
Towards Performance Related Decision Support for Model Driven
Engineering of Enterprise SOA applications

Mathias Fritzsche, Wasif Gilani
SAP Research CEC Belfast

[mathias.fritzsche | wasif.gilani]@sap.com

Ivor Spence, T. John Brown, Peter Kilpatrick, Rabih Bashroush
Queen’s University Belfast

[i.spence | tj.brown | p.kilpatrick | r.bashroush]@qub.ac.uk

Abstract

Model Driven Performance Engineering (MDPE)
enables early performance feedback in a MDE
process, in order to avoid late identification of
performance problems which could cause significant
additional development costs. In our past work we
argued that a synchronization mechanism between
development and performance analysis models is
required to adequately integrate analysis results into
the development process enabling performance related
decision support. In this paper we present a solution
for this requirement. We present a new multi-view
based approach and its implementation enabling
systematic performance related decision support. We
currently apply our research on the model driven
engineering of process orchestrations on top of SAP’s
Enterprise Service Oriented Architecture (Enterprise
SOA).

1. Introduction

Increasingly complexity of software systems,
characterized here in terms of attributes such as size,
distribution, heterogeneity and dynamicity, create a
high need for an early identification of possible
performance problems in order to avoid significant
additional development effort. We deal with providing
a solution for addressing the performance related issues
in the earlier stages of software development, and
applying our work to highly distributed applications
built on top of SAP’s SOA platform called Enterprise
SOA [13], [14].

 In our previous work [1], we proposed Model-
Driven Performance Engineering (MDPE) for early
performance feedback. The process supports earlier

initial performance feedback with minimal effort as
well as maximal performance feedback with extended
(but still cost-efficient) effort by utilization of Model
Driven Engineering (MDE) concepts. Hence, MDPE
enables earlier performance feedback to address the
challenges of short time to market by taking into
account the increased complexity in software
development.

We identified the requirement of a synchronization
mechanism, between the development models1 and
performance analysis models, in order to adequately
integrate the performance analysis results into the
development process. This requirement is extended
here with the notion of providing performance related
decision support based on analysed performance view
models.

An example of a performance view model is the
Core Scenario Model (CSM) proposed in [2], which
combines performance relevant model knowledge and
performance measurements of a usage scenario. This
information has still to be interpreted, as mentioned in
[3]: “We must […] learn how to combine measurement
data interpretation with model interpretation and to
get the most out of both”. A first step towards this kind
of interpretation is taken in [4], in which a metric is
introduced for the detection of bottleneck sources for
decision support, in order to apply improvements and
realistically estimate their effectiveness. The decision
support in that work is based on a metric called
Bottleneck Strength providing a first step towards
combining measurement interpretation and model
interpretation.

1 We use the term development model in this paper to distinguish
between models as development artefacts and performance view
models.

15th Annual IEEE International Conference and Workshop on the Engineering of Computer Based Systems

978-0-7695-3141-0/08 $25.00 © 2008 IEEE
DOI 10.1109/ECBS.2008.52

57

15th Annual IEEE International Conference and Workshop on the Engineering of Computer Based Systems

978-0-7695-3141-0/08 $25.00 © 2008 IEEE
DOI 10.1109/ECBS.2008.52

57

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 7, 2009 at 09:28 from IEEE Xplore. Restrictions apply.

The contribution of this work is to propose an
approach enabling systematic performance related
decision support for non-performance experts in terms
of what in a design and in a resource mapping has to be
changed to get better results with regard to
performance objectives and modification constraints.

The approach combines three different performance
related views enabling effective performance
assessments. The approach is presented as an extension
of our previous idea of MDPE by providing stepwise
performance assessment and is described in section 3.
We implemented the approach by utilizing an Eclipse
based implementation of a systematic model
annotation approach (see section 4) and currently apply
our research for the MDE of process orchestrations
(see section 2).

2. Application

The requirements for our approach are motivated by
the Enterprise SOA architecture [13], [14]. A
simplified view of this architecture is depicted in
Figure 1.

Figure 1: Enterprise SOA high-level architecture
as Block Diagram [10]

As can be seen in the figure, the architecture is

structured in layers accessible as software resources.
The functionality provided by the different layers can
be deployed in one or several instances of the SAP
NetWeaver Application Server which are running on
physical resources which are Processors.

The Persistence layer uses distributed data
repositories that may consist of multiple databases
using physical memories.

Business Objects on top of the persistence layer
encapsulate semantic data, such as Sales Order data,
and provide methods to manipulate them. Business
Objects enable Business Processes and provide one or
more Enterprise Services which are technically
implemented as WebServices extended with
proprietary features [14]. Enterprise Services can be
provided not only by SAP specific Business Objects
but also by 3rd party objects.

The Process Orchestration Layer defines the
business control logic. It is the role of Enterprise
Services to provide access to business specific data or
functionality that can be used to compose business
processes. In the current architecture two kinds of
process orchestrations are possible depending on the
lifecycle of the orchestrated process. Back-end process
orchestration is done to define processes with longer
lifecycles whereas front-end orchestration is done to
compose processes with shorter lifecycles. In our
current work we deal with the model driven
engineering of processes with minimum user
interaction.

Following models specify the orchestrated
processes and the underlying architecture:

• Models of orchestrated front-end processes
• Models of underlying back-end processes

Models and measured performance data of building

blocks of a system enables performance analysis at
design time conforming to the original MDPE process,
[1] or other processes utilizing MDE for performance
engineering such as [15] and [16]. Alternatively,
performance analysis at runtime can be performed by
measuring indices of a system, such as utilization of
resources.

We identified the problem that it is difficult to deal
with the interpretation of performance analysis results
for orchestrated processes on top of the complex
Enterprise SOA architecture. One reason for that is the
layered architecture consisting of the Persistence,
Business Objects, Enterprise Service, Process
Orchestration and User Interface Layer, where a
bottleneck in one layer may in fact result in a
bottleneck in another layer by push-back which makes
interpretation difficult [4]. Additionally, the high
degree of flexibility for deploying the system on
physical resources and the integration of 3rd party
services complicates performance analysis. Hence, an
approach is required to enable interpretation of
performance analysis results.

5858

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 7, 2009 at 09:28 from IEEE Xplore. Restrictions apply.

The approach has to be in some sense intelligent to
adequately integrate the analysis results into
development models, such as models of orchestrated
business processes on top of Enterprise SOA.
Therefore, the approach should provide decision
support for non-performance experts in terms of what
in a design and in a resource mapping has to be
changed to get better results with regard to
performance objectives. We have refined this
requirement in terms of the following issues addressed
in this paper:
• Information filtering: We should only provide

relevant information with respect to the
modification constraints and performance
objectives provided by users of our approach. In
this paper we define performance objectives as
performance requirements and performance
improvements. Performance improvements are
concerned with maximizing the resource
utilization and mimizing the response time of the
modeled system.

• Information interpretation: We are required to
provide help in interpreting measurement data,
performance models, and performance prediction
results related to performance objectives and
modification constraints by providing intelligent
performance related metrics delineating how the
performance can be improved.

• Systematic model synchronization: We should
provide an approach for systematic integration of
performance metrics into development models in
the MDE process.

• Assessment visualization: The solution should
enable visualization support for graphical
representation of identified performance metrics
on development models.

3. Proposed multi-view based approach

We propose utilization of different views for
calculating metrics of interest to the user. Figure 2
depicts all views considered in our approach.

A description of the semantics of the different
performance related views is given below.

3.1 Performance Analysis View

The Performance Analysis View is a viewpoint on
the system encapsulating performance-related
characteristics and execution parameters of a system.
Hence, the Performance Analysis View is used to
calculate the metrics providing performance related
decision support. Based on the stepwise MDPE
approach we consider the Initial Performance Analysis
Model and the Extended Performance Analysis Model.
The former one is based on development models

Figure 2: Multiple views

5959

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 7, 2009 at 09:28 from IEEE Xplore. Restrictions apply.

annotated with resource demands and probabilities of
paths. It enables initial performance feedback in terms
of upper and lower bounds in the absence of factors
due to contention of resources. In order to give
performance related decision support, we use the Initial
Performance Analysis Model as one input for Initial
Performance Assessment.

The Extended Performance Analysis Model
requires more detailed information and hence more
effort by the modeller. In more detail, it additionally
takes into account factors due to contention for
resources, enabling more detailed scenario specific
analysis. We consider here that the Extended
Performance Analysis contains information about
utilization of resources based on measurements at
runtime or, conforming to the original MDPE
approach, based on performance prediction techniques
at design time. The Extended Performance Analysis
Model is used as one input for Extended Performance
Assessment.

3.2 Performance Analysis View

The Modification Constraint View specifies the
configuration options with respect to possible resource
mappings and in the future also with respect to design
alternatives. This view enables decision support which
is realizable and hence useful. We currently employ
Resource Demand Constraints as input for Initial
Performance Assessment and Resource Mapping
Constraints as input for Extended Performance
Assessment. With Resource Demand Constraints we
currently consider resource demands as fixed, e.g. for
the specification of resource demands of third party
services, or as variable. Resource mapping constraints
consider resources as duplicable or single-only
resources.

The Modification Constraint View is used to filter
the resulting performance assessment view for user
needs.

3.3 Performance Objective View

 The Performance Objective View concerns how the
modeled system should perform. This view can be split
into the specification of Performance Requirements
and Performance Improvement. Performance
Improvements are currently concerned with
maximizing the resource utilization and mimizing the
response time of the modeled system. We consider
specifying the Performance Improvements in the first
step as an input for Initial Performance Assessment.
Specifications of Performance Requirements, which
are specific for factors due to contention of resources,

are considered as an input for Extended Performance
Assessment.

The Performance Objective View is also used to
filter the resulting performance assessment view for
user needs. In the current implementation we only
support one metric for Initial Performance Assessment
and one metric for Extended Performance Assessment.
In the future we anticipate using the Performance
Objective View additionally to compute metrics of
interest by calculating dependencies between the
performance objectives and design decisions within the
development models. Those dependencies should
either be directly visualized to a user as a metric or
used to calculate how the optimal configuration with
respect to design and resource mapping alternatives
should look like by taking performance objectives and
modification constraints into account.

3.4 Performance Assessment View

We claim that the combination of the former views
enables calculation of performance related metrics and
patterns, thereby enabling decision support by
automatically taking performance objectives and
modification constraints into account. Hence, the
approach enables the automatic generation of a
Performance Assessment View from the information
provided by other views.

The Performance Assessment View provides
performance related decision support for non-
performance experts in terms of what in a design and
in a resource mapping has to be changed to get better
results with regard to performance objectives and
modification constraints. It therefore provides help in
information interpretation and filtering as stated in
section 1. Conforming to the stepwise MDPE approach
we consider Initial Performance Assessment which
provides performance related decision support in the
absence of concrete usage scenarios including
information about factors due to contention of
resources. In the second step we consider Extended
Performance Assessment taking additional factors due
to contention of resources, resource related
requirements and resource related constraints into
account. For both steps of Performance Assessment we
calculate metrics from the other three views to provide
decision support.

In order to gain first hand experience with our
approach we selected one metric per assessment step:
Step Performance Importance (SPI) as Initial
Performance Assessment and Bottleneck Strength as
defined in [12] as Extended Performance Assessment.
• The SPI metric depicts the impact of processing

time changes of a process step. It therefore depicts

6060

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 7, 2009 at 09:28 from IEEE Xplore. Restrictions apply.

the importance of decreasing resource demands of
a process step or increasing of resource quality or
quantity on the overall performance. SPI is
calculated for each step in a behaviour model from
the probabilities of paths available in the Initial
Performance Analysis Model as follows:

s = Step in a behavior model

sn
= number of possible paths to Step S

ip
= probability of path i

∑ =
= sn

i is pSPI
0

A high SPI value of a step in a behavior model
indicates a high impact on the overall performance
if the resource demand of the process step is
decreased or the resource quality or quantity is
increased. The results are shown only for these
steps which are defined as variable in the
Modification Constraint view and which are
marked as Improvable in the Performance
Objective View.

• Bottleneck Strength can be calculated if models
showing layered use of resources, such as shown
in section 2, are available and if they are
containing information about resource utilization.
For our current implementation we use a refined
and slightly extended version of the Core Scenario
Model (CSM) [2] to have an instance of an
Extended Performance Analysis Model. The
Bottleneck Strength (BStrength) metric is defined
in [12]:

R = hardware or software resource of a Step

r = another resource which is requested by R

rRbyrrequested nutilizatioRShadow)(maxarg)(=

)(RShadow

R
R nutilizatio

nutilizatioBStrength =

BStrength enables bottleneck characterization for
layered resource consumption. The resource with
the largest BStrength value and utilization close to
100% is interpreted as the bottleneck. A more
detailed description is provided in [12] about how
this metric has to be interpreted to support design
and resource mapping decisions. Currently we use
the Modification Constraint View and the
Performance Objective View to filter the
visualization of BStrength values. Consistent with
the SPI metric we only visualize BStrength for

those parts in a model that are not fulfilling
Performance Requirements defined within the
Performance Objectives or which are marked as
Improvable in the Performance Improvements and
where the Resource mapping Constraint does not
prevent the use of more resources. We identified
that both selected metrics are a first step towards
performance related decision support for non-
performance experts in terms of what in a design
and in a resource mapping has to be changed to get
better results with regard to performance
objectives and modification constraints. Anyways,
we additionally identified the need to delineate
dependencies between performance objectives and
design/resource mapping alternatives.

To summarize, the Performance Analysis view is

mainly used to fulfill the requirement of information
interpretation because it is mainly about interpreting
measurement data, performance models, and
performance prediction results. In the future the
Performance Objective View will target this
requirement as well. The requirement of information
filtering is currently mainly fulfilled based on the
Performance Objective and Modification Constraint
View. Systematic model synchronization and
assessment visualization is fulfilled by the profile
based model annotation approach which is described in
the following section. This section introduces the
architecture of our approach that enables systematic
performance related decision support for non-
performance experts in terms of what in a design and
resource mapping has to be changed to get better
results with regard to performance objectives.

4. Proposed implementation

To gain initial experience with our approach we
implemented an extension of MDPE for performance
related decision support by utilizing a systematic
model annotation approach. The following subsections
give an overview of the proposed architecture.

4.1 Overall architecture

Figure 3 depicts the high-level architecture of the
proposed approach. The three performance assessment
related views (Performance Objectives, Modification
Constraints and Performance Analysis) are integrated
by a Composition Engine to an Assessment
Computation Model which is used internally within
Decision Support Engine. This model is technically a
composite model of the original Development Models
and the performance assessment related views. The

6161

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 7, 2009 at 09:28 from IEEE Xplore. Restrictions apply.

Composition Engine and Assessment Computation
Engine are described in more detail in subsection 0.
The internally used Assessment Computation Model is
used as input for the Assessment Computation Engine
calculating the Performance Assessment View.

Figure 3: High-level Architecture of our
approach as Block Diagram [10]

The user of the performance related decision

support uses the Visualization Tooling to access the
Performance Assessment View and to determine
design and resource mapping decisions for the original
development models. We anticipate utilizing the model
metric visualization tooling described in [19] to
visualize performance related metrics out of our
current and future work to realize user centric design
decision support based on the original development
models.

Figure 4 depicts the information flow from
specification of different views (1), composing them to
an internally used Assessment Computation Model (2),
compute customized performance metrics (3) and
visualize them for users of the approach (4).

The following subsection delineates the concrete
models we use to specify view points.

4.2 Currently used view-point models

For our initial implementation we support UML2.0
models as development models due to the available
tool support. In our current example we used UML
Activity Diagrams modeling Process Orchestrations on
top of Enterprise Services as introduced in section 2,
and Deployment Diagrams. Both types of models are
annotated with performance data conforming to the
UML SPT profile [17].

In order to obtain an Initial Performance Analysis
View, we annotated the UML Activity Diagram with
resource demands of Actions and probabilities of
paths.

Following this, we added information concerning
contention of resources to the Activity Diagram and
the Deployment Diagram to transform them via ATL
transformation [11] to the Extended Performance
Analysis Model. In more detail, we generated stepwise
two kinds of Extended Performance Analysis Model:
A Tool Independent Performance Model (TIPM) and a
Tool Specific Performance Model (TSPM) as
described in [1]. The TIPM is defined as a refined and
slightly extended version of the Core Scenario Model
(CSM) [2]. The TSPM has been used as input for the
simulation tool AnyLogic [12]. In the future we
anticipate generating input for other simulation tools as
well to get a broader set and therefore more useful
simulation results [1]. The resulting information from
the simulation about utilization of resources has been
annotated back to the TIPM which has been then used
as input to the Extended Performance Assessment
View.

In order to specify the Modification Constraints
View and Performance Objective View we defined
initial UML profiles.

Development
Models

Performance
Analysis

View

Modification
Constraint

View

Performance
Objective

View

Performance
Assessment

View

1

1

1

2

Trans-
formation

Assessment
Computation

Visua-
lization

2

Com-
position

Assessment
Computation

Model

3

4

Figure 4: Information Flow as Block Diagram [10]

6262

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 7, 2009 at 09:28 from IEEE Xplore. Restrictions apply.

The Modification Constraints Profile consists of
two stereotypes which can be attached on
UML.ExecutableNodes: ResourceDemandsConstraint
which is defined by the value that can be fixed or
changeable and ResourceMappingConstraint which is
defined by the integer values minMultiplicity and
maxMultiplicity. In the future we anticipate extending
this profile to be more expressive.

In order to express Performance Requirements as
part of the Performance Objectives we could have used
the UML SPT profile [17] since it is possible to
express all performance values as required. Since we
do not need the full expressiveness of SPT, and would
like to merge the view points of Performance
Objectives and the Performance Analysis into one
profile and also to express Performance
Improvements, we defined a UML Profile containing
the Stereotypes ExecutionTimeRequirement and
ResourceRequirement which can be applied on
UML.ExecutableNodes. ExecutionTimeRequirement
specifies the overall time to execute an
ExecutableNode. The stereotype is specified by its
maximumExecutionTime and the Boolean value
Improvable, which specifies if the value should still be
reduced if the maximumExecutionTime criterion has
been reached. The stereotype ResourceRequirement
specifies the range of resource utilization to be
achieved (maxUtilization and minUtilization). To
express future improvements the Boolean values
improveTowardsMaxUtilization and
improveTowardsMinExecutionTime are needed.

4.3 Systematic model annotation

We make extensive use of UML profiles, which are

a second-class extension mechanism [5] for UML
models. In general, modeling of view-points with
UML profiles weakens the separation of concerns
principle significantly as shown by [6]. In [7] we argue
that the manual application of UML profiles for large
models is a time consuming and error prone process.
Additionally, it does not adhere to the separation of
concerns principle in order to manage complexity by
treating each concern in its own space; see also [8]. We
apply model modification constraints and performance
objectives to development models by specifying them
in our Query and Annotation Language (QUAL) [7].
The language enables us to specify model extensions
centrally. An Eclipse based infrastructure enables us to
perform UML annotations specified in QUAL for a
number of model elements related to a number of
models in a model repository such as SAP’s Modeling
Infrastructure (MOIN) [9]. QUAL consists of a model
querying part in order to select model elements to
annotate, and an execution part to specify the

annotation itself. For queries we support syntactic, type
and semantic queries. Semantic queries allow us to
select model elements which have already been applied
with other profiles. This concept has been outlined as
very useful to select, for instance, those model
elements which have been annotated with the
SPT.Resource stereotype and specify the utilization of
them.

The QUAL approach also includes an extension
mechanism in order to perform model annotations that
conform to an algorithm specified in Java. This
extension mechanism can be used to calculate (see
Assessment Computation in Figure 3)

Hence, QUAL as a systematic model annotation
approach has been used as implementation of the
Composition Engine and of the Assessment
Computation Engine (see Figure 3) as well.

5. Related Work

A number of approaches [15, 16, 20, 21, 22, 23, 24
and 25] are available for generating performance
analysis models from development models by
utilization of model driven techniques. Almost all these
approaches follow the approach of deriving
performance models from the annotated UML models.

However, these approaches differ in terms of the
type of development models they take as input, and the
performance models they output, which are then
employed for performance prediction. They further
differ in terms of the automation degree they offer. A
very comprehensive survey of the different
performance engineering tools/techniques is provided
in [26] and [27]. Most of the available approaches
demand performance expertise from their users. Our
work addresses this need by integrating performance
objectives and modification constraints, thereby
providing decision support for non-performance
experts, based on development models.

Furthermore, in our proposed architecture, the
performance assessment results are visualized based on
the development models. Theoretically we could use
bidirectional model transformations [18] for integrating
performance assessment results into development
models, but our approach requires calculation of
metrics and therefore the functionality provided by the
QUAL approach (see section 0) is employed. QUAL
completely automates the annotation of development
models and calculation of performance assessment
metrics, which has largely to be done manually in the
existing approaches.

For the specification of the Modification
Constraint View and the Performance Objective View
we could have used specialized models instead of

6363

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 7, 2009 at 09:28 from IEEE Xplore. Restrictions apply.

UML profiles but the QUAL approach enables us to
utilize the available tool support for UML profiles and
to perform a straight forward composition of the
proposed views by not weakening the separation of
concerns principle.

6. Conclusion and future work

We presented an approach enabling performance
related decision support for non-performance experts
in terms of what in a design and in a resource mapping
has to be changed to get better results with regard to
performance objectives and modification constraints.
We additionally proposed an architecture integrating
this approach in MDE. We currently apply the
approach for MDE of process orchestrations on top of
SAP’s Enterprise SOA.

Our approach utilizes the Performance Analysis
View, the Modification Constraint View and the
Performance Objective View which enables valuable
feedback about how design and resource mapping
decisions are related to performance objectives.

The approach enables information filtering to only
provide information which is relevant for the user by
taking performance objectives and modification
constraints into account. We proposed initial
performance assessment metrics enabling information
interpretation for non-performance experts. In order to
provide a systematic synchronization between the
performance assessment and development models we
proposed an architecture based on the systematic
model annotation approach QUAL.

In the future we anticipate extending the
expressiveness of the views we proposed. For the
Modification Constrain View we will work on the
specification of design alternatives. We also identified
that delineating dependencies between performance
objectives and design/resource mapping alternatives is
required. We anticipate to either visualize those
dependencies to a user as a metric or to calculate how
the optimal configuration with respect to design and
resource mapping alternatives should look like by
taking performance objectives and modification
constraints into account.

To realize user centric visualization of
performance assessment we anticipate using a GIS-like
representation of metrics such as proposed and
implemented by [19].

In order to gain experiences with our approach for
different domains we plan industrial case studies to
assess business performance on the one hand and
hosting scenarios on the other hand.

7. References

[1] Mathias Fritzsche, Jendrik Johannes, “Putting
Performance Engineering into Model-Driven Engineering:
Model-Driven Performance Engineering”, MoDeVVa’07 at
the Model Driven Engineering Languages and Systems,
ISBN 2-7261-1294 3, 2007, pp. 77–87, (selected to appear in
Springer-Verlag LNCS format).

[2] Dorin B. Petriu, Murray Woodside, “An intermediate
metamodel with scenarios and resources”, Software and
Systems Modeling, Springer-Verlag, pp. 163–184, 2007.

[3] Murray Woodside, Greg Franks, Dorina C. Petriu, “The
Future of Software Performance Engineering”, 29th Int.
Conference on Software Engineering, IEEE, 2007.

[4] Greg Franks, Dorina Petriu, Murray Woodside, Jing Xu,
Peter Tregunno, “Layered Bottlenecks and Their Mitigation”,
Conference on Quantitative Evaluation of Systems (QUEST),
IEEE, 2006.

[5] Jean Bézivin, Vladan Devedžić, Dragan Djurić, Jean-
Marie Favreau, Dragan Gašević, Frederic Jouault, “An M3-
Neutral infrastructure for bridging model engineering and
ontology engineering”, First International Conference on
Interoperability of Enterprise Software and Applications,
Springer, 2005, pp. 159-171.

[6] Farid Mehr, Ulf Schreier, “Modelling of Message
Security Concerns with UML”, 9th International Conference
on Enterprise Information Systems, 2007.

[7] Farid Mehr, Mathias Fritzsche, Ulf Schreier, “QUAL: A
Query and Annotation Language for the UML models of
Service-oriented Applications”, submitted to the International
Journal of Business Process Integration and Management
(IJBPIM).

[8] David L. Parnas, “On the Criteria to be Used in
Decomposing Systems into Modules”, Communication of the
ACM, Vol.15, N°12, 1972.

[9] Michael Altenhofen, Thomas Hettel, Stefan Kusterer,
“OCL Support in an Industrial Environment”, LNCS Volume
4364, Springer-Verlag, 2007, pp. 169-178.

[10] Andreas Knoepfel, Bernhard Groene, Tabeling, P.,
“Fundamental Modeling Concepts: Effective Communication
of IT Systems”, John Wiley & Sons, 2006.

[11] ATLAS Group, “ATLAS transformation language“,
URL http://www.eclipse.org/m2m/atl/, 2007.

[12] XJ Technologies, “AnyLogic — multi-paradigm
simulation software”, URL http://www.xjtek.com/anylogic/,
2007.

6464

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 7, 2009 at 09:28 from IEEE Xplore. Restrictions apply.

[13] Dan Woods, Thomas Mattern, “Enterprise SOA:
Designing IT for Business Innovation”, O’Reilly Media Inc,
2006.

[14] Robert Heidasch, “Get ready for the next generation of
SAP business application based on Enterprise Service-
Oriented Architecture (Enterprise SOA)”, SAP Professional
Journal, 2007.

[15] Vittorio Cortellessa, Antinisca Di Marco, Paola
Inverardi, “Software performance model-driven
architecture”, SAC ’06: Proceedings of the 2006 ACM
symposium on Applied computing, ACM Press, 2006, pp.
1218–1223.

[16] Andrea D’Ambrogio, “A model transformation
framework for the automated building of performance
models from UML models”, WOSP ’05: Proceedings of the
5th international workshop on Software and performance,
ACM Press, 2005, pp. 75–86.

[17] OMG, “UML profile for schedulability, performance,
and time specification”, URL
http://www.omg.org/docs/formal/03-09-01.pdf, 2005

[18] Perdita Stevens, “Bidirectional Model Transformations
in QVT: Semantic Issues and Open Questions”, Model
Driven Engineering Languages and Systems, 2007, pp. 1-15.

[19] Christian Lange, Michel Chaudron, “Combining Metrics
Data and the Structure of UML Models using GIS
Visualization Approaches”, International Conference on
Information Technology: Coding and Computing, 2005

[20] Wagh Ramrao, “Transformation of UML design model
into performance model: A model driven framework”,
ECOOP Student Workshop, 2006.

[21] Lloyd G. Williams, Connie U. Smith, “PASA: An
architectural approach to fixing software performance
problems“, In Software Engineering Research and
Performance Engineering Services, 2002

[22] Andrew Bennett, A. J. Field, “Performance Engineering
with the UML Profile for Schedulability, Performance and
Time: a Case Study”, 12th IEEE International Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems (MASCOTS'04), 2004

[23] Moreno Marzolla and Simonetta Balsamo, “UML-PSI:
the UML Performance Simulator”, In IEEE First
International Conference on Quantitative Evaluation of
Systems (QEST), 2004

[24] Vittorio Cortellessa, Michele Gentile, and Marco
Pizzuti., “XPRIT: An XML-based tool to translate UML
diagrams into execution graphs and queueing networks”, In
IEEE First International Conference on Quantitative
Evaluation of Systems (QEST), 2004.

[25] Elena Gómez-Martínez and José Merseguer, “ArgoSPE:
Model-Based Software Performance Engineering”, In 27th
International Conference on Applications and Theory of Petri
Nets and Other Models of Concurrency, 2006

[26] Simonetta Balsamo, Antinisca Di Marco, P. Inverardi,
M. Simeoni, “Model-Based Performance Prediction in
Software Development: A Survey”, IEEE Transactions on
Software Engineering, vol. 30, 2004.

[27] Sabri Pllana, Ivona Brandic, Siegfried Benkner,
“Performance Modeling and Prediction of Parallel and
Distributed Computing Systems: A Survey of the State of the
Art”, In 1st International Conference on Complex, Intelligent
and Software Intensive Systems (CISIS'07), 2007.

6565

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 7, 2009 at 09:28 from IEEE Xplore. Restrictions apply.

