximity/adjacency requirements, e.g. secretary must be adjacent to the head of

school
• Grouping requirements, e.g. people in a research group must be in the same room
• Requirements and limits for wastage and overuse of space, e.g. research students

require 6m2, but it is acceptable to assign 15% more (6.9m2) or less (5.1m2) space
• Requirements for staff sharing between different departments, e.g. a lecturer

working for two different departments should share a room
• Resource specific location, e.g. network technician must be adjacent to the

networking laboratory or in a specific room

These constraints are divided into two groups. The first and basic group consists of:
space overuse, space wastage, unallocated resources, sharing and grouping restrictions.
The second group consists of constraints that are required to be satisfied in each
specific case, e.g. technical services coordinator in the School of Computer Science
and IT at the University of Nottingham must be in a non shared room in the 2nd floor,
adjacent to other members of the technical services group, and all of them should be
close to the networking laboratory. Any constraint can be either hard or soft according
to the real problem. For example, in some universities it is strongly required that no
member of staff shares an office, while in others this requirement is only desirable.
Additional constraints can be added as required.

2.4 Fitness Evaluation of an Allocation

The allocation of all resources may be a hard constraint (a feasible solution must have
all resources allocated) or a soft constraint (some resources may be unallocated but a
penalty is applied). A feasible solution must satisfy all the hard constraints in the

specific space allocation problem. The quality of a feasible allocation is measured
using the aggregating function (1). This function is a sum of the penalty due to
unallocated resources, the penalty due to inefficient space utilisation and the penalty
due to unsatisfied soft constraints. If any of these is a hard constraint or requirement in
the problem instance, the corresponding penalty in a feasible solution must be equal to
zero. The lower the total penalty value, the higher the quality of the allocation.

total penalty)1()()]()([)(.
111

∑∑∑
===

+++=
N

i
i

M

i
ii

N

i
i rSCPsOPsWPrUP

UP is the penalty applied to the resource ri if it has not been allocated, WP is the
penalty applied to the room si if there is space wastage, OP is the penalty applied to
the room si if there is space overuse, SCP is the penalty applied if there is a soft
constraint violation for the resource ri, N is the total number of resources to be
allocated in the problem and M is the total number of rooms to be used in the
allocation process.

We calculate the penalties for violated soft constraints using weights and exponents
according to each specific scenario (for our experiments these values are included in
the test data sets available in [11]). The penalty for each violated soft constraint is
equal to (violation level x weight)exponent, where the violation level is a measure of the
soft constraint violation. Suppose we have a space allocation problem in which the
allocation of all resources is a soft constraint and a feasible solution has the following
constraint violation levels: 6 resources are not allocated, three rooms have space
wasted (4.6 m2, 0.6 m2 and 2.7 m2 respectively), one room has space overuse equal to
2.4 m2, 2 sharing restrictions and 5 adjacency constraints are not satisfied. Assume the
following values for weights and exponents:

Contraint Weight Exponent
wastage 2 1
overuse 2 2

unallocated 5000 1
sharing 2000 1

adjacent to 500 1

For the example described above the total penalty is calculated using (1) as follows:

total penalty = (6x5000)1 + ((7.9x2)1 + (2.4x2)2) + ((2x2000)1 + (5x500)1) = 36538.84

The weight is a measure of the impact in the penalty value of the unsatisfied
constraints, while the exponent penalises the degree to which the soft constraints are
violated.

3 Three Methods to Automate Space Allocation

3.1 Neighbourhood Exploration

The methods we have implemented to approach the space allocation problem are: hill-
climbing, simulated annealing and a genetic algorithm. The three algorithms attempt to
find the global optimum in the solution space, but while the first one is well known as
a search heuristic that may become stuck in poor local optima, simulated annealing
and genetic algorithms attempt to avoid this by performing a wider exploration of the
solution space [14], [15], [16], [17].

An allocation is represented using the structure shown in Fig. 1 below. A solution is
coded using a string that contains one element for each resource in the problem. Each
resource is associated with the room to which the resource has been allocated. If
unallocated resources are permitted in a feasible solution, those resources have a bin
room associated. If the same room is associated to more than one resource then those
resources are sharing the specified room.

Fig. 1. The structure used to represent an allocation in the space allocation problem.

Three moves are used to modify an allocation and therefore explore the search
space: ALLOCATE, RELOCATE and SWAP. The ALLOCATE move selects an
unallocated resource and finds a room to allocate to it. The RELOCATE move
changes the assigned room for one allocated resource. Finally, the SWAP move selects
two rooms and interchanges the allocated resources between them. The construction of
an initial solution is done by means of the ALLOCATE move. During the construction
of the initial solution and also during the space exploration, the following parameters
are used to modify the searching process: resource search, room search, space
deviation and termination criteria. In our experiments (see section 4) these parameters
were investigated to determine the appropriate neighbourhood exploration in each
algorithm.

• Resource search. The selection of the resource for the ALLOCATE and
RELOCATE moves can be: random or the worst offender. In the first case, the
resource to be allocated or relocated is randomly selected from the corresponding
list (unallocated or allocated resources). Selecting the worst offender means that
the move is evaluated for each resource in the corresponding list and the resource
that causes the least penalty is chosen. Obviously, the second option takes more
time to select the resource because it performs a wider search attempting to make a
better resource selection.

• Room search. To select the room for the ALLOCATE and RELOCATE moves, or
a pair of rooms for the SWAP move, two options are possible: random or the best
of NB rooms. In random selection, we choose at random, one resource
(ALLOCATE or RELOCATE moves) or two rooms (SWAP move). In the second

 Lab B Mr Lee Store Director Catering Ms Shang Lab A Mr Khan
1B01 1B04 1B08 1B17 1B10 1B07 bin 1B04

case, NB random rooms (ALLOCATE or RELOCATE moves) or NB random pairs
(SWAP move) of rooms are evaluated and the best room or pair of rooms is finally
chosen to implement the move. If NB equals the total number of rooms M, then all
rooms are tested and the best is used. Random selection permits faster construction
and neighbourhood exploration, but the second strategy performs a more thorough
search.

• Space deviation. When selecting the room for an ALLOCATE or RELOCATE
move or the pair of rooms for the SWAP move, it is possible to perform or skip an
evaluation of the percentage of space that can be wasted or overused. If this space
deviation is not evaluated, the selected room will be used even if it is too big or too
small for the selected resource. If this space deviation is evaluated, then the
percentage of space wastage or space overuse in the selected room must be within
the problem requirements.

• Termination criteria. To investigate the performance of the three algorithms, two
termination criteria are available: a fixed number of iterations or no improvement
in the allocation after a certain number of iterations.

3.2 Hill-Climbing and Simulated Annealing

The standard hill-climbing strategy is based on the inspection of the neighbourhood in
the solution space, so that by means of moves in the existing solution, progressive
improvements can be achieved to reach the local optima. The most important part of
this algorithm is the heuristic used to explore the neighbourhood using the three
possible moves: ALLOCATE, RELOCATE and SWAP. This strategy is shown below:

If all N resources are allocated
Select a random move between RELOCATE and SWAP

If not all N resources are allocated
If NA ≥ MA

If last move was ALLOCATE
 Select a random move between RELOCATE and SWAP

If last move was not ALLOCATE
 Select ALLOCATE move

NA ← 0
If NA < MA

If last move was not ALLOCATE
Select a random move between RELOCATE and SWAP

where, N is the total number of resources, NA is the number of failed (i.e. non-
improving) move attempts and is incremented after one move attempt has failed, MA
is the maximum number permitted of failed move attempts, and there is an equal
probability of choosing either the RELOCATE or the SWAP move.

The strategy shown above to select a move, takes into account the current state of
the allocation and the viability of accomplishing a certain type of move. In this sense,
the type of move that is undertaken in each iteration, depends on the number of

allocated resources and the number of prior failed attempts to find a feasible move.
When all resources in the current problem are already allocated, the algorithm explores
the neighbourhood using the moves RELOCATE and SWAP to improve the solution.
In the case that not all resources are allocated, a certain number of attempts (MA)
normally set to N/5, is given to either the ALLOCATE or the RELOCATE and SWAP
moves. Our experiments have shown that it is likely to find a move when one-fifth of
the number of resources is evaluated for the required move. The heuristic tries to
ALLOCATE as many resources as required to produce a feasible solution, but also
attempts to avoid getting stuck by examining the RELOCATE and SWAP moves. For
example, suppose that in the current solution there are still 5 unallocated resources
from a total of 100 in the allocation problem. Then, if after 20 failed attempts none of
these resources have been successfully allocated, the algorithm examines the
feasibility of modifying the solution using the RELOCATE and SWAP moves up to a
maximum of 20 failed attempts. The number of failed modification attempts is set to
zero when an improving move has been found.

The simulated annealing algorithm is a well-known method where new solutions
are accepted during the process with a probability that varies according to a
temperature parameter [16], [17]. Our simulated annealing and hill-climbing
algorithms use the same heuristic to select the type of move to improve the current
solution. The temperature is reduced slowly starting from a random search at high
temperature and carrying out pure hill-climbing at zero temperature. The goal of the
temperature variation process is to combine random selection with the local search
heuristic to find global optima. When the current allocation is improved by trying the
moves ALLOCATE, RELOCATE or SWAP, a high temperature corresponds to
random movements and other solutions are visited even if their fitness is not better
than the current solution. Low temperature corresponds to little randomness and worse
solutions are not visited. The temperature is set to a high value when the algorithm
starts, then it is decreased after a fixed number of iterations. The parameters used in
our simulated annealing algorithm are explained in section 3.4. The acceptance or
rejection of the selected move in the current solution is controlled as follows:

If the selected move improves the current solution

Accept move and new solution
Else

If current temperature = 0
Reject move and new solution

If current temperature > 0
Probability of acceptance = exp(− delta / current temperature)
If probability of acceptance ≥ random number

Accept move and new solution
Else

Reject move and new solution

Delta is the fitness variation due to the proposed move and a value greater than zero
means an improvement in the existing solution (decrease in the total penalty value).

3.3 Genetic Algorithm

The genetic algorithm that was implemented for this problem is shown below, where
each chromosome is a possible allocation as shown in Fig. 1.

Create Initial Population
Calculate Fitness (Initial Population)
Current Population = Initial Population
while Termination Criteria Not Satisfied
 For OffspringNo = 0 to OffspringNo = PopulationSize do
 Parent1 = Roulette_Wheel_Selection (Current Population)
 Parent2 = Roulette_Wheel_Selection (Current Population)
 Heuristic_Crossover (Parent1,Parent2,New Population)
 Mutate Population (New Population)
 Calculate Fitness (New Population)
 Replace_Population (Current Population, New Population)

The construction of each individual in the initial population is carried out using the

heuristic explained in section 3.2 with the moves ALLOCATE, RELOCATE and
SWAP. Our genetic algorithm evaluates the fitness of each solution using the penalty
function (1) presented in section 2.4. Using Roulette_Wheel_Selection, two parents
are selected from the current population. In the roulette wheel operator, the probability
of selecting each individual is proportional to its fitness [12]. Here, the sum of the
fitness (Fsum) for all chromosomes is obtained, then a random number n between 0 and
Fsum is generated. The first individual whose fitness added to the fitness of the
preceding population members, is greater than or equal to n, is selected as a parent.

Fig. 2. In the four-point crossover operator, the section in the chromosome with the highest
penalty is chosen, so the size of this section varies accordingly.

A B C D E F G H

New individuals

A B C D E F G H

A B C D E F G H

GB01 1B04 1B08 1B17 1B17 1B08 Bin 1B07

GB01 1B04 1B08 1B08 1B17 1B08 Bin 1B10

GB01 1B04 1B08 1B17 Bin 1B07 Bin 1B07

GB01 1B02 1B07 1B08 1B17 1B08 Bin 1B10

Selected individuals

A B C D E F G H

Our crossover operator works as illustrated in Fig. 2 using the chromosome string
representation shown in Fig. 1. This four-point crossover strategy identifies, in each
parent, the chromosome section that contains the group of resources (adjacent in the
chromosome representation) whose penalty values are the greatest. After detecting
these sections, the group of highest penalty in each parent is replaced with the
corresponding substring in the other parent.

The mutation operator consists of a random change of the assigned room for a
randomly selected resource. In Replace_Population, the new population replaces the
current population and elitism is applied to guarantee the selection of the fittest
individual so that this solution is preserved between generations. Here, elitism consists
of substituting the worst individual in the new population with the best individual in
the previous generation.

3.4 Selection of Search Parameters

Making modifications to the searching parameters described in section 3.1, we
obtained the variants of the algorithms shown in Table 1. These twelve variants are
different heuristics that were tested to find the set of parameters that produce the best
solutions in each type of space allocation problem. Our goal is to investigate the effect
of these parameters to design a heuristic for neighbourhood exploration in the space
allocation problem.

Table 1. Variants of the three algorithms. Parameters for simulated annealing are: initial
temperature 2000, decrement value 100 and decrement interval 300. Parameters for the genetic
algorithm are: population size 20, crossover probability 80%, mutation probability 5%. NB, the
neighbourhood size, is replaced by a number according to each problem instance in the results
described in Section 4.

 Algorithm Searching Options

Algorithms
Variants HC SA GA Random

Room
NB Best
Room

Worst Resource
Offender

Space
Deviation

Check
HCRand √ √

HCRandChk √ √ √
HCRandWrst √ √ √
HCNBRms √ √

HCNBRmsChk √ √ √
SARand √ √

SARandChk √ √ √
SARandWrst √ √ √
SANBRms √ √

SANBRmsChk √ √ √
GANBRms √ √

GARandWrst √ √ √

After examining the performance of each of the 12 variants of algorithms presented
in Table 1, the parameters for our algorithms are those that produce the best results in
terms of the penalty function (1) described in section 2.4. The values shown for these
parameters have been set up according to the problem size in our problem instances.
For simulated annealing we found that the best decrement interval size is around twice
the number of resources (150 resources in average for these test problems). Decrement
value is the best when it is set to 1/10 of delta, the fitness variation after implementing
a move in the current solution (delta is in the range of 800 to 1500 on these problems).
The initial temperature of 2000 is the value that produced the best fitness in these
problems. For the genetic algorithm we tested the range of parameters that are
proposed by Goldberg [14], and we found that with a population of about 1/10 of the
number of resources, 80% crossover probability and 5% mutation probability we
obtain the best results.

In the next section we give a description of the five data sets that were used in our
experiments. We show how the conditions differ from one problem to another due not
only to the fact that each university imposes its own requirements and standards, but
also to the different available information to specify the problem and then construct
the solution. For example while some universities provide information about space
requirements for resources, adjacency and proximity between rooms and constraints to
be satisfied, others simply do not use any standard data and the acceptance/rejection of
the solution depends only on space utilisation and some vague sharing restrictions.

4 Results

4.1 The Experiments

All variants of the three algorithms were tested with different real data obtained from
three universities in the UK. As we stated before in section 2.2, space allocation can be
applied in four ways. We use two of them that represent real situations in academic
institutions: optimisation/reorganisation and construction of a complete allocation.
Optimisation is when the existing allocation, with all the resources already allocated,
must be improved using the same set of rooms and constraints. Reorganisation means
that a subset of the resources (some specific rooms, like laboratories, common rooms
or strategic offices) has been previously allocated and then all remaining resources are
allocated to construct a solution. A complete allocation refers to the situation where all
resources are unallocated, and a solution involving all resources must be found. Each
algorithm variation was tested 40 times with all data sets, and then we selected the
ones that produced the best results for each case. Since in this paper we attempt to
determine an efficient strategy for the neighbourhood exploration, the best
performance of each algorithm is compared. The computational times required in our
tests are shown as a reference to compare them with the time taken to construct a
manual solution (weeks or months). A manual solution is constructed by the space
officers and varies from university to university [7]. The best solutions shown in tables
2 to 6 were selected according to the total penalty value obtained using a PC Pentium
300MHZ with 64MB RAM. In all tables, the last column shows the total penalty for
the manually constructed allocation as implemented in each case. We present the

solutions in tables to facilitate the analysis of the algorithms’ performance not only
according to total penalty but also for each different evaluation criteria (space
utilisation, unallocated resources penalty and soft constraints penalty).

4.2 The University of Nottingham Data

The School of Computer Science and IT recently moved to a new building, so it was
necessary to obtain a new allocation. There are 90 rooms of different sizes and 117
resources distributed according to their level, indicating sharing and space
requirements: 6 professors, 9 laboratories, 9 meeting rooms, 10 technical staff, 5
storage rooms, 1 teaching assistant, 3 senior lecturers, 7 secretaries, 47 researchers, 19
lecturers and 1 visiting lecturer. For these problems we have the 5 basic constraints, 8
specific groups of people, 30 specific resource locations and 8 particular
proximity/adjacency requirements. Data sets used are:

CSBuildingAllocatedIdeal. This is the real allocation at the Computer Science and IT
Building in this university. All 117 allocated resources and 90 rooms are used. The
goal is fitness improvement using all constraints specified by the problem, i.e. an
optimisation problem. Results obtained for this case are shown in table 2 compared
with the real allocation.

Table 2. Results for optimising the current allocation, University of Nottingham data

CSBuldingAllocatedIdeal Fitness
Statistics HC30Rms HCRand SARandWrst SA30Rms GARandWrst Real Allocation

Resources
Allocated 117 117 117 117 103 117

Rooms Used 90 90 90 90 78 90
Space
Utilisation 82.45% 81.56% 81.32% 78.27% 63.69% 77.99%

Constraints
Penalty 714.87 1094.93 4221.15 1264.21 71284.91 1264.21

Space Wastage
Penalty 479 487.4 535.9 624.8 859.6 639.8

Space Overuse
Penalty 403.26 1314.51 2225.76 14666.52 8290.07 17400.27

Total Penalty 1597.13 2896.84 6982.82 16555.53 80434.48 19304.28
Time taken
(h:m:s) 0:29:53 0:19:46 0:23:04 0:14:30 0:45:06 -----

Iterations 20000 50000 5000 5000 15 -----

CSBuildingReorganiseIdeal. This has 21 allocated resources (laboratories, meeting
rooms, storage rooms), 96 resources to be allocated (researchers, secretaries, lecturers,
senior lecturers, professors, technical staff, teaching assistants, visiting lecturers) and
21 used rooms. The goal is to reorganise the allocation using all requirements for the
problem and focusing on staff accommodation. Table 3 shows results for this data set.

Table 3. Results for reorganising the current allocation, University of Nottingham data

CSBuldingReorganiseIdeal Fitness
Statistics HCRandWrst HC30Rms SARandWrst SA30Rms GA117Rms Real Allocation

Resources
Allocated 117 117 117 117 117 117

Rooms Used 90 90 90 90 90 90
Space
Utilisation 79% 79.99% 81.65% 89.16 75.52% 77.99%

Constraints
Penalty 8500 13000 13343.146 6500 62083.78 1264.21

Space Wastage
Penalty 477.2 464 594.2 476.6 521.1 639.8

Space Overuse
Penalty 403.26 99.51 2293.9 404.07 12133.97 17400.27

Total Penalty 9380.45 13563.51 16231.24 7380.67 74738.85 19304.28
Time taken
(h:m:s) 0:26:19 0:41:36 0:06:18 0:34:54 3:15:23 -----

Iterations 5000 20000 1000 20000 13 -----

CSBuildingNewIdeal. All 117 resources are to be allocated and all rooms are
available. The goal is to fit all resources into the limited amount of space, using all
constraints for the problem and studying the impact of allocating all resources in one
stage. The current allocation in the CSBuilding has been evaluated with the penalty
function and compared with the allocations obtained with the algorithms, as shown in
table 4.

Table 4. Results for creating a new allocation, University of Nottingham data

CSBuldingNewIdeal Fitness
Statistics HCRandWrst HC30Rms SARandWrst SA30Rms GA117Rms Real Allocation

Resources
Allocated 113 115 116 115 117 117

Rooms Used 86 89 87 90 90 90
Space
Utilisation 62.67% 62.98% 70.56 77.65% 60.27% 77.99%

Constraints
Penalty 21979.086 32309.801 40526.35 29895.5 53530.54 1264.21

Space Wastage
Penalty 1529.4 1354.6 1247.8 1098.4 512 639.8

Space Overuse
Penalty 336.41 4617.88 7514.32 11346.32 8573.22 17400.27

Total Penalty 43962.48 48309.28 54369.49 52340.22 62615.76 19304.28
Time taken
(h:m:s) 0:03:15 0:57:47 0:08:27 0:05:30 2:34:07 -----

Iterations 1000 50000 5000 10000 11 -----

4.3 University of Wolverhampton Data

The Estates department at the University of Wolverhampton, provided us with
information about the SC Building in the Telford University Campus. In this case
there are 115 rooms and 115 resources, which are classified in 13 different levels but
not all of them with standard defined space, sharing or special requirements. In this
university, the Estates department labels each room with a specific use (for example
staff working room), then depending on the actual size of the room, its shape, and the
resource standard space requirement, the capacity is determined for that room. The
types of resources are laboratories, staff working rooms, computer rooms, teaching
rooms, store rooms, common rooms, toilets, etc. The interest here is to automate
allocation of staff working rooms, teaching rooms, and some specific laboratories or
computer rooms, and to improve the distribution of these resources. We have a set of 8
constraints, the 5 basic ones and 3 that specify grouping requirements. An important
note is that there is no available information about proximity/adjacency between
rooms. This condition gives us the opportunity to evaluate the algorithm’s
performance with missing information.

WolverhamptonReorganiseIdeal. There are 71 allocated resources (special purpose
rooms like laboratories, computer rooms, store rooms, common rooms, toilets, etc.),
44 resources to be allocated (staff working rooms, teaching rooms, some specific
laboratories or computer rooms) and 71 used rooms. The goal is to fit all resources
into the available space, using specified requirements for the problem and focusing on
academic related room’s accommodation. Table 5 shows results for this case and as
with the previous data set, the current allocation in the SC Building at the University
of Wolverhampton has been evaluated with the penalty function and compared with
the allocations obtained with the three algorithms.

Table 5. Results for reorganising the current allocation, University of Wolverhampton data

WolverhamptonReorganiseIdeal Fitness
Statistics HC30Rms HCRand SARandChk SA20Rms GA117Rms Real Allocation

Resources
Allocated 115 113 114 114 115 115

Rooms Used 96 102 103 100 114 115
Space
Utilisation 65.34% 58.21% 64.52% 61.54% 65.34% 65.33%

Constraints
Penalty 6171.316 11297.45 51726.85 11384.28 15915.08 16044.82

Space Wastage
Penalty 1959.994 2369.063 2083.78 2419.06 2218.15 2407.37

Space Overuse
Penalty 0 1815.066 6349.94 212.95 0 0

Total Penalty 8359.67 25824.67 65541.09 19268.68 18133.23 18452.20
Time taken
(h:m:s) 0:14:07 0:01:16 0:01:00 0:02:10 0:56:42 -----

Iterations 10000 20000 50000 10000 12 -----

4.4 Nottingham Trent University Data

This data set is the one with the least information available about requirements for
each different resource level, and there is no information available about
proximity/adjacency between rooms. Initially, the University did not specify standard
sharing, space or grouping requirements. We have 151 resources classified in 7 levels,
74 rooms and the basic constraints. There are 32 administrative assistants, 7
administrators, 9 coordinators, 81 lecturers, 7 managers, 6 professors and 9
technicians. After defining some space requirements and evaluating the actual
allocation, the goal here is to improve it using our heuristics.

TrentAllocatedBasic. This is the real allocation at the Chaucer Building in
Nottingham Trent University. All 151 allocated resources and 74 rooms are used. The
goal is optimisation using only the basic constraints for this problem.

Table 6. Results for optimising the current allocation, Trent University data

TrentAllocatedBasic Fitness
Statistics HCRand HC20Rms SARand SA20RmsChk GARandWrst Real Allocation

Resources
Allocated 151 151 151 151 95 151

Rooms Used 74 74 74 74 64 74
Space
Utilisation 80.6% 80.6% 80.6% 80.6% 65.65% 75.36%

Constraints
Penalty 0 0 0 4000 324800 58000

Space Wastage
Penalty 573 573 573 573.4 3467.78 727.88

Space Overuse
Penalty 0 0 0 0.015 68768.30 220738.90

Total Penalty 573 573 573 4573.41 397036.08 279466.75
Time taken
(h:m:s) 0:01:59 0:00:24 0:05:43 0:12:59 1:47:12 -----

Iterations 50000 5000 10000 20000 15 -----

4.5 Selection of the Search Strategy

For tables 2 to 6 presented in the last sections, we selected the best options for each
algorithm using the information obtained from graphs like the ones in figures 3 to 7. In
the graphs we indicate the best performance obtained by the selected variants of the
hill-climbing algorithm included in the tables 2 to 6. We observe that hill-climbing
variants produce the best results when applied to optimisation problems (Fig. 3 and
Fig. 7), i.e. when there is an existing allocation and it should be improved. In these
cases (CSBuildingAllocatedIdeal and TrentAllocatedBasic problems) all variants
obtain substantial improvement over the real allocation. We observe from Fig. 3 and
Fig. 7 that the variants HCRandChk, HCNBRmsChk and HCRand provide poor
solutions in the first iterations, but find considerable improvement after 5000

iterations, while the variants HCRandWrst and HCNBRms produce high quality
solutions even with just a few iterations. This means that all our hill-climbing
heuristics effectively take an existing allocation provided by the user and find good
local optima, obtaining a substantial improvement measured with the penalty function
(1) described in section 2.4.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

250 1000 5000 10000 20000 50000 Iterations

HCRand HCRandChk HC30Rms
HC30RmsChk HCRandWrst Real Allocation

Fig. 3. Hill-Climbing variants for the CSBuildingAllocateIdeal data set.

0

50000

100000

150000

200000

250000

300000

350000

250 1000 5000 10000 20000 50000
Iterations

HCRand HCRandChk HC30Rms
HC30RmsChk HCRandWrst Real Allocation

Fig. 4. Hill-Climbing variants for the CSBuildingReorganiseIdeal data set.

1597.13

2896.84

9380.45

13563.51

On the other hand, when our hill-climbing is applied to reorganisation problems
(CSBuildingReorganiseIdeal and WolverhamptonReorganiseIdeal), three variants
produce competitive results. This can be noted in Fig. 4 and Fig. 6, where the variants
HCRandChk and HCNBRmsChk offer poor solutions compared with the existing one.
HCRand again produces low quality solutions at the beginning, but after 5000
iterations, the allocation obtained is highly competitive. Here, HCNBRms and
HCRandWrst are the best options since both are equal to or even improve the current
solution in the first iterations.

10000

60000

110000

160000

210000

260000

310000

360000

410000

460000

250 1000 5000 10000 20000 50000 Iterations

HCRand HCRandChk HC30Rms
HC30RmsChk HCRandWrst Real Allocation

Fig. 5. Hill-Climbing variants for the CSBuildingNewIdeal data set.

5000

25000

45000

65000

85000

105000

125000

145000

165000

185000

250 1000 5000 10000 20000 50000 Iterations

HCRand HCRandChk HC30Rms
HC30RmsChk HCRandWrst Real Allocation

Fig. 6. Hill-Climbing variants for the WolverhamptonReorganiseIdeal data set.

43962.48
48309.28

8359.67

25824.67

If our hill-climbing heuristics are applied to construct a completely new solution
(CSBuildingNewIdeal) then none of the variants produce a better solution than the
solution generated by a human expert measured with the penalty function described in
section 2.4. In Fig. 5 we observe that HCRandChk and HCNBRmsChk offer their best
performance after 5000 iterations but the solutions produced have low fitness (high
total penalty value).

If HCRand after 5000 iterations together with HCRandWrst and HCNBRms are
compared with the existing solution, then we can say that these variants produce
allocations with a total penalty that is slightly greater. If we also consider that the
existing solution was constructed by the experts using all their knowledge and that this
allocation is the best one using the traditional and non automated method, then
allocations provided here by hill-climbing achieve a reasonable quality. In all test
problems, the variants of the hill-climbing algorithm that produce the best results are
HCNBRms and HCRandWrst. The HCRand variant offers an interesting option while
HCRandChk and HCNBRmsChk are the worst of all.

Note that in these graphs, comparison has been made using only the total penalty
of an allocation, but there are several aspects to consider before establishing final
conclusions about our heuristic’s performance. Further analysis with information from
the best variants of the three algorithms and additional fitness measures is presented in
section 4.6 using tables 2 to 6. Similar analyses were achieved for simulated annealing
and genetic algorithm variants, but as we stated before, only the best results are
presented here in section 4. In the next section we analyse the searching strategy and
the performance of our implemented algorithms for the space allocation problem.

0
25000
50000
75000

100000
125000
150000
175000
200000
225000
250000
275000
300000

250 1000 5000 10000 20000 50000 Iterations

HCRand HCRandChk HC20Rms
HC20RmsChk HCRandWrst Real Allocation

Fig. 7. Hill-Climbing variants for the TrentAllocateBasic data set.

573 573

4.6 Discussion on the Algorithms’ Performance

We observe from tables 2 to 6 that the best results in terms of the allocation quality
measured with the aggregating penalty function (1) are produced by the hill-climbing
variants (we are comparing our variants of these algorithms on the space allocation
problem but there are other successful implementations of these three algorithms [16],
[17]). The simulated annealing variants produce good results when the problem is not
highly constrained (TrentAllocatedBasic). The genetic algorithm implemented here
did not produce improvements over the current allocation. Both hill-climbing and
simulated annealing strategies, reach the goal of improving an existing allocation.
When reorganising an allocation, hill-climbing and simulated annealing variants
obtain the best results, as can be noted in tables 3 and 5. Our genetic algorithm has a
good performance in reorganising problems (WolverhamptonReorganiseBasic) if there
are only basic constraints. An important observation here is that in reorganising
problems (CSBuildingReorganiseIdeal and WolverhamptonReorganiseBasic) where
the allocation process is centred on the staff and certain specific and conflicting rooms
were allocated previously, both hill-climbing and simulated annealing are capable of
allocating all resources and improving the manual solution, i.e. these algorithms find a
locally optimal solution that is better that the manual solution (here the quality of
solutions is measured with the penalty function described in section 2.4). Our genetic
algorithm performs better (allocates all resources) in the situation in which the initial
population is originated from a partially constructed allocation.

In table 4 we observe that if the problem is to construct a completely new
allocation for all resources, none of our algorithms produced a better solution than the
manual approach. The hill-climbing and simulated annealing strategies constructed
allocations that correspond to local optima, which do not match the quality of the
manual solution. For example, HCRandWrst produced solutions with 4 unallocated
resources and SA30Rms obtained allocations with 2 unallocated resources. In the
same case, our genetic algorithm produced a set of solutions which have a competitive
quality compared with hill-climbing and simulated annealing, but neither provided a
better solution than the one obtained manually. This genetic algorithm performs well
for this type of problem compared to the optimisation and reorganisation cases,
because the algorithm constructs all individuals from scratch and is then capable of
accomplishing a wide exploration of the solution space.

In all variants of our algorithms, a completely random searching strategy can be
seen as one that uses only random selection of rooms and resources without any space
deviation check. A steepest descent searching strategy would be one that always
selects the pair resource/room that provides the highest improvement in the current
solution. We observe from tables 2 to 6 and figures 3 to 7 that the three algorithms
achieve the best performance when the searching strategy is partially heuristically
directed (i.e. a random selection of the resource with NB rooms evaluated) and space
deviation checking is not performed.

5 Conclusions

The problems that space managers face most often are the reorganisation and
optimisation of the current allocation. The time required for constructing an allocation
varies from weeks to months [7]. Our heuristics offer a promising alternative to
automate the space allocation process in a shorter time. From the approaches
investigated so far, hill-climbing appears to be the best for optimisation problems,
using the strategy of selecting the best among NB rooms in the neighbourhood
exploration heuristic. For reorganising situations, both simulated annealing and hill-
climbing strategies produce their best performance using the strategy of selecting the
best among NB rooms. The reason why these strategies have a good performance in
optimising and reorganising problems might be that the most conflicting resources are
already allocated and that the improvement of these solutions can then be
accomplished using these local search strategies. In constructing a complete allocation,
our hill-climbing and simulated annealing variants construct good solutions but do not
match the quality of the manually constructed allocation. Constructing a completely
new allocation is not a frequently needed task, but the experts spend days, even
months, on it, while our heuristics produce competitive initial solutions in minutes or
hours. The implemented genetic algorithm is capable of producing acceptable results
in terms of time when constructing complete allocations. It produces a set of solutions
that can be improved using a local search heuristic. We observe that the
neighbourhood exploration in these problems produces the best results using our
algorithms when: a random selection of the resource is performed, NB rooms are
evaluated and the best of them is chosen and no space deviation checking is done.

One future research direction is to modify the neighbourhood search heuristic to
construct a completely new solution allocating the most conflicting resources at the
beginning of the process. It is also important to investigate the hybridisation of genetic
algorithms and local search operators in order to produce a robust solution. The effect
of the evaluation method to establish the quality of an allocation will also be
considered in future research work. This paper shows that the space allocation process
in UK universities can effectively be developed in a better way using the algorithms
presented. We have studied how some modifications to three well known approaches
can be used to tackle the different instances of the space allocation problem within
universities, helping us to construct both a comprehensive model for the problem and a
well studied set of techniques to solve it.

References

1. Benjamin C., Ehie I., Omurtag Y., Planning Facilities at the University of Missoury-Rolla,
Journal of Interfaces, Vol. 22, No. 4, pp. 95-105, 1992.

2. Baase S., Computer Algorithms Introduction to Design and Analysis, 2nd ed. Addison
Wesley, 1988.

3. Bland J.A., Space-Planning By Ant Colony Optimisation, International Journal Of
Computer Applications In Technology, Vol.12, No.6, pp. 320-328, 1999.

4. Burke E.K., Newall J.P., Weare R.F., A Memetic Algorithm for University Exam
Timetabling, Selected Papers from PATAT ’95 Conference, Edinburgh, Scotland, Lecture
Notes in Computer Science, Springer-Verlag, Vol. 1153, pp. 241-250, 1996.

5. Burke E.K., Clark J.A., Smith A.J., Four Methods for Maintenance Scheduling,
Proceedings of the 3rd International Conference on Artificial Neural Networks and
Genetic Algorithms, University of East Anglia, Norwich, UK, Springer, Vol. 1, pp. 264-
269, 1997.

6. Burke E.K., Smith A.J., A Memetic Algorithm for the Maintenance Scheduling Problem,
Proceedings of the ICONIP'97 Conference, Dunedin, New Zealand, Springer, pp. 469-
474, 1997.

7. Burke E.K., Varley D.B., Space Allocation: An Analysis of Higher Education
Requirements, Selected papers from the PATAT ’97 Conference, Toronto, Canada,
Lecture Notes in Computer Science, Springer-Verlag, Vol. 1408, pp. 20-33, 1998.

8. Burke E.K., Varley D.B., Automating Space Allocation in Higher Education, Proceedings
of the 2nd Asia Pacific Conference on Simulated Evolution and Learning, Camberra,
Australia, pp. 66-73, 1998.

9. Burke E.K., Smith A.J., A Memetic Algorithm to Schedule Planned Grid Maintenance,
Proceedings of the International Conference on Computational Intelligence for Modelling
Control and Automation, Vienna, pp. 122-127, 1999.

10. Burke E.K., Newall J.P., A Multi-Stage Evolutionary Algorithm for the Timetable
Problem, IEEE Transactions on Evolutionary Computation, Vol. 3.1, pp. 1085-1092,
1999.

11. Burke E.K., Landa Silva J.D., The Space Allocation System – Test Data, [Online],
Available: www.asap.cs.nott.ac.uk/ASAP/space/spacedata.html [2001, March 1st].

12. Coley D.A., An introduction to Genetic Algorithms for Scientists and Engineers, pp. 23-
34, World Scientific Publishing, 1999.

13. Giannikos J., El-Darzi E., Lees P., An Integer Goal Programming Model to Allocate
Offices to Staff in an Academic Institution, Journal of the Operational Research Society,
Vol. 46, No. 6, pp. 713-720, 1995.

14. Goldberg D.E., Genetic Algorithms in Search, Optimisation and Machine Learning,
Addison-Wesley, 1989.

15. Man K.F., Tang K.S., Kwong S., Genetic Algorithms, Springer, 1999.
16. Osman I.H., Kelly J.P., Meta-Heuristics: Theory & Applications, Kluwer Academic

Publishers, 1996.
17. Rayward-Smith V.J., Osman I.H., Reeves C.R., Smith G.D., Modern Heuristic Search

Methods, Wiley, 1999.
18. Ritzman L., Bradford J., Jacobs R., A Multiple Objective Approach to Space Planning for

Academic Facilities, Journal of Management Science, Vol. 25, No. 9, pp. 895-906, 1980.
19. Wren A., Scheduling, Timetabling and Rostering, a Special Relationship?, Selected Papers

from PATAT ’95 Conference, Edinburgh, Scotland, Lecture Notes in Computer Science,
Springer-Verlag, Vol. 1153, pp. 46-75, 1996.

