
Università di Pisa

Dipartimento di Informatica

Technical Report: TR-10-07

LIBERO: a LIghtweight
BEhaviouRal skeletOn

framework

M. Aldinucci, M. Danelutto, P. Kilpatrick, V. Xhagjika

April 2010
ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

LIBERO: a LIghtweight BEhaviouRal skeletOn

framework

M. Aldinucci∗, M. Danelutto†, P. Kilpatrick‡, V. Xhagjika§

April 2010

Abstract

We describe a lightweight prototype framework designed for experi-
mentation with behavioural skeletons. A behavioural skeleton is a com-
ponent implementing a well-known parallelism exploitation pattern and
a rule-based autonomic manager taking care of some non-functional fea-
ture related to the parallel computation. Our prototype supports multiple
autonomic managers within the same behavioural skeleton, each taking
care of a different functional concern. The different managers in the be-
havioural skeleton coordinate themselves in such a way that a global,
user-provided SLA can be satisfied. We discuss experiments that validate
the manager coordination protocol, and the overall prototype functional-
ity. The prototype is built on top of plain Java and employs JBoss rules
for management. We present experimental results that demonstrate the
operation of our prototype and allow overheads to be evaluated.

Keywords: structured parallel/distributed programming, behavioural skele-
tons, non functional concerns, performance, security, autonomic management,
business rule systems.

1 Introduction

Behavioural skeletons (BS) have been introduced to tackle the problem of effi-
cient, autonomic management of non-functional features of parallel/distributed
computations, such as performance, security, fault tolerance, power manage-
ment, etc. A behavioural skeleton is the result of the co-design of a well-known,
efficient parallelism exploitation pattern and of a rule-based control loop im-
plementing an autonomic manager of (one or more) non-functional properties
related to the parallel computation pattern [1, 2]. On the one hand, the par-
allelism exploitation pattern makes better use of well-understood and efficient

∗Dept. Computer Science, Univ. of Torino, Italy
†Dept. Computer Science, Univ. of Pisa, Italy
‡Dept. Computer Science, Queen’s Univ. of Belfast, UK
§Dept. Computer Science, Univ. of Pisa, Italy

1

techniques used to implement that particular pattern on parallel and distributed
target architectures. On the other hand, the autonomic manager executes a clas-
sical MAPE1 control loop. At each iteration, a set of pre-condition → action
rules is evaluated and one of the fireable rules–those whose pre-condition evalu-
ates to true–is executed. Pre-conditions use monitored values from the system
and actions are defined in terms of a set of pre-defined actions supported by the
system.

Behavioural skeletons were originally designed in the framework of GCM, the
Grid Component Model [8, 9] developed within the EU NoE project CoreGRID[7]
and subsequently implemented in the GCM reference implementation built on
top of ProActive [14] in the EU STREP project GridCOMP [11]. In Grid-
COMP, behavioural skeletons were implemented modelling common stream par-
allel patterns–such as pipelines and farms–with managers taking care of perfor-
mance issues. Those BS have been demonstrated to be effective in managing
and enforcing user-supplied (best effort) performance contracts. In [2] it was
shown how contracts requiring a given throughput can be guaranteed when a
single BS is used to model the entire application. In [3] we introduced techniques
that support the coordination of the different managers in a BS hierarchy used
to model complex parallelism exploitation patterns, in such a way that a (single
concern) performance contract provided by the user is ensured.

In the general case, however, multiple non-functional concerns have to be ad-
dressed within the same computation. The BS concept can be easily extended in
such a way that multiple managers are associated to the same parallel pattern,
each taking care of a different concern. In [4] we identified the need for such
managers to interact to achieve consensus before effecting changes to the man-
aged system and identified protocols for achieving such consensus. Here we show
how such management may be realised in practice, using a lightweight frame-
work designed to facilitate experimentation with a set of interacting autonomic
managers. As an example, consider a computation where both a performance
contract and a security contract have been supplied by the user. The perfor-
mance contract asks for a given throughput. It can be ensured by recruiting
increasing numbers of resources up to the point where the required throughput is
delivered. New resources may also be dynamically recruited to the computation
in the event that existing ones become less effective due to temporary over-
loads or faults. The security contract demands that, where nodes are recruited
from external, possibly unreliable domains, such nodes must be suitably secured
by, for example, encrypting data and code communications; nodes internal to
the user domain may be considered secure. Thus, if the performance manager
identifies failure of the performance contract it will prompt the recruitment of
further resources. If some of these are in an external domain the security man-
ager may in turn demand the securing of communications with such potentially
unsafe resources.

In this work, we first detail problems related to autonomic management of
multiple non-functional concerns (Sec. 2), then we introduce LIBERO [15], a

1Monitor, Analyse, Plan, Execute

2

Algorithmic
Skeleton

Autonomic
Manager

(NF concern C1)

Autonomic
Controller

Autonomic
Manager

(NF concern Cn)

① analyze current status &
plan some corrective action
② broadcast decision all AMs

③ evaluate request

④ send ACK/NACK/
provide(PropX)

⑥ execute action (all ACK) or
abort it (1 NACK) or
modify plan (provide(PropX)

⑤ collect answers

monitoring

actuate

actuate
monitoring

Figure 1: Coordinating activities of distinct autonomic managers in a BS

prototype supporting BS with multiple managers taking care of different non-
functional concerns (Sec. 3). LIBERO is a lightweight prototype in that it relies
only on the existence of Java on the target machines and on the possibility to
place an RMI-based runtime on those machines. Unlike the former implemen-
tation of BS–that only supported one manager per skeleton–it does not require
the installation of complex “middleware” systems such as ProActive.

Finally we discuss experimental results demonstrating the functionality of
LIBERO and its suitability to support a multi-concern use case modelling the
performance/security management scenario outlined above and de facto assess-
ing the techniques suggested in [4] for the support of multiple concern autonomic
manager coordination (Sec. 4)

2 Autonomic manager coordination

Problems such as that outlined in Sec. 1 with respect to performance and secu-
rity manager coordination may arise when independent autonomic managers are
run within the same behavioural skeleton. In a scenario such as that depicted in
Fig. 1, multiple managers are associated with the same algorithmic skeleton in
a single behavioural skeleton. The algorithmic skeleton implements a well-know
parallelism exploitation pattern. Through its autonomic controller (AC) it pro-
vides i) methods to access its internal state (to support monitoring activity)
and ii) methods to operate on its internal state (to support implementation of
actions modifying its behavior). Each of the associated autonomic managers
takes care of a distinct non-functional concern. It periodically executes a con-
trol loop monitoring algorithmic skeleton behaviour and, possibly, planning and
executing actions aimed at improving system behaviour with respect to the
non-functional concern managed by it.

In [4] we proposed some coordination protocols that can be used to coor-
dinate manager activities. In particular, we evaluated the feasibility of a two-
phase approach where each action planned by an AM is validated by the other
AMs in the behavioural skeleton before being actually executed. As shown in

3

Fig. 1, the manager taking care of non-functional concern X (e.g. performance),
analyzes system behaviour and decides to take some action À. It informs the
other managers of the decision Á. The other managers evaluate Â the decision–
which is given as a modification to the current process graph implementing the
parallel pattern modelled by the algorithmic skeleton–with respect to the conse-
quences (if any) for their non-functional concern. Eventually they return Ã one
of three answers: ACK, meaning the decision can be safely taken by the first man-
ager, NACK, meaning the decision is in conflict with the managed non-functional
concern and therefore should be aborted, or provide(property), meaning the
decision may be actuated provided property is ensured (e.g. securing of con-
nections). The manager initiating the process gets answers from all the other
managers Ä and eventually either actuates its decision (the original plan or the
one modified to accomplish property) or aborts it Å.

This two-phase protocol has not, prior to now, been experimented with, due
mainly to the difficulty of embedding a complex management structure in the
reference implementation of BS in ProActive/GCM. We decided to implement
LIBERO to allow us to assess the feasibility of this protocol as well as to ex-
periment with other protocols regulating autonomic management of multiple
concerns in behavioural skeletons. The need for a simple framework for experi-
mentation is made even more apparent when one considers that BS are usually
nested and thus autonomic management of even a single non-functional concern
involves the interaction of different autonomic managers, as detailed in [3].

3 LIBERO

LIBERO is a prototype supporting behavioural skeletons with multiple auto-
nomic managers implemented using lightweight components. A component, as
a constituent element of a system, is an entity entrusted with some activity,
part of the system’s overall purpose, with a well-defined public interface. In
LIBERO the components are either Communication Components (CC), Auto-
nomic Managers (AM) or Behavioural Skeletons (BS).

Each notable component actually implementing some kind of parallel com-
putation has a managing entity–the AM–that deals with the non-functional
aspects of the parallel computation in a local and autonomic way. LIBERO AMs
implement a lightweight management program. The AM management func-
tions operate on the components of the system through the operations provided
by the component “membrane”–the AC–that exports its internal computation
state and provides a controlled set of operations to modify component state and
functioning.

LIBERO implements the behavioural skeletons already investigated in Grid-
COMP, namely those BS modelling the usual stream parallel patterns, such as
task farms and pipelines [6] and equipped with a single autonomic manager,
taking care of a single non-functional concern.

In addition, LIBERO also supports a Multiple Concern Management concept,
implementing a decision coordination algorithm among managers, such as that

4

Algorithmic
Skeleton

Autonomic manager

Manager Rules

precondition1 ➙ action1
precondition2 ➙ action2

preconditionn ➙ actionn

Autonomic
Controller Monitor

Analyze

Plan

Execute

Control
loop

fireable rules

fireable
action

parameters to preconditions

chose rule
➀

➁

➂

➃

➄

➅
executed each

K msecs

Figure 2: Autonomic manager at work

outlined in Sec. 2. In fact, LIBERO has been designed and implemented precisely
to facilitate investigation of problems related to multi-concern management. As
all of the components described above are native Java objects or POJO2 in
LIBERO, the experiments needed to investigate the multi-concern concepts and
implementation turn out to be easier to implement than was the case in the
ProActive/GCM BS prototype as i) the ProActive/GCM BS prototype does
not support multiple AMs in a single BS, at the moment, and ii) it requires a
heavier and more complex runtime. Indeed, LIBERO uses the DROOLS3 library
middle-ware to implement autonomic managers control cycle (see Fig. 2), which
is the same middleware supporting AM control loop in ProActive/GCM BS
implementation.

In the following subsections a detailed description of the overall framework
implementation will be given, starting with the utility components and then
discussing all of the objects described up until now.

3.1 Remote node management

LIBERO implements component deployment on remote nodes using a small Java
RMI4 based runtime supporting a lightweight life cycle management of the com-
ponents. The runtime support allows deployment of LIBERO components on the
machine it is running and also management of the life cycle of the deployed com-
ponent. Management activities access the runtime to check machine dependent
parameters unique to the node where the runtime is running, and may also
access parameters associated with the other nodes of the system, if needed.

A dual constructor approach ensures smaller network traffic for deployment
activities. A local constructor constructs the component on the node where it
is deployed, while remote constructors contact the runtime of the target node
and deploy onto the remote node RTS the local constructors that will eventu-
ally be used/executed to implement the deployed component. Thus the only

2Plain Old Java Objects
3DROOLS Expert library is used for rule oriented logic implementation, Knowledge Engine
4Remote Method Invocation

5

information sent between the nodes is that regarding what to construct and not
the serialization of the entire object to be deployed.

3.2 Communication components

Separation of functional and non-functional concerns drove the design for their
respective interfaces on CC. Considering functional concerns we were interested
in having generalized, efficient and lightweight interfaces. These interfaces were
implemented using permanent Java TCP socket connections, with the use of
serialisation for input/output object delivery between BS components. Connec-
tion components are associated with a BS and have a straightforward lightweight
life cycle5. These connection components implement many-to-many communi-
cations using either normal or SSL TCP connections, and a three way handshake
mechanism for data streaming. Permanent TCP connections for the functional
interfaces imply the use of a discovery component to locate the distributed com-
ponents. Implementation of such a discovery mechanism is carried out with the
assumption of there being a global naming scheme for the components. A mul-
ticast discovery centralised component is used as a Nameserver, keeping track
of component distribution and relative server ports. This component allows
registration, removal and lookup requests using the specified component ID’s.

On the other hand, interfaces for the non-functional concerns need to have
a stronger expressiveness and ease of use. Therefore in LIBERO managers com-
munications are transparent and use RMI as a means of data and control com-
munication. This choice makes it easier to specify the management contract for
the management components, so that the user needs only to operate on objects
and need not be concerned about communication.

3.3 Supported BS

The LIBERO framework was designed and implemented focussing attention on
having a lightweight implementation of Behavioural Skeletons primarily for ex-
perimenting with management policies, but also for ease of extendability. Imple-
mentation starts with a common abstract class (BehaviouralSkeleton) [15] for
all of the BS components. This common class implements standard behaviour
for manager and sub-component registration/removal, default startup and con-
nection related activities. BS components extend this class and add custom
behaviour for the operations and for the functions over the input that they im-
plement. The supported BS components implemented to date are summarized
in Table 3.

Implementation of new kinds of BS is supported through extensions of the
abstract class BehaviouralSkeleton, including the addition of controller oper-
ations and supplying a local and a remote constructor. As a simple example we
outline the implementation of the Farm BS. The default abstract class behaviour

5Data is read from the input, data is processed by the associated BS and then sent to the
destination

6

❏ The constructor supports merge and split operations, so that sequential code can
be divided/united into smaller/larger pieces. ❏ No parallelism operation is
implemented. ❏ Code can be assigned in the constructor as a class implementing a
single method that executes some function over some input. ❏ Default measures
supported are service time and total task number.

❏ The constructor accepts as parameters the worker component (in the form of other
constructors), the number of initial workers to be allocated and the set of nodes for
worker allocation. ❏ It implements increase/decrease parallelism operations such
that the number of active workers is increased or decreased to match user supplied
contracts. ❏ No code or function is assigned directly to this BS. The function is
passed to the constructor of the workers. ❏ Default measures supported are service
time, total task number and number of workers.

❏ The constructor accepts stages in the form of other constructors, the order in
which these constructors are passed is the order in which the stages will be linked. ❏
No parallelism operation is implemented. ❏ No code or function is assigned directly
to this BS. The function is passed to the constructor of the stages. ❏ Default
measures supported are service time and total task number.

Sequential

Farm

Pipeline

Figure 3: LIBERO Behavioural Skeletons

is changed so that on component registration/removal the sub-component is reg-
istered/unregistered from the farm destination. Counters for worker distribution
on the nodes are incremented/decremented in such a way that the farm com-
ponent may have a clear view of the state of execution of the sub-components.
Increase/Decrease parallelism degree operations are also implemented so that a
worker can be added/removed while trying to maintain a uniform distribution
of workers on the set of possible nodes.

3.4 Autonomic manager implementation

Multiple managers, specialized by their contracts, can be associated with the
same LIBERO BS. The actions of these cooperating AM are coordinated by
means of a two-phase protocol, such as that proposed in [4]. In the first phase,
the AM planning an action seeks consensus of the other managers associated
with the same BS. In the second phase, upon receiving unconditional or condi-
tional ACK or a NACK messages from all the other managers, the AM even-
tually i) commits the planned action, ii) commits the action with a slightly
modified execution plan, or iii) aborts the action.

The AM behaviour is expressed in terms of JBoss rules. At runtime the
rules are compiled and executed by the DROOLS middleware. The rules are
expressed according to a pre-condition → action form, with both parts being
expressed in plain Java.

The LIBERO runtime support is used to deploy different managers to the
different target nodes. Before entering its life cycle, the manager commits to
the DROOLS working memory6 a reference to the associated BS component
and a reference to itself. References to the other managers associated to the

6The working memory is the set of all objects known to be true for the knowledge engine.

7

same BS can be retrieved by calling a proper BS accessor method. The life
cycle of the manager is timed by a compile time constant and is divided into
the classical MAPE phases: i) in the Monitor phase, sampling of the associated
component execution state is performed, ii) in the Analise phase, the sampled
execution state is analyzed and decisions regarding rule applicability are taken,
iii) in the Plan phase, a decision on which of the applicable rules has to be
executed is taken, and finally iv) in the Execute phase, the actions specified by
the selected rules are executed. The phases described are all delegated to the
DROOLS runtime, except the monitoring phase (see Fig. 2). The DROOLS
runtime offers a stateless knowledge engine, representing facts with plain Java
objects and knowledge in the form of rules.

To ensure that the operations planned by an AM after firing a given rule may
actually be executed, the mangers implement the two-phase protocol described
in Sec. 2. This consensus protocol is implemented using suitable JBoss rules and
using runtime values as contract parameters, in such a way that the protocol is
not actually embedded in the manager code but in the rule language.

3.5 Autonomic controller implementation

The Autonomic Controller interface extends the normal definition of a compo-
nent with the means to export the state of the components and allow modifica-
tion of the internal state. The AC interface is part of the BehaviouralSkeleton[15]
and as such default behaviour for associated manager and sub-component ac-
cessors is already implemented by the abstract BS class.

After inheriting the abstract class the BS component is forced to implement
behaviour for the executeOperation and getMeasure methods. These two meth-
ods use enumerations–that represent the measures or the operations that can
be applied to the component–as their parameters in order to change/export
the internal execution state. The AC also implements methods for accessing
machine dependent parameters, fetched from the runtime support of the node.
Extendability of these features is as easy as defining the new behaviour for the
operations or the new measures to be exported, and then making them available
by adding the new descriptors for those activities in the appropriate enumera-
tions.

Machine dependent properties are made accessible through the runtime sup-
port; these properties are described in an XML file parsed at startup by the
runtime. The configuration file may host properties relative to all of the ma-
chines used for program execution. The metadata syntax is simple. At the
moment we just use a tag ”MACHINE” with property ”ip” that specifies the
machine the properties apply to, and child tags ”PROPERTY” with attributes
”name” and ”value” that describe the machine dependent properties.

8

rule "FarmPerformanceManagerRuleToAskForConsensus"
 when
 $farm: AutonomicControllerInterface()
 $manager: AutonomicManagerInterface()
 $sample: String() from
 $farm.getMeasure(Measures.NEXT_AVAILABLE_MACHINE)
 $sample_numworker: Integer() from
 $farm.getMeasure(Measures.TOTALWORKERS)

 not(exists(ContractParamValue(name ==
 MulticoncernBroadcastCodes.BCAST_REQUEST_WAIT_ACK)))
 not(exists(ContractParamValue(name ==
 MulticoncernBroadcastCodes.PREPARE_BCAST_COMMAND)))

 eval(((Integer) $sample_numworker) < 8)
then
 $manager.setContractParam(
 MulticoncernBcastCodes.PREPARE_BCAST_COMMAND, "");
 $manager.setContractParam(
 MulticoncernBcastCodes.BCAST_PARAM,
 CommandCode.INCREASE_PARALLELISM);
 $manager.setContractParam(
 MulticoncernBcastCodes.BCAST_SECOND_PARAM,
 $sample);
 end

coop protocol

Pipeline Behavioural Skeleton

Farm Behavioural Skeleton

AC

ACPipeline

Seq

Farm

Seq

SeqSeqSeq

Performance
AM

Security
AM

monitor
actuate

monitor
actuate

Figure 4: Sample use case application (left) and Sample JBoss rule (right)

4 Experimental results

A full set of experiments has been performed, aimed at verifying LIBERO func-
tionality. The architecture used for the tests is a cluster of 25+ dual core Linux
machines running Java version 1.5 and supporting file sharing through NFS. Ac-
tually, the only requisite for the prototype is presence of Java 1.5+ on the target
nodes and the presence of DROOLS 5.0 library. An extensive work on testing
was done to assure that the components and the system as a whole exhibit the
desired behaviour. At first the actual deployment of the components was tested
to assure the distributed nature of the system, and the distribution mechanisms
pass the test by allowing every object to be located on their desired destina-
tions. Next the communication primitives and the Nameserver component was
stressed to see effective usage performance. After multiple runs of complex BS
were run the analysis of execution logs showed that all of the features described
in this paper had a compliant behaviour, matching all of the expectations made
for the system [15].

After functionality tests, we developed a specific use case to demonstrate how
the new features of LIBERO perform. This use case is a synthetic application
structured as a three stage Pipeline component: the first and the third stages
are Sequential components, while the second stage is a Farm component. Each
component is placed on a different node in the cluster and 3 machines are
assigned as resources for the Farm workers. The LIBERO runtime is executed on
each of the nodes needed for the execution of the use case application.

Two autonomic managers are associated to the Farm component, one han-
dling security concerns and the other performance ones. The simple contract
supplied to the performance manager specifies that a total of 8 workers should
be reached and maintained, and that the two-phase broadcast consensus pro-

9

workerUp
sendAckErr

sendAckNoSec
sendAckSec

recAckOkSec
recAckOkNoSec

recErrAck
sendBroadReq
prepBroadReq

00:00 00:20 00:40 01:00

T
op

 M
an

ag
er

s
Lo

gi
cs

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

00:00 00:20 00:40 01:00

F
ar

m
 W

or
ke

rs

Figure 5: Event distribution over time (ms from system execution startup).
W.r.t. Fig. 1: prepBroadReq corresponds to À, SendBroadReq to Á, recAckO-
kNoSec/recAckOkSec to Â, SendAckSec/SendAckNoSec to Ã, workerUp to Å.
Events Â and Ã are relative to the Security AM, all the others are relative to
the Performance AM

tocol should be used to implement new worker allocation. The run time nodes
host facts stating whether the nodes possibly recruited to implement new Farm

workers are secure or insecure, that is, if they can be reached using plain TCP or
if SSL should be used instead to increase the security level. We used both secure
and insecure nodes in the experiment. This allowed to us to check both types
of answers from the consensus phase: simple ACK (i.e. accept recruitment of
a new node to host a Farm worker implemented using plain TCP sockets) and
conditional ACK (i.e. accept recruitment of the node provided SSL sockets are
used for communications). The life cycle of the managers is set to 500ms so that
the plot of the runtime is discrete enough to allow observation of the events,
but smaller life cycles are possible down to 100ms.

In our use case application, we start the Farm component with just two
workers. The performance manager immediately detects a violation of the con-
tract and asks the other managers for permission to add another worker. The
security manager in turn responds with an normal ACK if the machine is secure
or with a SECURE ACK if secure connections are to be used. If other violations

10

are encountered then the same set of operations is applied again and again, until
no further violation is encountered.

The plot in Fig. 5 shows the evolution of the Farm component and the
distribution of manager events over the same period of time. As can be seen from
the plot the consensus protocol takes an overhead of at most 4 manager life cycles
plus the execution time of the rules that depend only on the communication
overhead between managers. This gives a total overhead time of Toverhead =
4 ∗ (TLyfeCycle + TCom), where TCom is the average amount of RMI calls *
average RMI latency. In this simple case the entire reconfiguration of the system
takes 45s, and reconfiguration time needed for worker allocation on average
(accounting also for manager decision making and synchronization) is about 5
secs (including about 2 secs of idle time spent in waiting 4 times for the next
iteration of the control loop to take place). These times are of the same order of
magnitude as the times spent using in ProActive/GCM BS prototype to achieve
an unmediated reconfiguration (e.g. a reconfiguration decided autonomically
by a single, uncoordinated manager), which represents quite a good result and
underlines the “lightweight” nature of the LIBERO implementation.

5 Related work

The IBM blueprint paper on autonomic computing has already established,
in a slightly different context, the need to orchestrate independent autonomic
managers [12]. In [10] strategies to handle performance and power management
issues by autonomic managers are discussed. However the approach is much
more oriented to the generic combination of target functions relating to the two
non-functional concerns considered, rather than to the constructive coordination
of the actions planned by the two managers.

A framework that can be used to reason on multiple concerns was intro-
duced in [13]. Based on the concepts of state and action (i.e., state transition)
adopted from the field of artificial intelligence, this framework maps three types
of agenthood concepts (action, goal, utility-function) into autonomic computing
policies. Action policies may produce and consume resources, which are used
by a resource arbiter (i.e. a super manager) to harmonize conflicting concerns.
The framework, however, does not provide any specific support for policy design
and distributed management overlay.

A similar approach was followed in [5], which also exploits the same policies
(action, goal, utility-function) defined on the (Cartesian product of) state and
configuration space of the system. These policies are extended with resource-
definition policies, which specify how the autonomic manager exposes the sys-
tem to its environment; this makes it possible to dynamically extend manager
knowledge with other resources/parameters, possibly coming from other man-
agers, thus supporting management overlay.

11

6 Conclusions

We have described a lightweight implementation of a behavioural skeleton frame-
work supporting the implementation of skeletons with multiple autonomic man-
agers, each managing a different non-functional concern. The prototype has
been developed to allow investigation of different aspects of autonomic manage-
ment of non-functional concerns. The lightweight implementation of LIBERO
allows us to experiment with various consensus building strategies without being
burdened by the complexities of fully-fledged distributed/parallel system imple-
mentations. After assessing prototype functionality, we discussed an experiment
aimed at validating the two phase manager coordination protocol introduced in
[4]. LIBERO successfully ran the protocol with moderate programming effort
and notable efficiency, comparable to that achieved when running much simpler
behavioural skeleton programs in the ProActive/GCM reference implementa-
tion. Having established the efficacy of LIBERO as a test vehicle, we are now in
a position to conduct more ambitious experiments with distributed autonomic
management.

References

[1] Marco Aldinucci, Sonia Campa, Marco Danelutto, Patrizio Dazzi, Peter
Kilpatrick, Domenico Laforenza, and Nicola Tonellotto. Behavioural skele-
tons for component autonomic management on grids. In CoreGRID Work-
shop on Grid Programming Model, Grid and P2P Systems Architecture,
Grid Systems, Tools and Environments, Heraklion, Crete, Greece, June
2007.

[2] Marco Aldinucci, Sonia Campa, Marco Danelutto, Marco Vanneschi, Pa-
trizio Dazzi, Domenico Laforenza, Nicola Tonellotto, and Peter Kilpatrick.
Behavioural skeletons in GCM: autonomic management of grid compo-
nents. In Didier El Baz, Julien Bourgeois, and Francois Spies, editors,
Proc. of Intl. Euromicro PDP 2008: Parallel Distributed and network-based
Processing, pages 54–63, Toulouse, France, February 2008. IEEE.

[3] Marco Aldinucci, Marco Danelutto, and Peter Kilpatrick. Autonomic man-
agement of non-functional concerns in distributed and parallel application
programming. In Proc. of Intl. Parallel & Distributed Processing Sympo-
sium (IPDPS), Rome, Italy, May 2009. IEEE.

[4] Marco Aldinucci, Marco Danelutto, and Peter Kilpatrick. Autonomic man-
agenemt of multiple non-functional concerns in behavioural skeletons. In
Proc. of the CoreGRID Symposium 2009, CoreGRID, Delft, The Nether-
lands, August 2009. Springer.

[5] Radu Calinescu. Resource-definition policies for autonomic computing. In
Proc. of the 5th Intl. Conference on Autonomic and Autonomous Systems
(ICAS), pages 111–116. IEEE, April 2009.

12

[6] Murray Cole. Bringing skeletons out of the closet: A pragmatic manifesto
for skeletal parallel programming. Parallel Computing, 30(3):389–406, 2004.

[7] The CoreGRID home page. http://www.coregrid.net, 2007.

[8] CoreGRID NoE deliverable series, Institute on Programming Model. De-
liverable D.PM.02 – Proposals for a Grid Component Model, November
2005.

[9] CoreGRID NoE deliverable series, Institute on Programming Model. Deliv-
erable D.PM.04 – Basic Features of the Grid Component Model (assessed),
February 2007.

[10] Rajarshi Das, Jeffery O. Kephart, Charles Lefurgy, Gerald Tesauro,
David W. Levine, and Hoi Chan. Autonomic multi-agent management of
power and performance in data centers. In Proc. of the 7th Intl. Conference
of Autonomic Agents and Multiagent Systems, May 2008.

[11] GridCOMP Project. Grid Programming with Components, An Ad-
vanced Component Platform for an Effective Invisible Grid, 2008. http:

//gridcomp.ercim.org.

[12] IBM Corp. An Architectural Blueprint for Autonomic Computing, 2005.
http://www-01.ibm.com/software/tivoli/autonomic/.

[13] Jeffrey O. Kephart and William E. Walsh. An artificial intelligence perspec-
tive on autonomic computing policies. In Proc. of the 5th Intl. Workshop on
Policies for Distributed Systems and Networks (POLICY’04). IEEE, 2004.

[14] ProActive home page, 2009. http://www-sop.inria.fr/oasis/proactive/.

[15] Vamis Xhagjika. Implementation of a prototype for experimenting with
autonomic hierarchical managers in JAVA. Dept. of Computer Science,
Univ. of Pisa, Italy (Thesis, In Italian), December 2009.

13

A User Manual

A.1 Introduction to the runtime environment

As a conclusion of our presentation of the LIBERO framework we give a full
description of the runtime mechanism and user iteration needed to activate and
run a sample project. The environment needed to support normal development
and running activities is described in the following enumeration. It is worth
pointing out that the enumerated entities are the only things needed to develop
and run a sample LIBERO application:

• Drools Expert middle-ware library needed for correct manager usage
as mentioned in Sec 3.4. This middle-ware implements a rule oriented
knowledge engine using an efficient RETE algorithm for rule satisfiability.
The development and execution of LIBERO programs requires version 5.0
of the DROOLS Expert library. This library can either be placed under
the lib folder of the framework, or the lib folder can be linked to the library
position on the system.

• NFS support NFS is currently needed to support code distribution and
access across the available processing elements.

• Java 1.5+ runtime support The java runtime is a necessity since the
entire program is written in plain Java programming language and as such
it needs to be compiled by the Java compiler, and executed by the Java
Virtual Machine.

• Utility ”make” This optional utility is needed for automatic compila-
tion of the application. The actual commands supported for this utility
are ”make lin” and ”make win”. Those in term compile the application in
a linux or windows based system. Compilation can be done prior to distri-
bution, since the bytecode is Java dependent and not machine dependent,
thus making it possible for the code to be executed on every architecture
as long as the appropriate Java runtime is present.

Having introduced all of the components needed for normal code execution
and operation we outline the fact that documentation is embedded in the source
code and can be generated anytime, using the javadoc utility. Fig. 6 shows a
snapshot of the resulting documentation window. In the next subsection we
discuss how to achieve a complete setup and usage of the framework and of the
sample application.

A.2 Setup/Compilation/Execution

An extensive step-by-step procedure for example compilation and execution of
a small basic LIBERO application should proceed through the following steps:

1. Create a directory on the filesystem containing the framework files.

14

Figure 6: Sanpshot of the javadoc documentation of LIBERO

2. Get a copy of the latest DROOLS Expert runtime(current version is 5.0)
and place the unzip-ed content to the ”lib” directory of the framework.

3. Browse to the base directory of LIBERO and execute make lin or make

win to compile under Linux or Windows. A base Java makefile makes
proper compilation possible for the project and the test program; be sure
to modify such file to compile additional class implemented by the user.
Note that the existence of two different make commands is due to different
syntax for path specification between Linux and Windows and not for
compilation dependency purposes.

4. If NFS support is not present copy the framework folders to the file systems
of the nodes that will be used during the execution of the framework.

5. Select one node to act as a the Nameserver. This node can also be used for
other purposes but keeping it in a different node from the runtime nodes
ensures runtime decoupling of this component from the system measure-
ments. After selection of a suitable node execute the following command7:

java -cp .:bin:lib/*:lib/lib/*

7This component acts as a centralised logging utility and it is of utmost importance it is
launched first. If it is not launched as the first process, the system hangs when as soon as a
log operation is tried.

15

remote.NameServerMulticastDiscovery &

6. On every node that will be used during the system active lifetime execute
the runtime support of the LIBERO framework8:

java -cp .:bin:lib/*:lib/lib/* rts.RTS &

7. The main application is executed in one of the free nodes. In the test case
implemented with the framework the command is:

java -cp .:bin:lib/*:lib/lib/* Test.TestPipeline &

After the application terminates the directory ”etc” holds the log file for the
entire system.

B Library Description

In the following subsections we continue our treaty of the LIBERO framework
giving a description of the usage of the Behavioural Skeletons implemented
in the framework and also of the Autonomic Manager components. We start
describing the constructor of the Autonomic Manager and then we continue
with the Sequential BS, Farm BS, Pipeline BS.

B.1 Autonomic Manager

Descriptions given in this subsection, cover the explicit declaration of an Auto-
nomic Manager component. During actual BS usage in the sample application
also shown in Listing 3, Autonomic Managers are created implicitly by passing
the desired contract file names, as a string array to the BS component (Listing
3 line 16,17) constructor.

The constructor, prior to the construction of the actual BS component,
parses the string array with AM names and generates an AM for each of the file
names in the list. Using this implicit creation process relieves the programmer
of the necessary code for AM setup and delegate this activities to the construc-
tor of the BS, so that the programmer only has to care of the BS components
and of contract specification. The drawback of this technique is that the AM
components are deployed on the same node as the BS component, and the user
can’t specify destinations other than the BS component node.

Listing 1 shows the code necessary to deploy an AM component onto a differ-
ent node, to bind it to a BS component and to make it enter the active phase.
First we define the id of the component to which the AM will be associated
and the file name of the contract to be used (Listing 1 lines 1-2). Then we
get a handle at the remote component to which the manager will be associated

8If there is successful termination of the program the runtime can be used again without
needing a restart of the service. In case of developer introduced bugs the runtime services
need to be restarted to ensure correct operation

16

(Listing 1 lines 5-7), in the code we use a library function that returns a re-
mote reference to the BS object with gobal identifier id and located on node
whose qualified name is location. Lines 9-10 show uses of a static method of
the ContractReader class called readContractFromDrl that reads the contract
from a standart Drools DRL file and returns it as a Java string.

The AM contract is passed as a second argument to the AutonomicManager

constructor. The first argument is the global identifier of the AM component
(Listing 1 lines 12-13). We deploy the manager (Listing 1 line 15) using a static
function of the utility class RMIUtils.rtsDeploy(...) that basically serialises
the AM, sends it as a DeployableObject using the runtime support and makes
sure the runtime exports it for remote activity. Once the component is deployed
it is executed (Listing 1 line 17) and a remote reference of the component is
retrieved (Listing 1 line 19-20). The only thing left to do is to associate the AM
to the BS component using the commitManager method of the BS component
and tell the manager to pass into an active life cycle execution mode (Listing 1
line 22-23).

Listing 1: Explicit Manager Creation

1 String id = ”NomeComponenteBS” ;
2 String nome manager = ”NomeFileContratto” ;
3 String location = ”axth1 . c l i . di . unipi . i t ” ;
4

5 AutonomicControllerInterface refBs =
6 (AutonomicControllerInterface)
7 RMIUtils . lookupResource (location , id) ;
8

9 String mContract =
10 ContractReader . readContractFromDrl(” r l s /” + nome manager + ” . drl”) ;
11

12 AutonomicManager myManager =
13 new AutonomicManager(”DEFMAN” + id + nome manager , mContract) ;
14

15 RMIUtils . rtsDeploy (location , ”DEFMAN” + id + nome manager , myManager)
16

17 rts . runComponent(”DEFMAN” + id + nome manager)
18

19 man = (AutonomicManagerInterface) RMIUtils . lookupResource (location ,
20 ”DEFMAN” + id + nome manager) ;
21

22 refBs . commitManager(man) ;
23 man. enterActive () ;

B.2 Autonomic Behavioural Skeletons

After discussing the creation of Autonomic Managers we conclude our outline of
the framework with a small description on the procedures necessary to create BS

17

Listing 2: BS Remote Contructors

1 public DeployableSeqRemoteConstructor(
2 String id , String location , String destination ,
3 String [] managerContract , Skeleton<?, ?>[] code ,
4 SecurityDescriptor security) ;
5

6 public DeployableFarmRemoteContructor(
7 String id , String location , String [] workerLocations , int i n i t i a l ,
8 String [] manager , DeployableConstructorInterface<In , Out> code ,
9 SecurityDescriptor security) ;

10

11 public DeployablePipelineRemoteConstructor (
12 String id , String location , String [] managerContract ,
13 DeployableConstructorInterface<?, ?>[] code ,
14 SecurityDescriptor security) ;

components. Listing 2 shows the signatures of the BS component constructors
for the BS implemented in the LIBERO framework.

The first BS component constructor we describe is the Sequential BS. Listing
2 lines 1-4 enumerate the BS parameters for the Sequential BS. The first pa-
rameter is the global identifier of the component, then we have the location (the
node where the component will be deployed), the identifier of the destination
component (where to send the result of the computation), a list of strings with
contract file names9 to create managers for this component, an array of objects
implementing the functional behaviour of this BS component10, and finally a
security description for the connection components.

Having discussed the Sequential BS we move on to the Farm BS (Listing
2 lines 6-9). The constructor, as in the Sequential BS case, expects as first
parameters the global identifier of the component and the location where such
component will be deployed, then a list of node names where the workers will
be distributed (round robin), the initial number of workers, a list of manager
contract file names, a remote constructor of some kind of BS (the worker BS,
actually), and finally a security description for the connection components.

Last but not least, we’ll introduce the remote constructor for the Pipeline
BS. Actually, we will limit our description of this component to the description
of the code parameter, since the other parameters are the same of the other BS
components. The code parameter of this constructor accepts a list of Remote
Constructors that will be used to generate the stages of the pipeline in order of
appearance (the first element in the array will be used for the first stage, the
second for the second stage and so on...). The elements of this array can be any
kind of remote constructor implemented in the LIBERO framework.

9This is the implicit way of creating managers associated with the component being created.
10In case the functional code is expressed as an aggregation of some sequential code, the

composition of the functions described by the objects in order of appearance will constitute
the BS functional code.

18

The next subsection of this Appendix describe a sample application imple-
mented using the LIBERO framework to show how the framework can be used
to create BS components as well as the components can be used.

B.3 Sample application

Listing 3 shows a simple framework usage. We give a quick overview of the
construct used in the example and delegate a detailed explanation to [15]. This
sample code describes the construction of a Pipeline with three stages. The first
stage is a Sequential BS with global ID Skeleton1 to be deployed on the machine
axth1.cli.di.unipi.it and having as destination the component with global
ID Farm1. Skeleton1 has no manager and as function uses the code object,
that takes an Integer as parameter and increases it (in order of appearance
Listing3 line 15-21).

The second stage is a Farm component. The only important difference with
the previous stage construct, is that some additional parameters are passed to
the constructor that decide the Farm topology. The set of nodes to use for
worker placement is given as a fixed set11, 2 workers are included in the initial
configuration, and two autonomic managers12 are set to be created. Finally as
described by the security descriptor, this component sends data to a non secure
node (in order of appearance Listing 3 line 28 - 33).

The third stage is again made of a Sequential construct, as the first stage,
and introduces no new structural concept.

Finally the last appearing element represents the Pipeline with the newly
created remote constructors described above.

Listing 3: Example usage

1 IOInterfaceObject<Integer , Integer> con =
2 new IOInterfaceObject<Integer , Integer>(”Temp”) ;
3

4 DeployableConstructorInterface<?, ?> worker [] =
5 new DeployableConstructorInterface<?, ?>[3];
6

7 DeployablePipelineRemoteConstructor<Integer , Integer> pipe = null ;
8

9 AutonomicControllerInterface remoteBS = null ;
10 Skeleton<?, ?>[] code = new Skeleton<?, ?>[] { new IncSkeleton () } ;
11

12 DeployableSeqRemoteConstructor<Integer , Integer> farmWorker =
13 new DeployableSeqRemoteConstructor<Integer , Integer > (. . .) ;
14

15 worker [0] = new DeployableSeqRemoteConstructor<Integer , Integer>(
16 ”Skeleton1” ,
17 ”axth1 . c l i . di . unipi . i t ” ,
18 ”Farm1” ,

11(axth3.cli.di.unipi.it, axth3.cli.di.unipi.it, axth3.cli.di.unipi.it)
12(FARM MULTICONCERN MANAGER,FARM MULTICONCERN SECURITY MANAGER) respectively

19

19 null ,
20 code ,
21 SecurityDescriptor .SECURE NO SECURITY) ;
22

23 worker [1] = new DeployableFarmRemoteContructor<Integer , Integer>(
24 ”Farm1” ,
25 ”axth2 . c l i . di . unipi . i t ” ,
26 new String [] { ”axth3 . c l i . di . unipi . i t ” ,
27 ”axth4 . c l i . di . unipi . i t ” ,
28 ”axth5 . c l i . di . unipi . i t ”} ,
29 2 ,
30 new String [] { ”FARMMULTICONCERNMANAGER” ,
31 ”FARMMULTICONCERNSECURITYMANAGER”} ,
32 farmWorker ,
33 SecurityDescriptor .SECUREOUT) ;
34

35 worker [2] = new DeployableSeqRemoteConstructor<Integer , Integer>(
36 ”Skeleton3” ,
37 ”axth6 . c l i . di . unipi . i t ” ,
38 ”Temp” ,
39 null ,
40 code ,
41 SecurityDescriptor .SECURE NO SECURITY) ;
42

43 pipe = new DeployablePipelineRemoteConstructor<Integer , Integer>(
44 ”Pipe” ,
45 ”axth7 . c l i . di . unipi . i t ” ,null ,
46 worker ,
47 SecurityDescriptor .SECURE NO SECURITY) ;
48

49 remoteBS = (AutonomicControllerInterface) pipe . deploy () ;
50

51 con . send(new Integer (2)) ;
52 Integer temp = con . receive () ;

This example only illustrates the usage of the LIBERO component construc-
tors since we only specify how detail the system building. The actual component
deployment is done when the deploy() method that is called on the last con-
structor (the pipe object, Listing 3 line 49).

In order to send data to the system a connection component is created with
global ID Temp. This component is set to have as a destination the Pipeline BS
and receives data from the last stage of the pipeline. In this naif example, we
initiate the computation by sending the data to the pipeline and we wait for a
response with a blocking call to con.receive() on Listing 3 line 52.

20

